The Relationship of Fagaropsis and Luvunga in Rutaceae

Total Page:16

File Type:pdf, Size:1020Kb

The Relationship of Fagaropsis and Luvunga in Rutaceae Taiwania, 54(4): 338-342, 2009 The Relationship of Fagaropsis and Luvunga in Rutaceae Ka-Ho Ling(1), Yanli Wang(1), Wing-Sem Poon(1), Pang-Chui Shaw(2) and Paul Pui-Hay But(1,3*) 1. Food and Drug Authentication Laboratory, Department of Biology, The Chinese University of Hong Kong, 48-52 Tai Po Road, Shatin, N.T., Hong Kong, P.R. China. 2. Department of Biochemistry, The Chinese University of Hong Kong, 48-52 Tai Po Road, Shatin, N.T., Hong Kong, P.R. China. 3. Yunnan Institute of Materia Medica, 24 Lengshuitang, Bijizhen, Kunming, Yunnan, P.R. China. * Corresponding author. Tel: +852-2609-6299; Email: [email protected] (Manuscript received 12 November 2008; accepted 25 June 2009) ABSTRACT: Molecular analyses of ITS1 and trnL-F sequences confirmed that Fagaropsis falls in the same clade with Phellodendron, Tetradium, Toddalia, and Zanthoxylum, thus offering support for the ‘proto-Rutaceae’ hypothesis based on chemotaxonomic interpretation. On the other hand, Luvunga naturally fits in subfamily Aurantioideae. The results also indicate that Orixa is closer to Casimiroa and Skimmia, but not to Tetradium and Zanthoxylum. KEY WORDS: Aurantioideae, Proto-Rutaceae, Rutaceae, Fagaropsis, Luvunga, Orixa. Disagreement with Engler’s (1931) classification was INTRODUCTION independently raised by the biochemical studies of Rutaceae Juss. are a large family of great economic Waterman (1975) and Waterman & Khalid (1981). The importance, as many species are sources of foods, spices, genera Zanthoxylum (including Fagara L.) and essential oil, herbal medicines, horticultural items, Fagaropsis Mildbr. in Rutoideae and the genera pharmaceuticals, and lumbar (Wiersema and Leon, Phellodendron and Toddalia Juss. in Toddalioideae were 1999). A proper appreciation of the true phylogenetic found to have retained the primitive relationship in this family will definitely be helpful to the 1-benzyltetrahydroisoquinoline (1-BTIQ) alkaloid selection of taxa for breeding, searching for genes for pathway and produce 1-BTIQ alkaloids. Waterman (1983, biotechnological designs, and exploration for bioactive 2007) hypothesized that Rutaceae and related families leads in drug development. Regretfully, the classification switched from production of 1-BTIQ alkaloids to the of Rutaceae is in a fluid state. production of advanced Rutalean metabolites: coumarins, Engler (1931) provided the most comprehensive limonoids, and furoquinoline alkaloids. Based on classification and divided the family into seven chemotaxonomic analyses, he further proposed to place subfamilies. Three of the subfamilies, Rutoideae, these four genera in a tentative ‘proto-Rutaceae’ group. Toddalioideae K. Koch, and Aurantioideae Eaton, None of these four genera, however, contain all the four covering almost all genera in Rutaceae, are represented types of metabolites. So Waterman (1983) suggested that with follicles, capsules and berries, respectively. members of Euodia sensu lato with pinnately compound However, morphological studies by Hartley (1974, 1981 leaves (i.e., Tetradium) would be good candidates to and 2001) questioned the validity in dividing Rutoideae contain both 1-BTIQ and all three types of advanced and Toddalioideae based on differences in fruit Rutalean metabolites. Studies following this suggestion characters, as he concluded that some genera in indeed found in two Tetradium species 1-BTIQ and all Toddalioideae are more closely related to genera in three types of advanced Rutalean metabolites (Ng et al., Rutoideae. Hartley (1981) further indicated that 1987a, 1987b; Quader et al., 1990; Waterman, 2007). Tetradium Lour. (Rutoideae) and Phellodendron Rupr. These findings lend support to the ‘proto-Rutaceae’ (Toddalioideae) are closely related, so close that it is suggestion, which includes Fagaropsis, Phellodendron, impossible to distinguish them using vegetative or Tetradium, Toddalia, and Zanthoxylum. staminate material. He even suggested that Tetradium is Recently, Poon et al. (2007) undertook cladistic likely the immediate ancestor of Phellodendron. He also analyses of subfamilies Rutoideae and Toddalioideae in considered Zanthoxylum L. (Rutoideae), Tetradium, and the Rutaceae. Their findings demonstrated that the two Phellodendron to be related to one another in a linear subfamilies are not natural. Moreover, four of the sequence. Similarly, he suggested that Acronychia J. R. ‘proto-Rutaceae’ genera included in their study, Forst. & G. Forst. of Toddalioideae is closely related to Phellodendron, Tetradium, Toddalia, and Zanthoxylum, Melicope J. R. Forst. & G. Forst. of Rutoideae (Hartley, were resolved as a natural (monophyletic) group, lending 1974, 1981). Thorne (1992, 2000) and Thorne and support to Waterman’s suggestion of a ‘proto-Rutaceae’ Reveal (2007) agreed with this suggestion and merged group. Since this group will bear relevance to future Toddalioideae into Rutoideae. classifications of Rutaceae and also possibly directions for 338 December, 2009 Ling et al.: The relationship of Fagaropsis and Luvunga in Rutaceae search for bioactive leads (Waterman, 2007), we Melia azedarach analyzed the ITS1 and trnL-F sequences of Fagaropsis 69 Tetradium ruticarpu glabra Capuron to test if it is also a member of the 77 Tetradium trichotom ‘proto-Rutaceae’ clade. 92 Tetradium austrosin On the other hand, Luvunga Ham. ex Wight & Arn. 53 is traditionally considered a member of Aurantioideae Tetradium glabrifol (Huang, 1997). However, Chase et al. (1999) reported Phellodendron amure that a specimen identified as 'Luvunga eleutherandra 97 Fagaropsis glabra Dalzell' paired with Zanthoxylum (of ‘proto-Rutaceae’), 100 Zanthoxylum piperit but then added in proof that the 'Luvunga eleutherandra' Zanthoxylum simulan specimen was actually a Zanthoxylum. So far, no further 93 Zanthoxylum schinif clarification of the alliance of Luvunga with molecular data has been made; but Thorne (2000) and Thorne and Toddalia asiatica Acronychia peduncul Reveal (2007) went ahead to place this genus in 65 98 Rutoideae. We found it necessary to include L. scandens 68 Melicope ternata Roxb. in the analysis so as to clarify its true position in 100 Melicope rubra Rutaceae. Euodia hortensis 95 72 Euodia pubifolia 83 MATERIALS AND METHODS Halfordia kendack 83 Bosistoa medicinali 1. Plant materials 89 Leaf fragments of Fagaropsis glabra and Luvunga Dinosperma melanoph scandens were sampled from herbarium specimens 95 Skimmia japonica collected by R. Capmon 24502-SF and by SK Lau 6331, 64 Skimmia laureola respectively, kept in Harvard University Herbaria. 98 Skimmia reevesiana 2. DNA extraction,,sequencing and data analysis 63 59 Skimmia anquetilia Casimiroa edulis Sample preparation and DNA extraction, 93 70 amplification and sequencing, as well as cladistic Ptelea trifoliata analysis followed those described in Poon et al. (2007). Orixa japonica ITS1 and trnL-F sequences of the taxa from Rutoideae Citrus maxima and Toddalioideae reported in Poon et al. (2007) were 99 100 Citrus reticulata included in this analysis. In addition, seven DNA sequences were downloaded from GenBank for tree Luvunga scandense construction. They include Melia azedarach L. Ruta graveolens (AY695595, AB057481 and EF489265), Citrus maxima (Burm. ex Rumph.) Merr. (EU178124 and AM398228) Fig. 1. ITS1 MP jackknife tree. Tree was rooted using Melia azedarach as an outgroup. The numbers on the branches and Citrus reticulata Blanco (EU178123 and represent JK values larger than 50. AM398230). based our phylogenetic inferences on the RESULTS simultaneous-analysis tree (Fig. 3). Our results confirmed that Fagaropsis glabra, as A total of six DNA sequences (FJ440571– suggested by Waterman (1983), clustered with FJ440576) from Fagaropsis glabra and Luvunga Phellodendron, Tetradium, Toddalia, and Zanthoxylum scandens were uploaded to GenBank. The most (Figs. 1–3). This “proto-Rutaceae” group (including parsimony JK trees for the nuclear ribosomal regions, Fagaropsis, Phellodendron, Tetradium, Toddalia and plastid regions, and the simultaneous analysis are Zanthoxylum) was well-supported (97% & 71% JK) in both presented in Figs. 1–3. Data-matrix and tree statistics for the nuclear and plastid trees without conflict; this group was all analyses are presented in Table 1. Conflicts between also strongly supported (100% JK) in the the nuclear and plastid JK trees (Figs. 1 & 2) were simultaneous-analysis tree. It may be possible to group these attributed to stochastic error rather than the process five genera in a re-circumscribed tribe Zanthoxyleae (A. partitions having different histories in our previous study Juss.) Dumort., with Zanthoxylum as the type genus. This (Poon et al., 2008). Because there were no well group probably is close to an ancestral one in Rutaceae as supported conflicts between the process partitions, we fossil records revealed that all five genera were already 339 Taiwania Vol. 54, No. 4 Melia azedarach Melia azedarach Skimmia reevesiana 100 Citrus maxima Skimmia laureola 96 100 Citrus reticulata Skimmia anquetilia 67 Luvunga scandense 79 Skimmia japonica Ruta graveolens Orixa japonica Skimmia japonica Casimiroa edulis 94 55 Skimmia laureola 63 Melicope rubra 100 99 Melicope ternata Skimmia reevesian 76 Acronychia peduncu 77 Skimmia anquetili 100 Euodia hortensis 67 Casimiroa edulis 76 Euodia pubifolia Orixa japonica 56 Halfordia kendack 81 72 Ptelea trifoliata Bosistoa medicinal Zanthoxylum piper Dinosperma melanop 100 Tetradium ruticarp Zanthoxylum simul 100 85 Tetradium glabrifo Zanthoxylum schin 98 76 78 Tetradium trichoto
Recommended publications
  • Tema 20 (12): Familia Rutáceas
    Tema 20 (12): Familia Rutáceas Prof. Francisco J. García Breijo Unidad Docente de Botánica Dep. Ecosistemas Agroforestales Escuela Técnica Superior del Medio Rural y Enología Universidad Politécnica de Valencia Diapositiva nº: 1 Taxonomía -1 Pertenece: al clado Eudicotiledóneas (A.P.G. II, 2003) Clado Eudicots nucleares Clado Rósidas Clado Eurósidas II a la subclase Rosidae (Takhtajan, 1997; Cronquist, 1981) al superorden Rutanae (Thorne, 1992) al superorden Rutiflorae (Dahlgren, 1985) Familia Rutáceas ©: Francisco José García Breijo Diapositiva 2 Unidad Docente de Botánica. ETSMRE, UPV Taxonomía -2 Pertenece al: Orden Sapindales (A.P.G. II, 2003; Cronquist, 1981) Superorden Rutanae, orden Rutales (Takhtajan, 1997). Orden Rutales (Thorne, 1992; Dahlgren, 1985) Familia Rutáceas ©: Francisco José García Breijo Diapositiva 3 Unidad Docente de Botánica. ETSMRE, UPV Generalidades Rutaceae Juss. Distribución: trópicos y regiones templadas cálidas, especialmente el S de África y en Australia. Importancia económica: en alimentación (frutos cítricos: naranjas, limones, ...; Citrus, Aegle, Casimiroa, Clausena, etc.), industria (aceites para perfumería) y medicina (Ruta, Galipea, Toddalia). Familia Rutáceas ©: Francisco José García Breijo Diapositiva 4 Unidad Docente de Botánica. ETSMRE, UPV Distribución Caracteres diagnósticos -1 HÁBITO: Gran familia de árboles y arbustos, en algún caso hierbas, de gran importancia económica por ser productores de los frutos cítricos comerciales. El nombre de la familia viene de la ruda (Ruta graveolens). Pequeña mata perenne, aromática, que ha venido cultivándose durante siglos como ornamental. Abundan en esta familia los conductos secretores lisígenos con aceites esenciales en su interior. Las hojas de ruda al ser estrujadas desprenden un olor desagradable. Plantas mesófitas o xerófitas. Familia Rutáceas ©: Francisco José García Breijo Diapositiva 6 Unidad Docente de Botánica.
    [Show full text]
  • Abacca Mosaic Virus
    Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana,
    [Show full text]
  • Pouteria Sapota
    Pouteria sapota Pouteria sapota, mamey sapote, is a species of tree na- propagated by grafting, which ensures the new plant has tive to Central America, naturally ranging from southern the same characteristics as the parent, especially its fruit. Mexico to southern Costa Rica. Today, the tree is cul- It is also considerably faster than growing trees by seed. tivated not only in Mexico, but also in Central America, The leaves are pointed at both ends, 4 to 12 inches in the Caribbean, and South Florida for its fruit, which is length and grow in clusters at the ends of branches. commonly eaten in many Latin American countries. It has different names depending on the country: mamey The fruit is about 10 to 25 cm (4 to 10 inches) long and (Cuba), zapote colorado (Costa Rica), níspero and zapote 8 to 12 cm (3 to 5 inches) wide and has flesh ranging in rojo (South America), among others. color from pink to orange to red. The brown skin has a texture somewhat between sandpaper and the fuzz on a peach. The fruit’s texture is creamy and soft. A mamey 1 Description sapote is ripe when the flesh is pink when a fleck of the skin is removed. The flesh should give slightly, as with a ripe kiwifruit. The mamey sapote is related to other sapotes such as sapodilla (Manilkara zapota), abiu (P. caimito) and canistel (P. campechiana), but unrelated to the black sapote (Diospyros digyna) and white sapote (Casimiroa edulis).[2] It should not be confused with the mammee ap- ple (Mammea americana).
    [Show full text]
  • ZAPOTE the Popular Name Represents Many Diverse Edible Fruits of Guatemala
    Sacred Animals and Exotic Tropical Plants monzón sofía photo: by Dr. Nicholas M. Hellmuth and Daniela Da’Costa Franco, FLAAR Reports ZAPOTE The popular name represents many diverse edible fruits of Guatemala ne of the tree fruits raised by the Most zapotes have a soft fruit inside and Maya long ago that is still enjoyed a “zapote brown” covering outside (except today is the zapote. Although for a few that have other external colors). It Othere are several fruits of the same name, the is typical for Spanish nomenclature of fruits popular nomenclature is pure chaos. Some of and flowers to be totally confusing. Zapote is the “zapote” fruits belong to the sapotaceae a vestige of the Nahuatl (Aztec) word tzapotl. family and all are native to Mesoamerica. The first plant on our list, Manilkara But other botanically unrelated fruits are also zapote, is commonly named chicozapote. called zapote/sapote; some are barely edible This is one of the most appreciated edible (such as the zapotón). There are probably species because of its commercial value. It even other zapote-named fruits that are not is distributed from the southeast of Mexico, all native to Mesoamerica. especially the Yucatán Peninsula into Belize 60 Dining ❬ ANTIGUA and the Petén area, where it is occasionally now collecting pertinent information related an abundant tree in the forest. The principal to the eating habits of Maya people, and all products of these trees are the fruit; the the plants they used and how they used them latex, which is used as the basis of natural for food.
    [Show full text]
  • Brooklyn, Cloudland, Melsonby (Gaarraay)
    BUSH BLITZ SPECIES DISCOVERY PROGRAM Brooklyn, Cloudland, Melsonby (Gaarraay) Nature Refuges Eubenangee Swamp, Hann Tableland, Melsonby (Gaarraay) National Parks Upper Bridge Creek Queensland 29 April–27 May · 26–27 July 2010 Australian Biological Resources Study What is Contents Bush Blitz? Bush Blitz is a four-year, What is Bush Blitz? 2 multi-million dollar Abbreviations 2 partnership between the Summary 3 Australian Government, Introduction 4 BHP Billiton and Earthwatch Reserves Overview 6 Australia to document plants Methods 11 and animals in selected properties across Australia’s Results 14 National Reserve System. Discussion 17 Appendix A: Species Lists 31 Fauna 32 This innovative partnership Vertebrates 32 harnesses the expertise of many Invertebrates 50 of Australia’s top scientists from Flora 62 museums, herbaria, universities, Appendix B: Threatened Species 107 and other institutions and Fauna 108 organisations across the country. Flora 111 Appendix C: Exotic and Pest Species 113 Fauna 114 Flora 115 Glossary 119 Abbreviations ANHAT Australian Natural Heritage Assessment Tool EPBC Act Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth) NCA Nature Conservation Act 1992 (Queensland) NRS National Reserve System 2 Bush Blitz survey report Summary A Bush Blitz survey was conducted in the Cape Exotic vertebrate pests were not a focus York Peninsula, Einasleigh Uplands and Wet of this Bush Blitz, however the Cane Toad Tropics bioregions of Queensland during April, (Rhinella marina) was recorded in both Cloudland May and July 2010. Results include 1,186 species Nature Refuge and Hann Tableland National added to those known across the reserves. Of Park. Only one exotic invertebrate species was these, 36 are putative species new to science, recorded, the Spiked Awlsnail (Allopeas clavulinus) including 24 species of true bug, 9 species of in Cloudland Nature Refuge.
    [Show full text]
  • A Detailed Review on Morphotaxonomy And
    Acta Scientific Microbiology (ISSN: 2581-3226) Review Article Volume 1 Issue 6 June 2018 Skimmia anquetilia N.P. Taylor and Airy Shaw A Detailed Review on Morphotaxonomy and Chemoprofiling of Saduf Nissar1, Neelofar Majid1, Aabid M Rather1*, Irshad A Nawchoo1 and GG Mohi-Ud-Din2 1Plant Reproductive Biology, Genetic Diversity and Phytochemistry Research Laboratory, Department of Botany, University of Kashmir, Srinagar, India 2Department of Botany, Government Degree College for Women, Sopore, Baramullah, India *Corresponding Author: Aabid M Rather, Plant Reproductive Biology, Genetic Diversity and Phytochemistry Research Laboratory, DepartmentReceived: April of Botany, 20, 2018; University Published: of Kashmir, May 28, Srinagar, 2018 India. Abstract - In recent times, medicinal plants have attracted huge attention due to their diverse range of biological and therapeutic proper Skimmia ties. Evidences have been accumulated since ages to demonstrate promising potential of medicinal plants used in various traditional, anquetilia complementary, and alternative systems with the ever-increasing interest of today’s population towards natural products, Rutaceae N.P. Taylor and Airy Shaw emerged out to be one of the most eye-catching plant bearing multiple medicinal properties. It is a perennial aromatic evergreen shrub belonging to family . Pharmacological studies have demonstrated significant action - of different extracts as antimicrobial, anti-inflammatory agents, among others, supporting some of its popular uses. An attempt has S. anquetilia been made in this review article to provide an up-to-date overview of the morphological parameters, taxonomic features, distribu tion pattern, traditional uses, as well as the phytochemistry and biological activities of . The present review provides insights for future research aiming for both ethnopharmacological validation of its popular use and its exploration as a new source ofKeywords herbal drugs: Skimmia and/or anquetilia; bioactive Rutaceaenatural products.
    [Show full text]
  • Research Article Toxicological Evaluation of Essential Oils from Some Plants of Rutaceae Family
    Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2018, Article ID 4394687, 7 pages https://doi.org/10.1155/2018/4394687 Research Article Toxicological Evaluation of Essential Oils from Some Plants of Rutaceae Family Iram Liaqat ,1 Naila Riaz,2 Qurat-ul-Ain Saleem,2 Hafiz Muhammad Tahir,1 Muhammad Arshad,3 and Najma Arshad 2 1 Department of Zoology, Government College University, Lahore, Pakistan 2Department of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan 3Department of Zoology, University of Education, Lahore, Pakistan Correspondence should be addressed to Najma Arshad; [email protected] Received 25 January 2018; Accepted 12 April 2018; Published 6 May 2018 Academic Editor: Nativ Dudai Copyright © 2018 Iram Liaqat et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Essential oils are produced as secondary metabolites by aromatic plants, predominantly belonging to families Apiaceae, Lamiaceae, Myrtaceae, and Rutaceae. Te family Rutaceae has great economic importance for its numerous edible fruits and essential oils. In the present study, essential oils of seven plants of family Rutaceae, Aegle marmelos, Murraya koenigii, Citrus reticulata Blanco, Zanthoxylum armatum, Skimmia laureola, Murraya paniculata,andBoenninghausenia albifora, were used for their toxicological assessment. Seven groups of selected essential oils-treated Wistar rats were established against control group (�=5) that received water for 14 days; animals were ofered feed and water ad libitum and treated with essential oils at 400 mg/kg body weight. Hematological studies revealed signifcant elevation in TEC in animals treated with essential oils of M.
    [Show full text]
  • Downloading Or Purchasing Online At
    On-farm Evaluation of Grafted Wildflowers for Commercial Cut Flower Production OCTOBER 2012 RIRDC Publication No. 11/149 On-farm Evaluation of Grafted Wildflowers for Commercial Cut Flower Production by Jonathan Lidbetter October 2012 RIRDC Publication No. 11/149 RIRDC Project No. PRJ-000509 © 2012 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-328-4 ISSN 1440-6845 On-farm Evaluation of Grafted Wildflowers for Commercial Cut Flower Production Publication No. 11/149 Project No. PRJ-000509 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright.
    [Show full text]
  • Ruta Essential Oils: Composition and Bioactivities
    molecules Review Ruta Essential Oils: Composition and Bioactivities Lutfun Nahar 1,* , Hesham R. El-Seedi 2, Shaden A. M. Khalifa 3, Majid Mohammadhosseini 4 and Satyajit D. Sarker 5,* 1 Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitel ˚u27, 78371 Olomouc, Czech Republic 2 Biomedical Centre (BMC), Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden; [email protected] 3 Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden; [email protected] 4 Department of Chemistry, College of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran; [email protected] 5 Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK * Correspondence: [email protected] (L.N.); [email protected] (S.D.S.); Tel.: +44-(0)-1512312096 (S.D.S.) Abstract: Ruta L. is a typical genus of the citrus family, Rutaceae Juss. and comprises ca. 40 different species, mainly distributed in the Mediterranean region. Ruta species have long been used in traditional medicines as an abortifacient and emmenagogue and for the treatment of lung diseases and microbial infections. The genus Ruta is rich in essential oils, which predominantly contain aliphatic ketones, e.g., 2-undecanone and 2-nonanone, but lack any significant amounts of terpenes. Three Ruta species, Ruta chalepensis L., Ruta graveolens L., and Ruta montana L., have been extensively studied for the composition of their essential oils and several bioactivities, revealing their potential medicinal and agrochemical applications.
    [Show full text]
  • Himalayan Aromatic Medicinal Plants: a Review of Their Ethnopharmacology, Volatile Phytochemistry, and Biological Activities
    medicines Review Himalayan Aromatic Medicinal Plants: A Review of their Ethnopharmacology, Volatile Phytochemistry, and Biological Activities Rakesh K. Joshi 1, Prabodh Satyal 2 and Wiliam N. Setzer 2,* 1 Department of Education, Government of Uttrakhand, Nainital 263001, India; [email protected] 2 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-256-824-6519; Fax: +1-256-824-6349 Academic Editor: Lutfun Nahar Received: 24 December 2015; Accepted: 3 February 2016; Published: 19 February 2016 Abstract: Aromatic plants have played key roles in the lives of tribal peoples living in the Himalaya by providing products for both food and medicine. This review presents a summary of aromatic medicinal plants from the Indian Himalaya, Nepal, and Bhutan, focusing on plant species for which volatile compositions have been described. The review summarizes 116 aromatic plant species distributed over 26 families. Keywords: Jammu and Kashmir; Himachal Pradesh; Uttarakhand; Nepal; Sikkim; Bhutan; essential oils 1. Introduction The Himalya Center of Plant Diversity [1] is a narrow band of biodiversity lying on the southern margin of the Himalayas, the world’s highest mountain range with elevations exceeding 8000 m. The plant diversity of this region is defined by the monsoonal rains, up to 10,000 mm rainfall, concentrated in the summer, altitudinal zonation, consisting of tropical lowland rainforests, 100–1200 m asl, up to alpine meadows, 4800–5500 m asl. Hara and co-workers have estimated there to be around 6000 species of higher plants in Nepal, including 303 species endemic to Nepal and 1957 species restricted to the Himalayan range [2–4].
    [Show full text]
  • Ruta Chalepensis Methanol Extracts Against the Cariogenic Streptococcus Mutans
    Vol. 7(46), pp. 5234-5237, 21 November, 2013 DOI: 10.5897/AJMR2013.5859 ISSN 1996-0808 ©2013 Academic Journals African Journal of Microbiology Research http://www.academicjournals.org/AJMR Full Length Research Paper In vitro antimicrobial activity of Ruta chalepensis methanol extracts against the cariogenic Streptococcus mutans Marcela A. Gloria-Garza1, Ricardo Gomez-Flores1*, Myriam A. De La Garza-Ramos2, Ramiro Quintanilla-Licea3, Reyes Tamez-Guerra1, Patricia Tamez-Guerra1 and Cristina Rodríguez- Padilla1 1Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, San Nicolás de los Garza, Nuevo León, México. 2Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Química, San Nicolás de los Garza, Nuevo León, México. 3Universidad Autónoma de Nuevo León, Facultad de Odontología, Monterrey, N. L., México. Accepted 28 October, 2013 Medicinal plants have been used for centuries and have become part of complementary medicine worldwide because of their potential health benefits. Since dental caries is one of the most common oral diseases and is considered a major public health problem, the present study evaluated in vitro antimicrobial potential of methanol extracts of Ruta chalepensis against the major etiologic agent of dental caries, Streptococcus mutans. The antimicrobial effect of R. chalepensis was evaluated in liquid medium by the dimethylthiazol-diphenyltetrazolium bromide (MTT) reduction colorimetric assay and in solid medium by the determination of colony forming units (CFU). We found that the minimum inhibitory concentration (MIC) was 250 μg/mL (p <0.05) in liquid medium and 3.9 μg/mL (p <0.05) in solid medium. Key words: Antimicrobial agents, plant extracts, Ruta chalepensis, dental caries, Streptococcus mutans.
    [Show full text]
  • BIODIVERSITY CONSERVATION on the TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and Plants
    BIODIVERSITY CONSERVATION ON THE TIWI ISLANDS, NORTHERN TERRITORY: Part 1. Environments and plants Report prepared by John Woinarski, Kym Brennan, Ian Cowie, Raelee Kerrigan and Craig Hempel. Darwin, August 2003 Cover photo: Tall forests dominated by Darwin stringybark Eucalyptus tetrodonta, Darwin woollybutt E. miniata and Melville Island Bloodwood Corymbia nesophila are the principal landscape element across the Tiwi islands (photo: Craig Hempel). i SUMMARY The Tiwi Islands comprise two of Australia’s largest offshore islands - Bathurst (with an area of 1693 km 2) and Melville (5788 km 2) Islands. These are Aboriginal lands lying about 20 km to the north of Darwin, Northern Territory. The islands are of generally low relief with relatively simple geological patterning. They have the highest rainfall in the Northern Territory (to about 2000 mm annual average rainfall in the far north-west of Melville and north of Bathurst). The human population of about 2000 people lives mainly in the three towns of Nguiu, Milakapati and Pirlangimpi. Tall forests dominated by Eucalyptus miniata, E. tetrodonta, and Corymbia nesophila cover about 75% of the island area. These include the best developed eucalypt forests in the Northern Territory. The Tiwi Islands also include nearly 1300 rainforest patches, with floristic composition in many of these patches distinct from that of the Northern Territory mainland. Although the total extent of rainforest on the Tiwi Islands is small (around 160 km 2 ), at an NT level this makes up an unusually high proportion of the landscape and comprises between 6 and 15% of the total NT rainforest extent. The Tiwi Islands also include nearly 200 km 2 of “treeless plains”, a vegetation type largely restricted to these islands.
    [Show full text]