Fluctuations of Glaciers 2000-2005

Total Page:16

File Type:pdf, Size:1020Kb

Fluctuations of Glaciers 2000-2005 FLUCTUATIONS OF GLACIERS 2000–2005 (Vol. IX) A contribution to the Global Terrestrial Network for Glaciers (GTN-G) as part of the Global Terrestrial/Climate Observing System (GTOS/GCOS), the Division of Early Warning and Assessment and the Global Environment Outlook as part of the United Nations Environment Programme (DEWA and GEO, UNEP), and the International Hydrological Programme (IHP, UNESCO) Prepared by the World Glacier Monitoring Service (WGMS) ICSU (FAGS) – IUGG (IACS) – UNEP – UNESCO – WMO 2008 FLUCTUATIONS OF GLACIERS 2000–2005 with addenda from earlier years This publication was made possible by support and funds from the Federation of Astronomical and Geophysical Data Analysis Services (FAGS/ICSU), the Swiss Academy of Sciences (SCNAT), the Swiss Federal Offi ce for the Environment (FOEN), the Swiss National Science Foundation (SNF; WGMS Bridging Credit), the United Nations Educational, Scientifi c and Cultural Organisation (UNESCO), and the University of Zurich, Switzerland (UZH). This publication is the most recent volume in the series: FLUCTUATIONS OF GLACIERS 1959–1965 Paris, IAHS (ICSI) – UNESCO, 1967 FLUCTUATIONS OF GLACIERS 1965–1970 Paris, IAHS (ICSI) – UNESCO, 1973 FLUCTUATIONS OF GLACIERS 1970–1975 Paris, IAHS (ICSI) – UNESCO, 1977 FLUCTUATIONS OF GLACIERS 1975–1980 Paris, IAHS (ICSI) – UNESCO, 1985 FLUCTUATIONS OF GLACIERS 1980–1985 Paris, IAHS (ICSI) – UNEP– UNESCO, 1988 FLUCTUATIONS OF GLACIERS 1985–1990 Paris, IAHS (ICSI) – UNEP– UNESCO, 1993 FLUCTUATIONS OF GLACIERS 1990–1995 Paris, IAHS (ICSI) – UNEP– UNESCO, 1998 FLUCTUATIONS OF GLACIERS 1995–2000 Zurich, IUGG (CCS) – UNEP– UNESCO, 2005 FLUCTUATIONS OF GLACIERS 2000–2005 (Vol. IX) A contribution to the Global Terrestrial Network for Glaciers (GTN-G) as part of the Global Terrestrial/Climate Observing System (GTOS/GCOS), the Division of Early Warning and Assessment and the Global Environment Outlook as part of the United Nations Environment Programme (DEWA and GEO, UNEP), and the International Hydrological Programme (IHP, UNESCO) Compiled for the World Glacier Monitoring Service by Wilfried Haeberli, Michael Zemp, Andreas Kääb, Frank Paul and Martin Hoelzle Department of Geography University of Zurich Zurich Switzerland International Council for Science (Federation of Astronomical and Geophysical Data Analysis Services) and International Union of Geodesy and Geophysics (International Association of Cryospheric Sciences) and United Nations Environment Programme and United Nations Educational, Scientifi c and Cultural Organisation and World Meteorological Organization 2008 Published jointly by the Federation of Astronomical and Geophysical Data Analysis Services of the International Council for Science (FAGS/ICSU) and the International Association of Cryospheric Sciences of the International Union of Geodesy and Geophysics (IACS/IUGG) and the United Nations Environment Programme (UNEP) and the United Nations Educational, Scientifi c and Cultural Organisation (UNESCO) and the World Meteorological Organization (WMO) Printed by Staffel Druck AG 8045 Zurich Switzerland ISSN 1997-910X (printed issues) ISSN 1997-9118 (online issues) The designations employed and the presentation of the material in this publication do not imply the expression of any opinion what- soever on the part of the publishers concerning the legal status of any country or territory, or of its authorities, or concerning the frontiers of any country or territory. For bibliographic and reference purposes this publication should be referred to as: WGMS (2008): Fluctuations of Glaciers 2000–2005, Volume IX. Haeberli, W., Zemp, M., Kääb, A., Paul, F. and Hoelzle, M. (eds.), ICSU(FAGS)/IUGG(IACS)/UNEP/UNESCO/ WMO, World Glacier Monitoring Service, Zurich, Switzerland. ICSU (FAGS) IUGG (IACS) UNEP UNESCO WMO PREFACE by UNEP Monitoring the changes of glaciers on a year-to-year basis and providing scientifi cally sound, concise and easy-to-understand information is a critical function in today’s world. Consistent trends on glacier changes are one of the most compelling indicators of climate change and its impacts that can be witnessed all around us. The basic data collection on glaciers from all over the world, as undertaken for many decades by the World Glacier Monitoring Service and its predecessor organisations, is of critical impor- tance to United Nations Environment Programme and the efforts to continuously keep the state of the global environment under review and provide the world community with improved ac- cess to meaningful environmental data and information. As a key component of this, the fourth edition of the Global Environment Outlook (GEO-4), published towards the end of 2007, has also benefi ted from such data on glacier fl uctuations – and so have many other reports that are raising awareness on climate change and related environmental issues such as impacts on water availability, land degradation and the health of people and ecosystems. This ninth volume of the “Fluctuations of Glaciers”, the fi rst report of this century and covering the years 2000 to 2005, continues the series of detailed reports on measurements of world-wide glacier fl uctuations. It presents the most up-to-date scientifi c data on individual terrestrial glaciers in many countries of the world, including their length, area, volume and thickness. The report points to a strong acceleration of glacier melting in those years, with a doubling of the rate compared with the two preceding decades. The observations are consistent with recent accelerating global warming and corresponding energy fl ux towards the surface of the earth. The fi ve-yearly comprehensive Fluctuation of Glaciers reports are complemented with the bi- annual Glacier Mass Balance Bulletins, which present the data in a summary form for non-spe- cialists through the use of graphic presentations rather than as purely numerical data. A Global Outlook for Ice and Snow was published by UNEP at the occasion of World Environment Day 2007, while a joint UNEP-WGMS illustrative report on “Global Glacier Changes: facts and fi gures” was released in September 2008. UNEP looks forward to continued cooperation with the WGMS while supporting efforts to strengthen the scientifi c base for environment assessment and early warning – a high-priority issue of global climate change. Peter Gilruth, Dr. Director Division of Early Warning and Assessment, UNEP I II PREFACE by UNESCO Many of our headwater catchments around the world accommodate glaciers and they are most vulnerable towards climate change. They contribute to stream fl ow in terms of quantity, timing and variability. Their role is signifi cant in the light of worldwide increase of freshwater demand and the potential impacts of future climate change. The effect of snow and ice runoff varies between different climatic regions. While in the mid- and high-latitude areas seasonal snow cover exerts a strong control on runoff variations, in low latitudes glaciers provide the most dominant source of water during the dry season. Therefore, the understanding of glacial changes as a response to changing climate is es- sential for integrated water resources management. A broad and worldwide public today recognizes glacier changes as a key indication of regional and global climate and environment change. Observational strategies established by expert groups within international monitoring programmes build on advanced process understanding and new strategies. These strategies ensure rapid development of new tech- nologies and relate them to traditional approaches to apply integrated, multilevel concepts enabling a comprehensive view. Based on important data collected through an international network of glaciologists, the World Glacier Monitoring Service (WGMS) of the International Association of Cry- ospheric Sciences with their partners, have been providing quantitative and intelligible information about glacial changes. The current Volume IX (2000–2005) of the “Fluc- tuations of Glaciers” series has been the backbone of the active compilation of glacier fl uctuation data since 1967. It comprises information about changes in glacier length, mass, area, volume and thickness from 723 glaciers of 27 countries/regions, as well as 21 special events and 10 glaciological maps. Volume IX elaborates questions about process understanding, change detection, model validation and environmental impacts in trans- disciplinary knowledge transfer to the scientifi c community and the policymakers. The International Hydrological Programme (IHP) of UNESCO, within its 7th Phase “Wa- ter dependences, systems under stress and societal responses”, aims to asses the impact and consequences of global climate change on the biophysical environment and socio- economic conditions of mountain people. Therefore UNESCO IHP, under the theme devoted to mountains, undertakes considerable efforts to improve knowledge of glacial changes in various parts of the world. UNESCO is honored to support this publication and pleased to congratulate the team for their excellent work. Siegfried Demuth, Prof. Dr. Chief Water Sciences Division, UNESCO III IV FOREWORD by IACS (IUGG) Glaciers and ice caps, located in the mountains of the world and in both polar regions, are an important part of the global cryosphere. Indeed, the most recent report by the Intergov- ernmental Panel on Climate Change (IPCC), published in 2007, recognized the particular signifi cance of glaciers and ice caps in contributing to the observed modern sea-level rise of about 3 mm per year. It is likely that
Recommended publications
  • Note on the History of the Innominata Face of Mont Blanc De Courmayeur
    1 34 HISTORY OF THE INNOMINATA FACE them difficult but solved the problem by the most exposed, airy and exhilarating ice-climb I ever did. I reckon sixteen essentially different ways to Mont Blanc. I wish I had done them all ! NOTE ON THE ILLUSTRATIONS FIG. 1. This was taken from the inner end of Col Eccles in 1921 during the ascent of Mont Blanc by Eccles' route. Pie Eccles is seen high on the right, and the top of the Aiguille Noite de Peteret just shows over the left flank of the Pie. FIG. 2. This was taken from the lnnominata face in 1919 during a halt at 13.30 on the crest of the branch rib. The skyline shows the Aiguille Blanche de Peteret on the extreme left (a snow cap), with Punta Gugliermina at the right end of what appears to be a level summit ridge but really descends steeply. On the right of the deep gap is the Aiguille Noire de Peteret with the middle section of the Fresney glacier below it. The snow-sprinkled rock mass in the right lower corner is Pie Eccles a bird's eye view. FIG. 3. This was taken at the same time as Fig. 2, with which it joins. Pie Eccles is again seen, in the left lower corner. To the right of it, in the middle of the view, is a n ear part of the branch rib, and above that is seen a bird's view of the Punta lnnominata with the Aiguille Joseph Croux further off to the left.
    [Show full text]
  • Moüjmtaiim Operations
    L f\f¿ áfó b^i,. ‘<& t¿ ytn) ¿L0d àw 1 /1 ^ / / /This publication contains copyright material. *FM 90-6 FieW Manual HEADQUARTERS No We DEPARTMENT OF THE ARMY Washington, DC, 30 June 1980 MOÜJMTAIIM OPERATIONS PREFACE he purpose of this rUanual is to describe how US Army forces fight in mountain regions. Conditions will be encountered in mountains that have a significant effect on. military operations. Mountain operations require, among other things^ special equipment, special training and acclimatization, and a high decree of self-discipline if operations are to succeed. Mountains of military significance are generally characterized by rugged compartmented terrain witn\steep slopes and few natural or manmade lines of communication. Weather in these mountains is seasonal and reaches across the entireSspectrum from extreme cold, with ice and snow in most regions during me winter, to extreme heat in some regions during the summer. AlthoughNthese extremes of weather are important planning considerations, the variability of weather over a short period of time—and from locality to locahty within the confines of a small area—also significantly influences tactical operations. Historically, the focal point of mountain operations has been the battle to control the heights. Changes in weaponry and equipment have not altered this fact. In all but the most extreme conditions of terrain and weather, infantry, with its light equipment and mobility, remains the basic maneuver force in the mountains. With proper equipment and training, it is ideally suited for fighting the close-in battfe commonly associated with mountain warfare. Mechanized infantry can\also enter the mountain battle, but it must be prepared to dismount and conduct operations on foot.
    [Show full text]
  • The Swiss Glaciers
    The Swiss Glacie rs 2011/12 and 2012/13 Glaciological Report (Glacier) No. 133/134 2016 The Swiss Glaciers 2011/2012 and 2012/2013 Glaciological Report No. 133/134 Edited by Andreas Bauder1 With contributions from Andreas Bauder1, Mauro Fischer2, Martin Funk1, Matthias Huss1,2, Giovanni Kappenberger3 1 Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich 2 Department of Geosciences, University of Fribourg 3 6654 Cavigliano 2016 Publication of the Cryospheric Commission (EKK) of the Swiss Academy of Sciences (SCNAT) c/o Laboratory of Hydraulics, Hydrology and Glaciology (VAW) at the Swiss Federal Institute of Technology Zurich (ETH Zurich) H¨onggerbergring 26, CH-8093 Z¨urich, Switzerland http://glaciology.ethz.ch/swiss-glaciers/ c Cryospheric Commission (EKK) 2016 DOI: http://doi.org/10.18752/glrep 133-134 ISSN 1424-2222 Imprint of author contributions: Andreas Bauder : Chapt. 1, 2, 3, 4, 5, 6, App. A, B, C Mauro Fischer : Chapt. 4 Martin Funk : Chapt. 1, 4 Matthias Huss : Chapt. 2, 4 Giovanni Kappenberger : Chapt. 4 Ebnoether Joos AG print and publishing Sihltalstrasse 82 Postfach 134 CH-8135 Langnau am Albis Switzerland Cover Page: Vadret da Pal¨u(Gilbert Berchier, 25.9.2013) Summary During the 133rd and 134th year under review by the Cryospheric Commission, Swiss glaciers continued to lose both length and mass. The two periods were characterized by normal to above- average amounts of snow accumulation during winter, and moderate to substantial melt rates in summer. The results presented in this report reflect the weather conditions in the measurement periods as well as the effects of ongoing global warming over the past decades.
    [Show full text]
  • Calving Processes and the Dynamics of Calving Glaciers ⁎ Douglas I
    Earth-Science Reviews 82 (2007) 143–179 www.elsevier.com/locate/earscirev Calving processes and the dynamics of calving glaciers ⁎ Douglas I. Benn a,b, , Charles R. Warren a, Ruth H. Mottram a a School of Geography and Geosciences, University of St Andrews, KY16 9AL, UK b The University Centre in Svalbard, PO Box 156, N-9171 Longyearbyen, Norway Received 26 October 2006; accepted 13 February 2007 Available online 27 February 2007 Abstract Calving of icebergs is an important component of mass loss from the polar ice sheets and glaciers in many parts of the world. Calving rates can increase dramatically in response to increases in velocity and/or retreat of the glacier margin, with important implications for sea level change. Despite their importance, calving and related dynamic processes are poorly represented in the current generation of ice sheet models. This is largely because understanding the ‘calving problem’ involves several other long-standing problems in glaciology, combined with the difficulties and dangers of field data collection. In this paper, we systematically review different aspects of the calving problem, and outline a new framework for representing calving processes in ice sheet models. We define a hierarchy of calving processes, to distinguish those that exert a fundamental control on the position of the ice margin from more localised processes responsible for individual calving events. The first-order control on calving is the strain rate arising from spatial variations in velocity (particularly sliding speed), which determines the location and depth of surface crevasses. Superimposed on this first-order process are second-order processes that can further erode the ice margin.
    [Show full text]
  • A Hydrographic Approach to the Alps
    • • 330 A HYDROGRAPHIC APPROACH TO THE ALPS A HYDROGRAPHIC APPROACH TO THE ALPS • • • PART III BY E. CODDINGTON SUB-SYSTEMS OF (ADRIATIC .W. NORTH SEA] BASIC SYSTEM ' • HIS is the only Basic System whose watershed does not penetrate beyond the Alps, so it is immaterial whether it be traced·from W. to E. as [Adriatic .w. North Sea], or from E. toW. as [North Sea . w. Adriatic]. The Basic Watershed, which also answers to the title [Po ~ w. Rhine], is short arid for purposes of practical convenience scarcely requires subdivision, but the distinction between the Aar basin (actually Reuss, and Limmat) and that of the Rhine itself, is of too great significance to be overlooked, to say nothing of the magnitude and importance of the Major Branch System involved. This gives two Basic Sections of very unequal dimensions, but the ., Alps being of natural origin cannot be expected to fall into more or less equal com­ partments. Two rather less unbalanced sections could be obtained by differentiating Ticino.- and Adda-drainage on the Po-side, but this would exhibit both hydrographic and Alpine inferiority. (1) BASIC SECTION SYSTEM (Po .W. AAR]. This System happens to be synonymous with (Po .w. Reuss] and with [Ticino .w. Reuss]. · The Watershed From .Wyttenwasserstock (E) the Basic Watershed runs generally E.N.E. to the Hiihnerstock, Passo Cavanna, Pizzo Luceridro, St. Gotthard Pass, and Pizzo Centrale; thence S.E. to the Giubing and Unteralp Pass, and finally E.N.E., to end in the otherwise not very notable Piz Alv .1 Offshoot in the Po ( Ticino) basin A spur runs W.S.W.
    [Show full text]
  • Recent Debris Flow Occurrences Associated with Glaciers in the Alps ⁎ Marta Chiarle A, , Sara Iannotti A, Giovanni Mortara A, Philip Deline B
    Global and Planetary Change 56 (2007) 123–136 www.elsevier.com/locate/gloplacha Recent debris flow occurrences associated with glaciers in the Alps ⁎ Marta Chiarle a, , Sara Iannotti a, Giovanni Mortara a, Philip Deline b a CNR‐IRPI, Strada delle Cacce, 73–10135 Torino, Italy b Laboratoire EDYTEM, CNRS‐Université de Savoie, 73376 Le Bouget‐du‐Lac, France Received 12 August 2005; accepted 21 July 2006 Available online 9 January 2007 Abstract Debris flows from glacier forefields, triggered by heavy rain or glacial outbursts, or damming of streams by ice avalanches, pose hazards in Alpine valleys (e.g. the south side of Mount Blanc). Glacier‐related debris flows are, in part, a consequence of general glacier retreat and the corresponding exposure of large quantities of unconsolidated, unvegetated, and sometimes ice‐cored glacial sediments. This paper documents glacier‐related debris flows at 17 sites in the Italian, French, and Swiss Alps, with a focus on the Italian northwest sector. For each case data are provided which describe the glacier and the instability. Three types of events have been recognized, based on antecedent meteorological conditions. Type 1 (9 documented debris flows) is triggered by intense and prolonged rainfall, causing water saturation of sediments and consequent failure of large sediment volumes (up to 800000 m3). Type 2 (2 debris flows) is triggered by short rainstorms which may destabilize the glacier drainage system, with debris flow volumes up to 100000 m3. Type 3 (6 debris flows) occurs during dry weather by glacial lake outbursts or ground/buried ice melting, with debris flow volumes up to 150000 m3.
    [Show full text]
  • Harvard Mountaineering 3
    HARVARD MOUNTAINEERING 1931·1932 THE HARVARD MOUNTAINEERING CLUB CAMBRIDGE, MASS. ~I I ' HARVARD MOUNTAINEERING 1931-1932 THE HARVARD MOUNTAINEERING CLUB CAMBRIDGE, MASS . THE ASCENT OF MOUNT FAIRWEATHER by ALLEN CARPE We were returning from the expedition to Mount Logan in 1925. Homeward bound, our ship throbbed lazily across the Gulf of Alaska toward Cape Spencer. Between reefs of low fog we saw the frozen monolith of St. Elias, rising as it were sheer out of the water, its foothills and the plain of the Malaspina Glacier hidden behind the visible sphere of the sea. Clouds shrouded the heights of the Fairweather Range as we entered Icy Strait and touched at Port Althorp for a cargo of salmon; but I felt then the challenge of this peak which was now perhaps the outstanding un­ climbed mOUlitain in America, lower but steeper than St. Elias, and standing closer to tidewater than any other summit of comparable height in the world. Dr. William Sargent Ladd proved a kindred spirit, and in the early summer of 1926 We two, with Andrew Taylor, made an attempt on the mountain. Favored by exceptional weather, we reached a height of 9,000 feet but turned back Photo by Bradford Washburn when a great cleft intervened between the but­ tresses we had climbed and the northwest ridge Mount Fairweather from the Coast Range at 2000 feet of the peak. Our base was Lituya Bay, a beau­ (Arrows mark 5000 and 9000-foot camps) tiful harbor twenty miles below Cape Fair- s camp at the base of the south face of Mount Fair­ weather; we were able to land near the foot of the r weather, at 5,000 feet.
    [Show full text]
  • Ilulissat Icefjord
    World Heritage Scanned Nomination File Name: 1149.pdf UNESCO Region: EUROPE AND NORTH AMERICA __________________________________________________________________________________________________ SITE NAME: Ilulissat Icefjord DATE OF INSCRIPTION: 7th July 2004 STATE PARTY: DENMARK CRITERIA: N (i) (iii) DECISION OF THE WORLD HERITAGE COMMITTEE: Excerpt from the Report of the 28th Session of the World Heritage Committee Criterion (i): The Ilulissat Icefjord is an outstanding example of a stage in the Earth’s history: the last ice age of the Quaternary Period. The ice-stream is one of the fastest (19m per day) and most active in the world. Its annual calving of over 35 cu. km of ice accounts for 10% of the production of all Greenland calf ice, more than any other glacier outside Antarctica. The glacier has been the object of scientific attention for 250 years and, along with its relative ease of accessibility, has significantly added to the understanding of ice-cap glaciology, climate change and related geomorphic processes. Criterion (iii): The combination of a huge ice sheet and a fast moving glacial ice-stream calving into a fjord covered by icebergs is a phenomenon only seen in Greenland and Antarctica. Ilulissat offers both scientists and visitors easy access for close view of the calving glacier front as it cascades down from the ice sheet and into the ice-choked fjord. The wild and highly scenic combination of rock, ice and sea, along with the dramatic sounds produced by the moving ice, combine to present a memorable natural spectacle. BRIEF DESCRIPTIONS Located on the west coast of Greenland, 250-km north of the Arctic Circle, Greenland’s Ilulissat Icefjord (40,240-ha) is the sea mouth of Sermeq Kujalleq, one of the few glaciers through which the Greenland ice cap reaches the sea.
    [Show full text]
  • Picturing France
    Picturing France Classroom Guide VISUAL ARTS PHOTOGRAPHY ORIENTATION ART APPRECIATION STUDIO Traveling around France SOCIAL STUDIES Seeing Time and Pl ace Introduction to Color CULTURE / HISTORY PARIS GEOGRAPHY PaintingStyles GOVERNMENT / CIVICS Paris by Night Private Inve stigation LITERATURELANGUAGE / CRITICISM ARTS Casual and Formal Composition Modernizing Paris SPEAKING / WRITING Department Stores FRENCH LANGUAGE Haute Couture FONTAINEBLEAU Focus and Mo vement Painters, Politics, an d Parks MUSIC / DANCENATURAL / DRAMA SCIENCE I y Fontainebleau MATH Into the Forest ATreebyAnyOther Nam e Photograph or Painting, M. Pa scal? ÎLE-DE-FRANCE A Fore st Outing Think L ike a Salon Juror Form Your Own Ava nt-Garde The Flo ating Studio AUVERGNE/ On the River FRANCHE-COMTÉ Stream of Con sciousness Cheese! Mountains of Fra nce Volcanoes in France? NORMANDY “I Cannot Pain tan Angel” Writing en Plein Air Culture Clash Do-It-Yourself Pointillist Painting BRITTANY Comparing Two Studie s Wish You W ere Here Synthétisme Creating a Moo d Celtic Culture PROVENCE Dressing the Part Regional Still Life Color and Emo tion Expressive Marks Color Collectio n Japanese Prin ts Legend o f the Château Noir The Mistral REVIEW Winds Worldwide Poster Puzzle Travelby Clue Picturing France Classroom Guide NATIONAL GALLERY OF ART, WASHINGTON page ii This Classroom Guide is a component of the Picturing France teaching packet. © 2008 Board of Trustees of the National Gallery of Art, Washington Prepared by the Division of Education, with contributions by Robyn Asleson, Elsa Bénard, Carla Brenner, Sarah Diallo, Rachel Goldberg, Leo Kasun, Amy Lewis, Donna Mann, Marjorie McMahon, Lisa Meyerowitz, Barbara Moore, Rachel Richards, Jennifer Riddell, and Paige Simpson.
    [Show full text]
  • Ar Study of Oceanic and Continental Deformation Processes During An
    A(40)Ar/(39) Ar study of oceanic and continental deformation processes during an oblique collision: Taconian orogeny in the Quebec reentrant of the Canadian Appalachians Michel Malo, Gilles Ruffet, Alix Pincivy, Alain Tremblay To cite this version: Michel Malo, Gilles Ruffet, Alix Pincivy, Alain Tremblay. A(40)Ar/(39) Ar study of oceanic and continental deformation processes during an oblique collision: Taconian orogeny in the Quebec reen- trant of the Canadian Appalachians. Tectonics, American Geophysical Union (AGU), 2008, 27 (4), pp.TC4001. 10.1029/2006TC002094. insu-00322674 HAL Id: insu-00322674 https://hal-insu.archives-ouvertes.fr/insu-00322674 Submitted on 29 Jun 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TECTONICS, VOL. 27, TC4001, doi:10.1029/2006TC002094, 2008 A 40Ar/39Ar study of oceanic and continental deformation processes during an oblique collision: Taconian orogeny in the Quebec reentrant of the Canadian Appalachians Michel Malo,1 Gilles Ruffet,2 Alix Pincivy,1 and Alain Tremblay3 Received 7 December 2006; revised 9 January 2008; accepted 10 March 2008; published 1 July 2008. [1] Two phases of penetrative deformation are Stockmal et al., 1987; Malo et al., 1995; van Staal et documented in the Taconian hinterland of the al., 1998], particularly for the Ordovician Taconian orogeny Appalachian orogen in the Gaspe´ Peninsula.
    [Show full text]
  • The Peuterey Ridge
    THE PEUTEREY RIDGE THE PEUTEREY RIDGE BY J. NEIL MATHER CHANCE word in Chamonix, when we were both ~without regular companions, led me to join Ian McNaught-Davis in an attempt on the Peuterey Ridge. Although I had not met him previously, Mac was well known to me as a competent rock climber and a fast mover. Arrangements were quickly made and we· were soon en route for Courmayeur by motor-cycle. Some rather sudden thunderstorms delayed our arrival in Cour­ mayeur and caused us to wait another day before starting the climb. The classic ascent of the Peuterey Ridge attains the crest at the Breche Nord des Dames Anglaises, between the Isolee and the Aiguille Blanche, and traverses the Aiguille Blanche to reach Mont Blanc de Courmayeur via the Grand Pilier d'Angle and the upper reaches of the arete. This route was first done by Obersteiner and Schreiner on 30- 31 July, 1927. A swift party given favourable conditions can traverse Mont Blanc from the Gamba hut within the day, but most parties prefer either to spend a night at the Refuge-bivouac Craveri, a small hut which holds five people and which is situated at the Breche Nord, or to make a more hardy bivouac higher up the ridge. We left the chalets of Fresnay at 12.30 P.M. on August 4, 1952, bound for the refuge. Our way took us by the Gamba hut and proved a most pleasant walk. The hut-book there contained an entry under that day telling of the tragic deaths of John Churchill and J ocelyn Moore in the Eccles bivouac.
    [Show full text]
  • Stanford Alpine Club Journal, 1958
    STANFORD ALPINE CLUB JOURNAL 1958 STANFORD, CALIFORNIA i-., r ' j , / mV « Club Officers 1956-57 John Harlin, President John Mathias, Vice President Karl Hufbauer, Secretary William Pope, Treasurer 1957-58 Michael Roberts, President Karl Hufbauer, Vice-President Sidney Whaley, Secretary- Ivan Weightman, Treasurer ADVISORY COUNCIL John Maling, Chairman Winslow Briggs Henry Kendall Hobey DeStaebler Journal Staff Michael Roberts, Editor Henry Kendall, Photography Sidney Whaley Lenore Lamb Contents First Ascent of the East Peak of Mount Logan 1 Out of My Journal (Peru, 1955) 10 Battle Range, 1957 28 The SAC Trans-Sierra Tour 40 Climbing Notes 51 frontispiece: Dave Sowles enroute El Cafitan Tree, Yosemite Valley. Photo by Henry Kendall Grateful acknowledgement is made to the following: Mr. Richard Keeble, printing consultant Badger Printing Co., Appleton, Wise., photographic plates, press work and binding. Miss Mary Vogel, Appleton, Wise., composition and printing of text. Fox River Paper Corporation, Appleton, Wise., paper for text and photographs. FIRST ASCENT OF THE EAST PEAK OF MOUNT LOGAN by GILBERT ROBERTS Mount Logon. North America's second highest peak at 19,850 feet, is also one of the world's largest mountain masses. Located in the wildest part of the St. Elias Range, it has seen little mountaineering activity. In 1925, the first ascent was accomplished by a route from the Ogilvie Glacier which gained the long ridge leading to the summit from King Col. This ascent had gone down as one of the great efforts in mountaineering history. McCarthy, Foster, Lambert, Carpe, Read, and Taylor ulti- mately reached the central summit after months of effort including the relaying of loads by dog sled in the long Yukon winter--a far cry from the age of the air drop.
    [Show full text]