Non-Timber Forest Products, Natural Element
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Forest Farming
Forest Farming Ken Mudge CY ROSE N NA Many sections of the Northeast have been reforested over the past century. Extensive forest cover is seen in this view from Wachu- sett Mountain in central Massachusetts. armers harvest crops from their fields, and agroforestry—a multidisciplinary approach to loggers harvest trees from their forests, agricultural production that achieves diverse, Fbut what do forest farmers harvest? The profitable, sustainable land use by integrating answer is an eclectic collection of non-timber trees with non-timber forest crops. forest crops like maple syrup, medicinal herbs, While some other agroforestry practices begin fruits, gourmet mushrooms, and nuts. with planting young trees that take years to Forest farming is an approach to forest man- mature, forest farming involves planting non- agement that combines some of the manage- timber forest crops beneath the canopy of an ment practices of conventional forestry with established forest. In other words, other agro- those of farming or gardening to achieve forestry practices bring the forest to the crops, an environmentally and economically sus- whereas forest farming brings the crops to the tainable land-use system. It is one of several forest. In this regard it is helpful to consider related practices that fall under the domain of the role of forest farming in overall forest man- Forest Farming 27 agement. A forest farm should be designed to bearing trees including walnuts and peaches, emulate as much as possible a natural forest. but there is no evidence of deliberate culti- This includes characteristics of a healthy forest vation of useful crops beneath the canopy of ecosystem such as species diversity, resilience established forest. -
Priscila-IAEA
1 SM/EB-13 E-beam Irradiation of “in nature” Palm: Texture and Color Evaluation Silva, P.V a; Nunes, T.C.F a; Furgeri a, C.; Pitombo b, R.N.M; Hojeije c, K.Y. and Villavicencio, A.L.C.H a a Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), Centro de Tecnologia das Radiações, Laboratório de Detecção de alimentos Irradiados, Cidade Universitária, Av. Professor Lineu Prestes 2242, Butantã CEP 05508-000 São Paulo - SP, Brazil. b Faculdade Ciências Farmacêuticas, Departamento de Tecnologia Farmacêutica e Bioquímica, Universidade de São Paulo, Av. Professor Lineu Prestes 580, Bloco 16 CEP 05508-900 São Paulo – SP, Brazil. c Floresta Indústria e Comércio Ltda. Rodovia Régis Bittencourt BR116, Km 416 Bairro Piúva CEP 118000- 000. Juquiá , São Paulo-SP, Brazil. Email contact of main author: [email protected] [email protected] Abstract The palm tree ( Bactris gasipaes Kunth) is a potential raised species with economic, for the nutritional value of its fruits that can in such way be used in the feeding human being as in the animal, and mainly, for the extraction of the palm that currently has a bigger interest in this culture. Food irradiation is a worldwide technology that aims to improve the product quality, in order to eliminate diverse microorganisms that can spoil the food. Irradiation processing, in the recommended doses, causes very few chemical alterations in foods, nutritional losses are considered insignificant and some of the alterations known found in irradiated foods is not harmful or dangerous. The objective of this work was to evaluate physical characteristics of in nature peach palm, such as color and texture, after combination of e-beam processing and refrigeration. -
Non-Timber Forest Products
Agrodok 39 Non-timber forest products the value of wild plants Tinde van Andel This publication is sponsored by: ICCO, SNV and Tropenbos International © Agromisa Foundation and CTA, Wageningen, 2006. All rights reserved. No part of this book may be reproduced in any form, by print, photocopy, microfilm or any other means, without written permission from the publisher. First edition: 2006 Author: Tinde van Andel Illustrator: Bertha Valois V. Design: Eva Kok Translation: Ninette de Zylva (editing) Printed by: Digigrafi, Wageningen, the Netherlands ISBN Agromisa: 90-8573-027-9 ISBN CTA: 92-9081-327-X Foreword Non-timber forest products (NTFPs) are wild plant and animal pro- ducts harvested from forests, such as wild fruits, vegetables, nuts, edi- ble roots, honey, palm leaves, medicinal plants, poisons and bush meat. Millions of people – especially those living in rural areas in de- veloping countries – collect these products daily, and many regard selling them as a means of earning a living. This Agrodok presents an overview of the major commercial wild plant products from Africa, the Caribbean and the Pacific. It explains their significance in traditional health care, social and ritual values, and forest conservation. It is designed to serve as a useful source of basic information for local forest dependent communities, especially those who harvest, process and market these products. We also hope that this Agrodok will help arouse the awareness of the potential of NTFPs among development organisations, local NGOs, government officials at local and regional level, and extension workers assisting local communities. Case studies from Cameroon, Ethiopia, Central and South Africa, the Pacific, Colombia and Suriname have been used to help illustrate the various important aspects of commercial NTFP harvesting. -
Salix Production for the Floral Industry in the USA Who Grow Willows
Salix production for the floral industry in the USA Who grow willows • Plant nurseries (ornamental and erosion control) • Biomass growers • Basket makers • Floral cut-stem production The USDA Specialty Crop Initiative • the production of woody ornamental cut stems, representing a specialty niche in cut flower production, has risen in popularity • dogwood (Cornus), Forsythia, Hydrangea, lilac (Syringa), and Viburnum • potential as an off-season production option, or third crop enterprise Objectives • to characterize the extent of Salix cultivation as a floral crop in the USA by identifying the active willow growers and their profiles, production acreage and gross sales • to identify if the production practices are well defined and consistent to support crop expansion • the potential the crop’s expansion Distribution and concentration of Salix survey recipients in the United States 52 growers The Association of Specialty Cut Flower Growers (ASCFG) Grower profile • Small scale specialty cut flower producers (58.6%) • Large scale specialty cut flower producers (24.1%) • 24.1% considered Salix as “major crop” –Total gross sales for 80.0% was less than $25,000; 17.0% grossed $25,000- 50,000 and 3% grossed $50,000- 100,000 • good cash return, up to $1.25 to $1.75 per stem of common pussy willow • annual gross financial returns for willow plants, up to $24.94, is much higher than for many other woody florals Taxa in cultivation • For catkins •For Stems The seasonality of the crop Willow harvest for ornamental value by number of growers reporting -
Docket No. Fda–2011–N–0921
DOCKET NO. FDA–2011–N–0921 BEFORE THE UNITED STATES OF AMERICA DEPARTMENT OF HEALTH AND HUMAN SERVICES FOOD AND DRUG ADMINISTRATION COMMENTS OF THE AMERICAN HERBAL PRODUCTS ASSOCIATION ON PROPOSED RULE for STANDARDS FOR THE GROWING, HARVESTING, PACKING, AND HOLDING OF PRODUCE FOR HUMAN CONSUMPTION November 22, 2013 Docket No. FDA–2011–N–0921 November 22, 2013 Prefatory remarks ................................................................................................................................ 1 1. The broad and deep impact of the new regulations necessitates regulatory restraint ...................... 2 2. The same controls are neither necessary nor appropriate for non‐RTE foods as for RTE foods ......... 3 3. Wherever possible, food processors rather than farmers should ensure the biological safety of food ..................................................................................................................................................... 7 3.1 Wherever possible, FDA should avoid burdening farmers and should rely on food processors rather than farmers to ensure biological safety ................................................................................ 7 3.2 Farmers are generally ill‐equipped to comply with either Part 112 or 117 ................................. 7 3.3 Food processors are the appropriate entity to ensure the biological safety of food wherever possible ........................................................................................................................................... -
Industrial Context Work Plan
LOS ANGELES CITYWIDE HISTORIC CONTEXT STATEMENT Context: Industrial Development, 1850-1980 Prepared for: City of Los Angeles Department of City Planning Office of Historic Resources September 2011; rev. February 2018 The activity which is the subject of this historic context statement has been financed in part with Federal funds from the National Park Service, Department of the Interior, through the California Office of Historic Preservation. However, the contents and opinions do not necessarily reflect the views or policies of the Department of the Interior or the California Office of Historic Preservation, nor does mention of trade names or commercial products constitute endorsement or recommendation by the Department of the Interior or the California Office of Historic Preservation. This program receives Federal financial assistance for identification and protection of historic properties. Under Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, and the Age Discrimination Act of 1975, as amended, the U.S. Department of the Interior prohibits discrimination on the basis of race, color, national origin, disability, or age in its federally assisted programs. If you believe you have been discriminated against in any program, activity, or facility as described above, or if you desire further information, please write to: Office of Equal Opportunity, National Park Service; 1849 C Street, N.W.; Washington, D.C. 20240 SurveyLA Citywide Historic Context Statement Industrial Development, 1850-1980 TABLE -
Harvesting Floral Greens in Western Washington As Value-Addition: Labor Issues and Globalization Heidi Ballard1*, Don Collins2, Antonio Lopez2 , James Freed3
Meeting of the International Association for the Study of Common Property June 17-21, 2002 Victoria Falls, Zimbabwe Harvesting Floral Greens in Western Washington as Value-Addition: Labor Issues and Globalization Heidi Ballard1*, Don Collins2, Antonio Lopez2 , James Freed3 Paper submitted for Panel entitled: “Turning Forests into Economic Assets: Local Value-Addition and Globalization” ABSTRACT: One of the ways that communities can use value-added activities to transform their forests into economic assets is to add their labor to the resource. To this end, ethnically diverse communities of interest in western Washington and Oregon are increasingly harvesting wild non-timber forest products (NTFP’s), particularly floral greens, from both private and public lands. Harvesters, primarily from Latin American countries, hand-pick a variety of species, often using very little in the way of technology or initial capital investment. However, with new access to refrigeration containers and global markets, these floral greens are shipped primarily to Western Europe, competing directly with other floral greens species grown on plantations in the tropics. Rules of access to the land vary from landowner to landowner, and may or may not require documentation, contracts, and permitting fees that are difficult to obtain for many harvesters. Floral greens harvesters in the Pacific Northwest therefore face a variety of challenges in the face of globalization, and have developed a number of ways to approach their unique labor context. Though harvesters work primarily as individuals or small groups in their negotiations with landowners and wholesalers, recently, one group has formed an association that can collectively bargain with landowners and wholesalers for better land access and better prices for their product. -
Carbon Sequestration Potential of Oil Palm Plantations in Southern Philippines
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.14.041822; this version posted April 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Carbon Sequestration Potential of Oil Palm Plantations in Southern Philippines ∗ Sheila Mae C. Borbon, Michael Arieh P. Medina , Jose Hermis P. Patricio, and Angela Grace Toledo-Bruno Department of Environmental Science, College of Forestry and Environmental Science Central Mindanao University, University Town, Musuan, Bukidnon, Philippines Abstract. Aside from the greenhouse gas reduction ability of palm oil-based biofuel as alternative to fossil fuels, another essential greenhouse gas mitigation ability of oil palm plantation is in terms of offsetting anthropogenic carbon emissions through carbon sequestration. In this context, this study was done to determine the carbon sequestration potential of oil palm plantations specifically in two areas in Mindanao, Philippines. Allometric equation was used in calculating the biomass of oil palm trunk. Furthermore, destructive methods were used to determine the biomass in other oil palm parts (fronds, leaves, and fruits). Carbon stocks from the other carbon pools in the oil palm plantations were measured which includes understory, litterfall, and soil. Results revealed that the average carbon stock in the oil palm plantations is 40.33 tC/ha. Majority of the carbon stock is found in the oil palm plant (53%), followed by soil (38%), litterfall (6%), and understory, (4%). The average carbon sequestration rate of oil palm plants is estimated to be 4.55 tC/ha/year. -
Fire and Nonnative Invasive Plants September 2008 Zouhar, Kristin; Smith, Jane Kapler; Sutherland, Steve; Brooks, Matthew L
United States Department of Agriculture Wildland Fire in Forest Service Rocky Mountain Research Station Ecosystems General Technical Report RMRS-GTR-42- volume 6 Fire and Nonnative Invasive Plants September 2008 Zouhar, Kristin; Smith, Jane Kapler; Sutherland, Steve; Brooks, Matthew L. 2008. Wildland fire in ecosystems: fire and nonnative invasive plants. Gen. Tech. Rep. RMRS-GTR-42-vol. 6. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 355 p. Abstract—This state-of-knowledge review of information on relationships between wildland fire and nonnative invasive plants can assist fire managers and other land managers concerned with prevention, detection, and eradi- cation or control of nonnative invasive plants. The 16 chapters in this volume synthesize ecological and botanical principles regarding relationships between wildland fire and nonnative invasive plants, identify the nonnative invasive species currently of greatest concern in major bioregions of the United States, and describe emerging fire-invasive issues in each bioregion and throughout the nation. This volume can help increase understanding of plant invasions and fire and can be used in fire management and ecosystem-based management planning. The volume’s first part summarizes fundamental concepts regarding fire effects on invasions by nonnative plants, effects of plant invasions on fuels and fire regimes, and use of fire to control plant invasions. The second part identifies the nonnative invasive species of greatest concern and synthesizes information on the three topics covered in part one for nonnative inva- sives in seven major bioregions of the United States: Northeast, Southeast, Central, Interior West, Southwest Coastal, Northwest Coastal (including Alaska), and Hawaiian Islands. -
Course Handout for Introduction to Forest Gardening
COURSE HANDOUT FOR INTRODUCTION TO FOREST GARDENING Complied by Jess Clynewood and Rich Wright Held at Coed Hills Rural Art Space 2010 ETHICS AND PRINCIPLES OF PERMACULTURE Care for the Earth v Care for the people v Fair shares PRINCIPLES Make the least change for the greatest effect v Mistakes are tools for learning v The only limits to the yield of a system are imagination and understanding Observation – Protracted and thoughtful observation rather than prolonged and thoughtless action. Observation is a key tool to re-learn. We need to know what is going on already so that we don’t make changes we will later regret. Use and value diversity - Diversity allows us to build a strong web of beneficial connections. Monocultures are incredibly fragile and prone to pests and diseases – diverse systems are far more robust and are intrinsically more resilient. Relative Location and Beneficial Connections – View design components not in isolation but as part of a holistic system. Place elements to maximise their potential to create beneficial connections with other elements. Multi-functional Design – Try and gain as many yields or outputs from each element in your design as possible. Meet every need in multiple ways, as many elements supporting each important function creates stability and resilience. Perennial systems – minimum effort for maximum gain Create no waste - The concept of waste is essentially a reflection of poor design. Every output from one system could become the input to another system. We need to think cyclically rather than in linear systems. Unmet needs = work, unused output = pollution. Stacking – Make use of vertical as well as horizontal space, filling as many niches as possible. -
Forest Gardening: Redesigning Modern Agriculture Jacquelyn Tupper, Christine Tang, Patrick Sheppard, Jonathan Rodgers Advisor: Professor Svetlana Nikitina
Forest Gardening: Redesigning Modern Agriculture Jacquelyn Tupper, Christine Tang, Patrick Sheppard, Jonathan Rodgers Advisor: Professor Svetlana Nikitina The Issues The harmful effects of modern agriculture include: •Excessive water and land usage. •A primary source of greenhouse gas emissions. Modern agriculture is one of the •Uses more energy than it produces. primary sources of greenhouse gas •Heavy dependence on oil. Twenty percent of the gasoline and diesel fuel used in the emissions. Over 30% of all United States goes into farming. greenhouse gas emissions are from agriculture and land use. Gases •Polluting the world’s oceans by creating “dead zones” due to chemical runoff. emitted include Methane, Nitrous •Destroying biodiversity with use of monocultures. Natural ecosystems depend on a Oxide and Carbon Dioxide. This variety of different species that all provide individual, necessary functions that contribute statistic does not include Carbon to the stability of the ecosystem. Monocultures eradicate this multitude of functions and Dioxide released from the leave farms fully dependent on synthetic inputs to survive. production of agrichemicals and •Lead to soil infertility, salinization, soil erosion, water and food chain pollution, and land the transportation of agricultural degradation. products. •Fills the food chain with carcinogenic pesticides, herbicides, growth hormones, and antibiotics. •Manual labor jobs replaces by machines. •Cannot feed the world’s current population. There are about one billion undernourished people in the world today. Abstract Goals and Objectives Adequate food supply is one of the greatest problems that humanity will face in the 21st century. Earth’s population is expected to hit 9.5 billion by 2050. To support this population with The overall goal of this project is to see if forest gardens are a plausible our current practices of industrial agriculture, another billion hectares of land would have to be and realistic alternative to current agricultural practices. -
Solid Bamboo Installation Instructions
Installation Instructions Pre-Finished Solid Bamboo Portfolio Naturals | Synergy MPL | Signature Naturals | Craftsman II | Wright Bamboo Industry Designation of Solid 4. Bamboo flooring installation should be one of the last items completed on the construction project. Limit Bamboo: foot traffic on the finished bamboo floor. The customary construction of solid bamboo traditionally describes Grading Standards 1. Flat - Three layers of bamboo strips laminated edge General Rules: to edge on top of one another. In solid flat grain, Bamboo flooring shall be tongue and grooved and end the grain of the bamboo layers all run in the same matched, unless otherwise indicated, as Välinge Self direction. Locking. Flooring shall not be considered of standard grade unless properly dried. The drying standard for 2. Vertical - Multiple layers of bamboo strips laminated Teragren Bamboo solid bamboo product shall be 7 to top to bottom and laid on their sides. Exposing the 9% moisture content by volume with a plus or minus narrow edge of the bamboo strip to the surface of the factor of 2% for storage conditions in various climate plank. zones. 3. Strand Woven Bamboo - Multiple layers woven Grading Rules: together, and all running in same direction from top to Teragren Bamboo floors are not graded in the same bottom of plank, therefore the behavior of this type of way as hardwood flooring. Bamboo has many construction most closely resembles the properties of similarities to wood but different grading standards are solid hardwood – thus the designation. applied. The main stem of a bamboo is called a culm. The Attention culm is the support structure for the branches and leaves, and contains the main vascular system for the Before starting installation, read all instructions transport of water, nutrients and food.