Forest Farming

Total Page:16

File Type:pdf, Size:1020Kb

Forest Farming Forest Farming Ken Mudge CY ROSE N NA Many sections of the Northeast have been reforested over the past century. Extensive forest cover is seen in this view from Wachu- sett Mountain in central Massachusetts. armers harvest crops from their fields, and agroforestry—a multidisciplinary approach to loggers harvest trees from their forests, agricultural production that achieves diverse, Fbut what do forest farmers harvest? The profitable, sustainable land use by integrating answer is an eclectic collection of non-timber trees with non-timber forest crops. forest crops like maple syrup, medicinal herbs, While some other agroforestry practices begin fruits, gourmet mushrooms, and nuts. with planting young trees that take years to Forest farming is an approach to forest man- mature, forest farming involves planting non- agement that combines some of the manage- timber forest crops beneath the canopy of an ment practices of conventional forestry with established forest. In other words, other agro- those of farming or gardening to achieve forestry practices bring the forest to the crops, an environmentally and economically sus- whereas forest farming brings the crops to the tainable land-use system. It is one of several forest. In this regard it is helpful to consider related practices that fall under the domain of the role of forest farming in overall forest man- Forest Farming 27 agement. A forest farm should be designed to bearing trees including walnuts and peaches, emulate as much as possible a natural forest. but there is no evidence of deliberate culti- This includes characteristics of a healthy forest vation of useful crops beneath the canopy of ecosystem such as species diversity, resilience established forest. to disturbance, soil health, and a relatively wide Although some types of forest farming and tree age distribution. other agroforestry practices have been going on for centuries, the terms “agroforestry” and Forest Farming Through the Ages “forest farming” are of relatively recent ori- Although this article will focus on modern gin. Agroforestry—as a concept that recognized temperate region forest farming, similar prac- the integration of trees, crops, and people—was tices have been used in tropical regions by introduced in 1973 by John Bene, and led to the indigenous peoples for hundreds of years. In establishment of the International Council for a classic paper from the agroforestry litera- Research in Agroforestry (ICRAF) in Nairobi, ture, Fernandez et al. (1984) described an agro- Kenya which is now the World Agroforestry forestry practice called home gardens, used Center . It was not until 2000 that the term by the Chagga people who live on the slopes forest farming was introduced by Hill and Buck of Mt Kilimanjaro. Home gardens are highly (2000) to describe the cultivation of non-timber integrated, multistory collections of overstory forest crops beneath an existing tree canopy. forest trees valued for timber, an intermedi- One factor contributing to the growing popu- ate layer of small trees including coffee and larity of forest farming in northeastern North banana, and a diverse array of understory America is the gradual increase in the extent herbs and vines used for food and medicine. of privately owned forest. Using the state of In North America, during and prior to the New York as an example, forest cover was at seventeenth century, native peoples are known a minimum of about 15% in 1880 because of to have planted and managed various food extensive conversion of forest to farmland. Farming or Wildcrafting? CY ROSE Although there is no anthropological N or archeological evidence that Native NA Americans practiced forest farming per se, unquestionably they were highly skilled at gathering and utilizing wild forest products, including food, medicines, and ceremonial plants. Prospective forest farmers today fre- quently ask if the collection of wild forest products like edible mushrooms, wild leeks (ramps), ginseng and other medicinals, and decoratives like pine cones for wreaths and vines for basketry can be considered forest farming. These practices, known collec- tively as wildcrafting, are certainly com- patible with forest farming, particularly when done on a sustainable basis, but don’t qualify as forest farming (i.e. cultivation) unless they are practiced in combination with deliberate cultivation of non- timber forest crops. Wild-collected morel mushrooms. 28 Arnoldia 67/3 Reforestation since then has gradually increased forest cover to 65%, and about 60% of that is CY ROSE privately owned. At the same time average N parcel size has decreased, making timber extrac- NA tion a less economically feasible option. This transition from “industrial” forestry to “invest- ment” forestry by owners who consider forestry a part-time activity or even a hobby makes forest farming an attractive management alternative. Those interested in forest farming include con- ventional farmers, many of whom have woodlots on their farm, but also private forest owners with non-farm day jobs who want to use their forest productively while preserving or restoring the natural ecosystem. In either case, supplemental The banana-custard-flavored fruits of pawpaw (Asimina tri- income associated with sale of non-timber forest loba) are a potential forest farming product. crops can be the deciding factor, although many forest owners pursue forest farming as a source forest canopy rather than along its perimeter of non-timber forest products for the family, or generally have not been successful. simply as a source of personal satisfaction. While light is an environmental factor that can be managed, others, including soil pH, fer- Becoming a Forest Farmer tility, slope, and water availability, cannot be Before starting, the forest owner should con- modified in forests as easily as in field agricul- sider site issues beyond just “Can I grow gin- ture. Irrigation, fertilization, and modification seng (and/or any other crop) at this site?” A of soil pH are not realistic management options successful forest farm should be seen as an inte- in most forest situations. It makes more sense grated agro-ecosystem that satisfies the owners to select crops that are naturally well-suited to goals while sustaining ecosystem components the site characteristics. including soil, water, trees, and wildlife. A forest farm often begins with a more or less Types of Non-Timber Forest Crops natural (unmanaged) stand of trees. To make it There are three major categories of non-timber suitable for forest farming, some degree of man- forest crops used in forest farming: medicinal, agement is necessary, including management of food, and ornamental. Ginseng and mush- the forest light environment. For the medicinal rooms, in the medicinal and food categories herb ginseng (Panax quinquefolius), up to 70% respectively, have the greatest proven income shade is necessary, and for mushrooms like potential but there are others in each category shiitake (Lentinula edodes), the more shade well worth considering (see Chamberlin et al. the better. On the other hand, fruit crops like 2009). While cultivation of ornamentals in blackberries (Rubus spp.) and pawpaw (Asimina forest farming systems is less frequently prac- triloba) perform best under moderate shade. ticed it does have considerable potential. Light management practices include pruning, In traditional farming, crop diversification selective tree removal, utilizing natural gaps in was considered insurance against the failure of the forest canopy, and planting less shade-toler- any one crop. Species and temporal diversity ant crops along the forest perimeter. Observing are characteristics of a natural forest ecosys- the natural distribution of wild relatives can tem which forest farms ideally should seek to inform decisions about appropriate placement of emulate. For example, in a forest farm grow- candidate non-timber forest crops. For exam- ing mushrooms, maple products, and ginseng, ple, wild brambles like black raspberry and diversification makes good sense from a produc- blackberry typically occur along the ecotone tion standpoint; maple is tapped yearly, mush- (interface) between field and forest. Attempts rooms yield a harvest for several years, while to grow cultivated brambles beneath a dense ginseng will take eight years to mature. In this Forest Farming 29 E G D U M case, the maples also provide shade for both N other crops and additional calcium (in fallen KE leaves) needed by the ginseng. Medicinals The forests of North America have been reposi- tories for a wide range of herbs and other plants and mushrooms gathered for use in traditional medicine. The pallet of medicinal plants col- lected and used by Native Americans and others was and is extensive, but only a few of these species are cultivated as non-timber forest crops today. To a very great extent, this is due to economic factors, including lack of markets and concomitantly low potential for income American ginseng (Panax quinquefolius). generation. Ginseng and goldenseal (Hydrastis E G D canadensis) are the two medicinals most often U M cultivated by forest farmers. N American ginseng (Panax quinquefolius) is KE a shade-loving perennial herb that produces a valuable below-ground storage root. It occurs in hardwood forests throughout most of eastern North America. Although wild popula- tions have declined somewhat because of har- vesting, it is still relatively common. American ginseng has been highly valued in traditional Chinese and Korean medicine since it was first exported from North America in the sev- enteenth century. Most commercial demand today is from China and Korea. Ginseng is valu- able as a forest farming product, but potential Goldenseal (Hydrastis canadensis). growers should use Beyfuss’s site assessment techniques (see listing under Additional Read- looks like a stem, but is in fact a sympodium ing) before jumping in. consisting of the fused petioles (leaf stalks) of American ginseng is reputed to function in its 3 or 4 palmately compound leaves. Ginseng the human body as an “adaptogen,” increasing develops a narrow underground rhizome—about the body’s resistance to stress.
Recommended publications
  • Challenges of Governing Second-Growth Forests: a Case Study from the Brazilian Amazonian State of Pará
    Forests 2014, 5, 1737-1752; doi:10.3390/f5071737 OPEN ACCESS forests ISSN 1999-4907 www.mdpi.com/journal/forests Article Challenges of Governing Second-Growth Forests: A Case Study from the Brazilian Amazonian State of Pará Ima Célia Guimarães Vieira 1,*, Toby Gardner 2,3, Joice Ferreira 4, Alexander C. Lees 1 and Jos Barlow 1,5 1 Museu Paraense Emilio Goeldi, Av. Magalhães Barata, 376, Belém, Pará, 66.040-170, Brazil; E-Mails: [email protected] (A.C.L.); josbarlow@gmail (J.B.) 2 Stockholm Environment Institute, Linnégatan 87 D, Box 24218, Stockholm, 10451, Sweden; E-Mail: [email protected] 3 Instituto International para Sustentabilidade, Estrada Dona Castorina, 124, Horto, Rio de Janeiro, RJ 22.460-320, Brazil 4 Embrapa Amazônia Oriental, Travessa Dr. Enéas Pinheiro s/n, CP 48, Belém, Pará, 66.095-100, Brazil; E-Mail: [email protected] 5 Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-91-3182-3247. Received: 11 April 2014; in revised form: 9 July 2014 / Accepted: 10 July 2014 / Published: 22 July 2014 Abstract: Despite the growing ecological and social importance of second-growth and regenerating forests across much of the world, significant inconsistencies remain in the legal framework governing these forests in many tropical countries and elsewhere. Such inconsistencies and uncertainties undermine attempts to improve both the transparency and sustainability of management regimes. Here, we present a case-study overview of some of the main challenges facing the governance of second-growth forests and the forest restoration process in the Brazilian Amazon, with a focus on the state of Pará, which is both the most populous state in the Amazon and the state with the highest rates of deforestation in recent years.
    [Show full text]
  • Priscila-IAEA
    1 SM/EB-13 E-beam Irradiation of “in nature” Palm: Texture and Color Evaluation Silva, P.V a; Nunes, T.C.F a; Furgeri a, C.; Pitombo b, R.N.M; Hojeije c, K.Y. and Villavicencio, A.L.C.H a a Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), Centro de Tecnologia das Radiações, Laboratório de Detecção de alimentos Irradiados, Cidade Universitária, Av. Professor Lineu Prestes 2242, Butantã CEP 05508-000 São Paulo - SP, Brazil. b Faculdade Ciências Farmacêuticas, Departamento de Tecnologia Farmacêutica e Bioquímica, Universidade de São Paulo, Av. Professor Lineu Prestes 580, Bloco 16 CEP 05508-900 São Paulo – SP, Brazil. c Floresta Indústria e Comércio Ltda. Rodovia Régis Bittencourt BR116, Km 416 Bairro Piúva CEP 118000- 000. Juquiá , São Paulo-SP, Brazil. Email contact of main author: [email protected] [email protected] Abstract The palm tree ( Bactris gasipaes Kunth) is a potential raised species with economic, for the nutritional value of its fruits that can in such way be used in the feeding human being as in the animal, and mainly, for the extraction of the palm that currently has a bigger interest in this culture. Food irradiation is a worldwide technology that aims to improve the product quality, in order to eliminate diverse microorganisms that can spoil the food. Irradiation processing, in the recommended doses, causes very few chemical alterations in foods, nutritional losses are considered insignificant and some of the alterations known found in irradiated foods is not harmful or dangerous. The objective of this work was to evaluate physical characteristics of in nature peach palm, such as color and texture, after combination of e-beam processing and refrigeration.
    [Show full text]
  • Docket No. Fda–2011–N–0921
    DOCKET NO. FDA–2011–N–0921 BEFORE THE UNITED STATES OF AMERICA DEPARTMENT OF HEALTH AND HUMAN SERVICES FOOD AND DRUG ADMINISTRATION COMMENTS OF THE AMERICAN HERBAL PRODUCTS ASSOCIATION ON PROPOSED RULE for STANDARDS FOR THE GROWING, HARVESTING, PACKING, AND HOLDING OF PRODUCE FOR HUMAN CONSUMPTION November 22, 2013 Docket No. FDA–2011–N–0921 November 22, 2013 Prefatory remarks ................................................................................................................................ 1 1. The broad and deep impact of the new regulations necessitates regulatory restraint ...................... 2 2. The same controls are neither necessary nor appropriate for non‐RTE foods as for RTE foods ......... 3 3. Wherever possible, food processors rather than farmers should ensure the biological safety of food ..................................................................................................................................................... 7 3.1 Wherever possible, FDA should avoid burdening farmers and should rely on food processors rather than farmers to ensure biological safety ................................................................................ 7 3.2 Farmers are generally ill‐equipped to comply with either Part 112 or 117 ................................. 7 3.3 Food processors are the appropriate entity to ensure the biological safety of food wherever possible ...........................................................................................................................................
    [Show full text]
  • What Can Mixed‐Species Flock Movement Tell Us About the Value Of
    BIOTROPICA 50(4): 664–673 2018 10.1111/btp.12557 What can mixed-species flock movement tell us about the value of Amazonian secondary forests? Insights from spatial behavior Karl Mokross1,2,3,5 , Jonathan R. Potts4, Cameron L. Rutt2,3, and Philip C. Stouffer2,3 1 Departamento de Ecologia, Universidade Estadual Paulista ‘Julio de Mesquita Filho’, Av. 24-A, 1515, Bela Vista, 13506-900 Rio Claro, SP, Brasil 2 School of Renewable Natural Resources, Louisiana State University, 227 RNR building, Baton Rouge, LA 70803-6202, USA 3 Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazonia,^ Manaus 69011, Amazonas, Brazil 4 School of Mathematics and Statistics, University of Sheffield, G27c Hicks Building, Hounsfield Road, Sheffield, UK ABSTRACT The value of secondary forest for rain forest species remains an important question for conservation in the 21st century. Here, we describe the spatial behavior of understory mixed-species flocks in a heterogeneous landscape in central Amazonia. Understory mixed- species flocks represent a diverse, highly organized component of the rich Amazonian avifauna. We recorded movements within 26 flock home ranges in primary forest, secondary forest, interfaces between forest types, and forest fragments. We describe frequency and movement orientation in relation to forest edges, movement patterns and proportion of use between secondary and primary forest, the relation between home range sizes and vegetation height, and home range configuration. Flocks visited only a small portion of forest edges, and showed a tendency for moving parallel to edges next to less-developed secondary forest. Movement patterns in secondary forests did not show significant differences compared to primary forests.
    [Show full text]
  • Special Forest Products
    United States Department of Agriculture SPECIAL FOREST PRODUCTS Forest Service Species Information Guide Pacific Northwest Research Station for the Pacific Northwest General Technical Report PNW-GTR-513 Nan C. Vance, Melissa Borsting, David Pilz, and September 2001 Jim Freed Authors Nan C. Vance is a principle plant physiologist, and David Pilz is a botanist, For- estry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, OR 97331; Melissa Borsting is a graduate student, College of Forest Resources, University of Wash- ington, Box 352100, Seattle, WA 98195; and Jim Freed is an extension special forest products specialist, Washington State University, PO Box 4703, Olympia, WA 98504. Disclaimer This publication reports research and management information involving mush- room and plant harvesting. It neither recommends the use and ingestion of mush- rooms and plants nor implies that using wild plants and mushrooms is without risks. CAUTION: Mushroom and wild plant consumption can pose a serious, even fatal, risk to humans. It is strongly recommended that you spend your first collecting season using field identification guides and collecting with an expert if you intend to collect wild plants or mushrooms to eat. Abstract Vance, Nan C.; Borsting, Melissa; Pilz, David; Freed, Jim. 2001. Special forest products: species information guide for the Pacific Northwest. Gen. Tech. Rep. PNW-GTR-513. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 169 p. This guide is a collection of information about economically important vascular and nonvascular plants and fungi found in the Pacific Northwest that furnish special forest products. Many of these plants and fungi are also found in Alaska, northern Idaho, and western Montana.
    [Show full text]
  • English-Portuguese Equivalents of Forestry and Conservation Terms Termos Equivalentes Em Silvicultura E Conserva@O Portugub-Ingl
    English-Portuguese Equivalents of Forestry and Conservation Terms Forest Service Southern Forest Experiment Station Termos Equivalentes em silvicultura e New Orleans, Louisiana conserva@o Portugub-InglQs General Technical Report so-1 09 September 1994 John K. Francis ENGLISH-PORTUGUESE EQUIVALENTS OF FORESTRY AND CONSERVATTON TERMS John K. Francis FOREWORD cooperative research and technology transfer in the Amazon Basin. This dictionary of forestry Signs of deterioration of the global environ- and conservation terms has been prepared to aid ment and threatened destruction of the vast in communications with our Portuguese-speak- Amazon forest have stirred a call for action. ing colleagues and for the benefit of others fac- Conservationists have always been concerned ing similar language barriers. about the tropical forests; now funds are being made available for increased work on problems Forestry and conservation are very broad in the region. Brazilian scientists struggle to fields, which include many subfields that have communicate with colleagues in the rest of the large and detailed vocabularies. I have attempted world while scientists from other areas are dis- to collect the most common and useful of these covering that to work effectively in Brazil, one terms and determine the equivalencies in English must speak Portuguese. One must also be able and Portuguese. In many cases, several terms to read Portuguese to benefit from the local tech- denote the same concept. They will be listed nical literature. separately, alphabetically in the primary lan- guage (left hand column), and in series in the English-speaking scientists have not pre- secondary language (right hand column) with the pared themselves particularly well in other lan- most common term placed first.
    [Show full text]
  • Effect of Ganoderma Lucidum (Reishi) on Hematological Parameters
    Available online at www.ijmrhs.com cal R edi ese M ar of c l h a & n r H u e o a J l l t h International Journal of Medical Research & a S n ISSN No: 2319-5886 o c i t i Health Sciences, 2018, 7(3): 151-157 e a n n c r e e t s n I • • IJ M R H S Effect of Ganoderma lucidum (Reishi) on Hematological Parameters in Wistar Rats Hammad Ahmed and Muhammad Aslam* Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan *Corresponding e-mail: [email protected] ABSTRACT Ganoderma lucidum (Reishi), has been used in Traditional Chinese Medicine (TCM) for 5000 years or more. In China and Japan Ganoderma lucidum has been used in folk medicine, commonly in the treatment of neurasthenia, insomnia, hepatopathy, nephritis, gastric ulcers, asthma, and hypertension. In this study we have evaluated the effect of Ganoderma lucidum on hematological parameters in Wistar rats. The extract was given orally by gavage at the dose of 150 mg/kg and 300 mg/kg body weight. The result of our study shows extremely significant increase in the hemoglobin level, platelet count and leukocyte count more specifically at a dose of 150 mg/kg of Ganoderma lucidum extract when compare with normal control group. However, at a dose of 300 mg/kg of GLE, significant increase in hemoglobin level and extremely significant increase in leukocyte count were observed. Whereas, insignificant result was observed at both the doses of GLE in case of hematocrit level, MCV, MCHC, MCH and RBC count.
    [Show full text]
  • Afforestation and Reforestation - Michael Bredemeier, Achim Dohrenbusch
    BIODIVERSITY: STRUCTURE AND FUNCTION – Vol. II - Afforestation and Reforestation - Michael Bredemeier, Achim Dohrenbusch AFFORESTATION AND REFORESTATION Michael Bredemeier Forest Ecosystems Research Center, University of Göttingen, Göttingen, Germany Achim Dohrenbusch Institute for Silviculture, University of Göttingen, Germany Keywords: forest ecosystems, structures, functions, biomass accumulation, biogeochemistry, soil protection, biodiversity, recovery from degradation. Contents 1. Definitions of terms 2. The particular features of forests among terrestrial ecosystems 3. Ecosystem level effects of afforestation and reforestation 4. Effects on biodiversity 5. Arguments for plantations 6. Political goals of afforestation and reforestation 7. Reforestation problems 8. Afforestation on a global scale 9. Planting techniques 10. Case studies of selected regions and countries 10.1. China 10.2. Europe 11. Conclusion Glossary Bibliography Biographical Sketches Summary Forests are rich in structure and correspondingly in ecological niches; hence they can harbour plentiful biological diversity. On a global scale, the rate of forest loss due to human interference is still very high, currently ca. 10 Mha per year. The loss is highest in the tropics; in some tropical regions rates are alarmingly high and in some virtually all forestUNESCO has been destroyed. In this situat– ion,EOLSS afforestation appears to be the most significant option to counteract the global loss of forest. Plantation of new forests is progressing overSAMPLE an impressive total area wo rldwideCHAPTERS (sum in 2000: 187 Mha; rate ca. 4.5 Mha.a-1), with strong regional differences. Forest plantations seem to have the potential to provide suitable habitat and thus contribute to biodiversity conservation in many situations, particularly in problem areas of the tropics where strong forest loss has occurred.
    [Show full text]
  • Profitable Farms and Woodlands a Practical Guide in Agroforestry for Landowners, Farmers and Ranchers
    Profitable Farms and Woodlands A Practical Guide in Agroforestry for Landowners, Farmers and Ranchers Alley Cropping Table of Contents Introduction...................................................................................... iii Forest Farming Forest Purpose .............................................................................................. v Contributors ..................................................................................... vii AGROFORESTRY PRACTICES Riparian Buffer Strips Riparian Buffer Alley Cropping ................................................................................. 1 Forest Farming ................................................................................. 19 Riparian Buffer Strips ...................................................................... 47 Silvopasture ....................................................................................... 57 Silvopasture Windbreaks ....................................................................................... 73 Windbreaks INTRODUCTION This handbook is part of an interdisciplinary, interinstitutional and comprehensive effort to develop a practical guide to assist underserved and limited resource small farmers and woodland owners to adopt best management technologies in agroforestry. Funding for this effort was provided through the USDA National Agroforestry Center (NAC) from the US Forest Service and the Natural Resources Conservation Service (NRCS) under cooperative agreement number 68-7482-7-361 with Tennessee State
    [Show full text]
  • Neotropical Rainforest Restoration: Comparing Passive, Plantation and Nucleation Approaches
    UC Riverside UC Riverside Previously Published Works Title Neotropical rainforest restoration: comparing passive, plantation and nucleation approaches Permalink https://escholarship.org/uc/item/4hf3v06s Journal BIODIVERSITY AND CONSERVATION, 25(11) ISSN 0960-3115 Authors Bechara, Fernando C Dickens, Sara Jo Farrer, Emily C et al. Publication Date 2016-10-01 DOI 10.1007/s10531-016-1186-7 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Biodivers Conserv DOI 10.1007/s10531-016-1186-7 REVIEW PAPER Neotropical rainforest restoration: comparing passive, plantation and nucleation approaches 1,2 2 2 Fernando C. Bechara • Sara Jo Dickens • Emily C. Farrer • 2,3 2 2,4 Loralee Larios • Erica N. Spotswood • Pierre Mariotte • Katharine N. Suding2,5 Received: 17 April 2016 / Revised: 5 June 2016 / Accepted: 25 July 2016 Ó Springer Science+Business Media Dordrecht 2016 Abstract Neotropical rainforests are global biodiversity hotspots and are challenging to restore. A core part of this challenge is the very long recovery trajectory of the system: recovery of structure can take 20–190 years, species composition 60–500 years, and reestablishment of rare/endemic species thousands of years. Passive recovery may be fraught with instances of arrested succession, disclimax or emergence of novel ecosystems. In these cases, active restoration methods are essential to speed recovery and set a desired restoration trajectory. Tree plantation is the most common active approach to reestablish a high density of native tree species and facilitate understory regeneration. While this approach may speed the successional trajectory, it may not achieve, and possibly inhibit, a long-term restoration trajectory towards the high species diversity characteristic of these forests.
    [Show full text]
  • Medicinal Plant Conservation
    MEDICINAL Medicinal Plant PLANT SPECIALIST GROUP Conservation Silphion Volume 11 Newsletter of the Medicinal Plant Specialist Group of the IUCN Species Survival Commission Chaired by Danna J. Leaman Chair’s note . 2 Sustainable sourcing of Arnica montana in the International Standard for Sustainable Wild Col- Apuseni Mountains (Romania): A field project lection of Medicinal and Aromatic Plants – Wolfgang Kathe . 27 (ISSC-MAP) – Danna Leaman . 4 Rhodiola rosea L., from wild collection to field production – Bertalan Galambosi . 31 Regional File Conservation data sheet Ginseng – Dagmar Iracambi Medicinal Plants Project in Minas Gerais Lange . 35 (Brazil) and the International Standard for Sus- tainable Wild Collection of Medicinal and Aro- Conferences and Meetings matic Plants (ISSC-MAP) – Eleanor Coming up – Natalie Hofbauer. 38 Gallia & Karen Franz . 6 CITES News – Uwe Schippmann . 38 Conservation aspects of Aconitum species in the Himalayas with special reference to Uttaran- Recent Events chal (India) – Niranjan Chandra Shah . 9 Conservation Assessment and Management Prior- Promoting the cultivation of medicinal plants in itisation (CAMP) for wild medicinal plants of Uttaranchal, India – Ghayur Alam & Petra North-East India – D.K. Ved, G.A. Kinhal, K. van de Kop . 15 Ravikumar, R. Vijaya Sankar & K. Haridasan . 40 Taxon File Notices of Publication . 45 Trade in East African Aloes – Sara Oldfield . 19 Towards a standardization of biological sustain- List of Members. 48 ability: Wildcrafting Rhatany (Krameria lap- pacea) in Peru – Maximilian
    [Show full text]
  • Rhodiola Rosea L
    u Ottawa l.'Univcrsilc! cnnnrlicwu- Cnnodn's univcrsiiy FACULTE DES ETUDES SUPERIEURES ls=l FACULTY OF GRADUATE AND ET POSTOCTORALES U Ottawa POSDOCTORAL STUDIES L*University canadiennc Canada's university Vicky J. Filion AUTEUR DETATHISET/ AUTHOR OF THESIS" M_.Sc. (Biology) GRADE/DEGREE Department of Biology TAMTE"TCOLirDpARTEMENT~^ACUITY, S*CHOdi~DEWRTMENT" A Novel Phytochemical and Ecological Study of the Nunavik Medicinal Plant Rhodiola rosea L. TITRE DE LA THESE / TITLE OF THESIS _____„„____Dr._ J. Arnason A. Cuerrier EXAMINATEURS (EXAMINATRICES) DE LA THESE / THESIS EXAMINERS Dr. C. Charest Dr. J. Kerr Dr. N. Cappuccino _Garjr\V^SJatCT_ Le Doyen de la Faculte des etudes superieures et postdoctorales I Dean of the Faculty of Graduate and Postdoctoral Studies A Novel Phytochemical and Ecological Study of the Nunavik Medicinal Plant Rhodiola rosea L. Vicky J. Filion Thesis submitted to the Faculty of Graduate and Postdoctoral Studies University of Ottawa in partial fulfillment of the requirements for the M.Sc. degree in the Ottawa-Carleton Institute of Biology These soumise a la Faculte des etudes superieures et postdoctorales Universite d'Ottawa en vue de l'obtention de la maitrise es sciences Institut de biologie d'Ottawa-Carleton © Vicky J. Filion, Ottawa, Canada, 2008 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-50879-4
    [Show full text]