Europe's Supergrid

Total Page:16

File Type:pdf, Size:1020Kb

Europe's Supergrid PROTECTING EUROPEAN CIVILISATION: EUROPE’S SUPERGRID Eddie O’Connor Marcos Byrne Introduction 1. What Europe will look like in 2050. I. What will our electrical demand be? II. How influential will rooftop solar and storage be? III. What effect will electric vehicles have on this demand? IV. How will the demand be met by renewables? 2. What Resources are available to meet this demand. I. Where will the main sources of generation be located? II. How can we access the areas of great potential? 3. How we can distribute this renewable energy. I. How do we interconnect countries with great wind and/or solar resources with those with weaker renewable resources? II. What are the challenges involved? Hemispheric Temperature Change – Annual Mean Hemispheric Temperature Change - 5-Year Running Mean 1.4 1.2 Northern Hemishpere 5-Year Running Mean 1 Southern Hemisphere 5-Year Running Mean 0.8 0.6 0.4 0.2 0 -0.2 Hemispheric Temperature Change (C) Change Temperature Hemispheric -0.4 -0.6 1880 1900 1920 1940 1960 1980 2000 2020 EU 2020 Strategy and the Paris Climate Agreement • 20% reduction in greenhouse gas emissions (from 1990 levels). • 20% of EU energy from renewables • This target varies between countries depending on their starting points. • 20% increase in energy efficiency. • The 2020 strategy feeds into future targets such as reducing EU emissions by 40% by 2040. • All EU countries are also part of the Paris Climate Agreement. Source: UNEP What does European demand look like now? EU Electricity Generation by Fuel Type 4,000 3,500 3,335 3,269 3,265 3,237 3,204 3,213 3,244 156 3,159 143 142 130 129 128 131 131 3,000 510 765 702 583 458 497 597 639 Other Fossil 2,500 Gas 473 461 543 531 384 357 Hard Coal 493 496 2,000 Lignite 332 324 322 306 312 347 325 343 Nuclear 1,500 Renewables 857 839 830 877 876 882 917 907 1,000 ElectricityGenerated (TWh) 500 857 900 936 956 977 679 678 768 - 2010 2011 2012 2013 2014 2015 2016 2017 Source: SuperNode Research Source: Eurostat Current State of Renewables in Europe 60% Share of Energy from Renewable Sources in EU28 2004 50% 2019 40% 2020 Target 30% 20% Renewable Share Renewable 10% 0% 20.0% • 2019 data shows that renewables had a 19% share of energy in 15.0% the EU28. 10.0% • 14 Countries have already met and exceeded their 2020 Historical targets. 5.0% 2020 Target Share of Renewables of Share 0.0% • Austria, Denmark, Estonia, Germany, Malta, Romania, Slovenia already have a RES over 30%. Source: Eurostat Year Dropping Cost of Wind & Solar Offshore Wind Source: Lazard EU Electricity Demand – Future Trend (Baseline) Electricity Demand (TWh per year) 4800 5000 Residential Transport Services Industry 4100 4000 1820 3450 3250 1530 3000 1440 1150 1480 2000 1250 1010 940 150 130 Power Demand (TWh/year) Power 1000 90 100 1350 980 990 1190 0 2005 2010 2030 2050 Source: SuperNode Research Source: SuperNode Research Future Power Demand - Assumptions The assumptions made for calculating the effect of Solar PV and storage on future power demand are: 1. 25% of residential demand will be met through rooftop solar along with battery storage by 2030, with this increasing to a 50% reduction from rooftop solar and storage by 2050. 2. The service industry will also benefit from a 10% reduction in power demand by 2030, increasing to 20% by 2050. 3. The manufacturing industry can benefit from reducing its power demand by 10% by 2030 and by 20% by 2050. Rooftop Solar – How can these reductions be met? • Meeting the 50% reduction in residential demand would require approximately 128 million homes in Europe to adopt 12m2 of Solar PV. Assumptions made: • 12m2 of Solar PV on each roof. • Panel conversion efficiency of 30%. This assumes that continued development takes the current efficiency from 17% - 18% to 30%. • Solar Radiation (kWh/m2/day) was obtained by taking an average of the solar radiation from Dublin, Berlin, Stockholm, Copenhagen, Seville, Athens, and Naples. • The 20% reduction in demand from the services sector from solar, under the same assumptions as residential, found that approximately 37.5 million premises will require rooftop solar in order to meet this reduction. • 18m2 of Solar PV on each roof. • For the industrial sector, it was assumed that, on average, 30m2 of solar PV could be installed per premises. This means that in order to meet the 20% target, 27.5 million rooftops would be required. • 30m2 of Solar PV on each roof. Future Power Demand – Energy Efficiency Assumptions The assumptions made for calculating the energy efficiency measures would have on future power demand are: • A 10% reduction in demand would be seen by 2030, further increasing to a 20% reduction by 2050 for residential demand. • A 5% reduction in demand from the services sector by 2030, increasing to a 10% reduction in demand by 2050. • Industry demand reducing by 2% by 2030, and by 4% by 2050. EU Space Heating and Cooling Loads • Calculated total EU space heating load is 3,158 TWh/annum, 1,904 TWh/annum is Residential, 758 TWh/annum is Service based, 496 TWh/annum is Industry • Calculated total EU space Cooling load is 540 TWh/annum. • Improvements in insulation, optimised ventilation with heat recovery, increased urbanisation (heat islands) and global warming will lead to a decrease of the load. • Growth of population, dwelling size, and comfort levels will lead to an increase in space heating load. Source: European Commission Electric Vehicles – What effect will they have? • The first key assumption was that car ownership will remain the norm. • The following assumptions were made with regards to performance in 2050: • Average Consumption: 12.67 kWh/100km. • Average Annual Mileage: 15,000 km. • Annual Power Usage per car: 1,900 kWh. • Average Charge Time (240V): 8 hours. • Charging of EV vehicles was mostly performed during the night using smart chargers. Commercial Electric Vehicles – What effect will they have? • The following assumptions were made with regards to performance in 2050: • The timing for the charging of commercial vehicles will be very different to private cars. • Fast charging for buses exist. ABB to install 450kW charger for buses at multiple worldwide locations. Growth of Electric Vehicles BEV = Battery Electric Vehicle PHEV = Plug-in Hybrid Electric Vehicle Source: Aurora Energy Research, & TYNDP 2022 Annual Demand From Private EV’s Annual Demand from Private Electric Vehicles 400 302 300 245 200 178 100 91 64 Annual Demand (TWh)Demand Annual 15 - 2020 2025 2030 2035 2040 2050 Year Source: SuperNode Research Annual Demand From Commercial EV’s Annual Demand from Commercial Goods Electric 1,200 Vehicles 988 1,000 801 800 583 600 400 297 208 Annual Demand (TWh)Demand Annual 200 49 - 2020 2025 2030 2035 2040 2050 Year Source: SuperNode Research Importance of when Charging Occurs Smart Scenario Current Scenario • Smart Scenario: • Current Scenario: • 10% status quo charging. • 90% status quo charging. • 90% optimised charging. • 10% optimised charging. Source: Aurora Energy Research Effect of EV charging on Peak Demand - Commercial Electric Vehicles • The introduction of Autonomous HGV’s will usher in an era of 24hr goods transport. • Without regulation, commercial vehicles will massively increase the peak demand. • As with cars, the timing of charging is crucial. • Charging stations could have battery storage which may be charged by PV during the day and from the grid during periods of low demand. • The use of solar PV on commercial vehicles will also alleviate increases in peak demand. Effect of Electrification – Gross Electricity Demand Gross Electricity Demand 9,693 10,000 System Losses 9,000 Indirect Electricity Demand 881 Industry 8,000 1,504 /year) Services 7,000 Transport TWh 5,716 1,837 6,000 Residential 520 5,000 301 3,795 1,776 4,000 3,575 1,535 345 325 3,000 1,417 1,440 1,150 1,383 2,000 940 1,010 387 Electricity Demand ( Demand Electricity 2,278 1,000 90 100 1,589 980 990 - 2005 2010 2030 2050 Source: SuperNode Research Source: SuperNode Research The Chemical Industry – The Forgotten Industry Demand • The Chemical industry has decoupled energy consumption from production resulting in a 56% reduction in energy intensity since 1990. • Analysis of the chemical industry found a maximum potential demand from the industry could reach 11,700 TWh (including fuels). • It is important to note that this demand is based on renewable hydrogen and chemicals production Source: Dechema How Renewables can meet this Demand: Current Trend • In 2015, Renewable Energies accounted 2017 Renewable Energy Generation (TWh) for 77% of new EU generating capacity. 6.5 4.4 196 Hydro • Renewables generated 976.7 TWh of electricity in 2017 (30% of total electricity Onshore Wind demand). Offshore Wind 119.1 294.6 Solar PV • In 2016, 86% of new capacity was from 56.1 Solar CSP renewable energies. Biomass 300.0 Geothermal • As of 2017, there was 428 GW of Renewable capacity installed, including: • 169 GW of Wind. 2017 Renewables Total: 977 TWh • 150 GW of Hydro (excluding pumped storage). • 132 GW of Solar PV. Source: SuperNode Research Source: WindEurope How Renewables can meet this Demand: Future Need • The assumptions made for 2050: 2050 Renewable Energy Generation (TWh) • Offshore has a capacity factor of 60%. 32 307 • By 2050, 54% of total demand will come from Hydro Wind. Onshore Wind • Solar PV has a capacity factor of 30%. 701 Offshore Wind • By 2050, 27% of total demand will come from 2,628 Solar. Solar PV • All other renewable source remain at 2017 1,380 capacities in 2050.
Recommended publications
  • Asia Pacific Super Grid – Solar Electricity Generation, Storage and Distribution
    DOI 10.1515/green-2012-0013 Green 2012; 2(4): 189–202 Andrew Blakers*, Joachim Luther and Anna Nadolny Asia Pacific Super Grid – Solar electricity generation, storage and distribution Abstract: This paper explores the large scale transmission tries have rapidly growing economies leading to rapidly of solar electricity to Southeast Asia from Australia. growing energy demand (2). The continent of Australia Despite the expense and losses incurred in long distance has a population of 23 million people and an average pop- transmission of Australian solar electricity, it appears to ulation density of 3 people per square kilometer. Australia be competitive with locally produced solar electricity is well endowed with indigenous energy resources. In par- because of high insolation levels in Australia. Supplemen- ticular, Australia has immense solar energy resources in tation of locally produced electricity (both from renewable the centre and northwest (3). and conventional sources) with power from Australia, to- A glance at the South East Asian page of a world atlas gether with substantial integrated energy storage, would shows a long and narrow chain of islands between Austra- allow a high solar electricity fraction to be achieved in lia and the Malay Peninsula. Major desert regions exist to Southeast Asia. the north (central China) and south (central and north west Australia). This dipole suggests the possibility of Keywords: solar energy, HVDC, photovoltaics, energy storage, transporting large quantities of solar electricity to South renewable energy East Asia via high voltage cables from large solar farms located in Australia, and solar and wind farms in China. PACS® (2010). 88.05.Lg The latitudes are 20°S and 40°N respectively, which would provide seasonal balance to the solar resource from each region.
    [Show full text]
  • Power Grid Connection and Its Technical Issues
    Power Grid Connection and its Technical Issues The fourth in a 2020 series of webinars from the Clean Energy Ministerial Regional and Global Energy Interconnection Initiative May 26, 2020 1200(GMT)/2000(GMT+8, Beijing Time) Duration: 1 hour Event Link: https://meeting.tencent.com/s/5WUWiqfd9c1a(Conference ID: 950 855 652) Speaker: Prof. Ryuichi Yokoyama (Waseda University) The webinar will address: ➢ What are the current status and challenges of power grid connection in Japan and the rest of the world? ➢ Which technical performance is better in High Voltage Direct Current transmission regarding Line Commuted Converter (LCC) or Voltage Source Converter(VSC) ? ➢ What impacts does the COV-19 have on the development of energy interconnection in future? Ryuichi Yokoyama is a Professor Emeritus of Waseda University, a Life Fellow of IEEE, a Senior Life Member of IEE of Japan, a member of CIGRE. He is also Chairman of Standardization Commissions of Electric Apparatus in METI Japan. He received the degrees of B.S., M.S., and Ph.D. in electrical engineering from Waseda University, Tokyo, Japan, in 1968, 1970, and 1974 respectively. After working in Mitsubishi Research Institute, from 1978 through 2007, he was a professor in the Faculty of Technology of Tokyo Metropolitan University. Since 2007, he had been a professor of the Graduate School of Environment and Energy Engineering in Waseda University. His fields of interests include planning, operation, control and optimization of large-scale environment and energy systems, and economic analysis and risk management of deregulated power markets. About the Regional and Global Energy Interconnection (RGEI) Initiative The RGEI Initiative was established at the 9th Clean Energy Ministerial meeting in Copenhagen/Malmö in May 2018.
    [Show full text]
  • From Super Grid Transformers to Supercars
    Young Freight Forwarder 2018 From Super Grid Transformers to Supercars 28th April 2018 From Super Grid Transformers to Supercars Contents Introduction ............................................................................................................................................ 3 Import Case Study – 180 tonne Super Grid Transformer .............................................................. 5 Project Description ........................................................................................................................... 5 Cargo Details and Dimensions ....................................................................................................... 6 Key Requirements ............................................................................................................................ 6 Areas of Consideration When Tailoring Our Solution ................................................................. 7 Port Selection and Route Restrictions .......................................................................................... 8 To Crane or Not to Crane ............................................................................................................... 8 Specialist Road Haulage ............................................................................................................... 10 Delivery Site Restrictions and Installation .................................................................................. 11 Delivery of the Project ..................................................................................................................
    [Show full text]
  • A Road Map to Deliver Smart Grid in the UK Simon Skillings
    A Road Map to Deliver Smart Grid in the UK Simon Skillings Summary The concept of a ‘smart grid’ involves the combination of instrumentation, communications and analytics that allows power network infrastructure to be operated in a dynamic and efficient manner as opposed to the ‘passive’ operational approach which is currently the norm in the UK. There exists general consensus that the challenges of climate change and system security, in particular the ability to accommodate significant volumes of decentralised and renewable generation, requires that the network infrastructure must be upgraded to enable smart operation. Failure to do so will act as a major obstacle in the transition to a low carbon economy. A second important aspect of network development involves the construction of a number of strategic interconnections across the North Sea to create a new off-shore grid. This opens up the opportunity to more fully exploit the vast untapped potential of off-shore wind energy. However, there are a series of obstacles which have hitherto hindered progress in upgrading the network. In particular, the current regulatory regime is not well designed to encourage network operators to embrace new technological opportunities and this is exacerbated by the extent of the risk and uncertainty involved. The government has a key role to play in injecting the necessary momentum by providing strong direction to the regulator on the outcomes that must be delivered. In addition, the government needs to ensure the appropriate financing routes are in place that will enable Ofgem to set a regulatory framework that leads to a low cost of capital for investors whilst retaining the necessary management incentives on network operators to deliver the required outcomes.
    [Show full text]
  • National Grid Electricity Transmission Nationalgrid Annual Summary 2014/15 Network Innovation Allowance
    National Grid Electricity Transmission nationalgrid Annual Summary 2014/15 Network Innovation Allowance Click here to enter Welcome 02 This is the second Annual Summary of National Grid Electricity Transmission’s Welcome(NGET) projects under the Network Innovation Allowance (NIA). 2014/15 has been a year of enhanced focus on innovation in Electricity Transmission, with a Strategy number of successful initiatives implemented into our ways of working. update We have further enhanced our innovation our organisational design review for capabilities and partnerships, delivering innovation. This will provide enhanced a balanced consumer-value focused clarity of responsibilities and accountabilities portfolio of projects through our Network for selecting, prioritising and delivering Innovation Allowance (NIA). We have also innovation projects and implementing Our portfolio of innovation projects been successful in securing funding for our successful outcomes into day-to-day covers the full spectrum of our strategic Smart Frequency Control (EFCC) Network business operations. A panel of Directors priorities, with work progressing on Innovation Competition (NIC) project. from all of National Grid’s UK RIIO-regulated opportunities reflecting long-term and Innovation can be summed up as the business has been established with short-term potential. To leverage the best act of matching what is needed with what accountability for our UK technology and value for GB consumers we have been is possible, to deliver a better outcome. innovation strategy. The energy systems in Great Britain (GB) proactively sharing the knowledge gained are undergoing fundamental changes. from our research and innovation activities This, coupled with the changing ways in with other network owners. This has been which consumers use energy, means that We have done some done through a knowledge sharing forum what is needed to maintain safe, reliable fantastic work in innovation for the Onshore and Offshore Transmission and affordable energy is rapidly evolving.
    [Show full text]
  • Galloper Wind Farm Eastern Super Grid Transformer Project Environmental Statement – Chapter 3 Project Details February 2014 Document Reference – GWF/25/02/2014
    Galloper Wind Farm Eastern Super Grid Transformer Project Environmental Statement – Chapter 3 Project Details February 2014 Document Reference – GWF/25/02/2014 Galloper Wind Farm Limited CONTENTS Page 3 PROJECT DETAILS 3.1 Introduction 1 3.2 Outline Project Description 2 3.3 Alternatives Considered 2 3.4 Onshore Substation 3 3.5 Items to be Constructed under the DCO 4 3.6 Cabling 7 3.7 Sealing End Compound, Gantries, and Overhead Lines 7 3.8 Changes to the Galloper Wind Farm Onshore Site 7 3.9 Project Programme 8 3.10 Pre-Construction Site Investigations 8 3.11 Onshore Construction 9 3.12 Environmental Management during Construction 9 3.13 Commissioning 10 3.14 Substation Overview 10 3.15 Decommissioning 11 3.16 Local Community Relations 11 3.17 References 11 Figures Figure 3.1 Plan and elevation of Eastern Super Grid Transformer 5 Figure 3.2 Galloper Layout showing proposed redundant elements 6 Appendices 3.1 Galloper Wind Farm Construction Code of Practice Galloper Wind Farm – Eastern Super Grid Transformer Project Environmental Statement – Chapter 3 Project Details Final February 2014 3 PROJECT DETAILS 3.1 Introduction 3.1.1 This chapter of the Environmental Statement (ES) presents the details of the Galloper Wind Farm (GWF) Eastern Super Grid Transformer (ESGT) scheme and describes the construction, operation, maintenance and decommissioning components of the project, which would primarily comprise: • Securely fenced ESGT compound containing the following plant (see Figure 3.1): o One 400/132kVsuper grid transformer including cooling
    [Show full text]
  • Using of HVDC Technology in Super Grids Ines Bula University for Business and Technology, [email protected]
    University of Business and Technology in Kosovo UBT Knowledge Center UBT International Conference 2017 UBT International Conference Oct 27th, 3:00 PM - 4:30 PM Using of HVDC Technology in Super Grids Ines Bula University for Business and Technology, [email protected] Valmira Hoxha University for Business and Technology, [email protected] Edin Bula University for Business and Technology, [email protected] Follow this and additional works at: https://knowledgecenter.ubt-uni.net/conference Part of the Bioresource and Agricultural Engineering Commons Recommended Citation Bula, Ines; Hoxha, Valmira; and Bula, Edin, "Using of HVDC Technology in Super Grids" (2017). UBT International Conference. 142. https://knowledgecenter.ubt-uni.net/conference/2017/all-events/142 This Event is brought to you for free and open access by the Publication and Journals at UBT Knowledge Center. It has been accepted for inclusion in UBT International Conference by an authorized administrator of UBT Knowledge Center. For more information, please contact [email protected]. Using of HVDC Technology in Super Grids Ines Bula1, Valmir Hoxha2, Edin Bula 3 1,2,3 UBT – Higher Education Institution, Lagjja Kalabria, 10000 p.n., Prishtine, Kosovo {ines.bula, valmir.hoxha}@ubt-uni.net; [email protected], Abstract. This paper describes the HVDC system, its organization, as well as advantages over the AC system. Implementation of this system will help to make Europe sustainable energy independent which will require a renewable generation portfolio where much of this portfolio will be fueled by wind and will be developed offshore as it is presented in this paper.
    [Show full text]
  • Solutions for Smart and Super Grids with HVDC and FACTS
    Technical article ■ Authors: M. Claus, D. Retzmann, D. Sörangr, K. Uecker Solutions for Smart and Super Grids with HVDC and FACTS Answers for energy. Content 0. Abstract 3 I. Introduction 3 II. HVDC and FACTS Technologies 3 A HVDC Developments 4 B FACTS Developments 5 III. Security and Sustainability of Power Supply with HVDC and FACTS 5 A Neptune HVDC Project – USA 5 B Basslink HVDC – Australia 6 C Prospects of HVDC in India 6 D Prospects of HVDC in China 7 E HVDC and FACTS in parallel Operation 8 F Prospects of VSC HVDC 9 IV. Conclusions 9 V. References 12 2 17th Conference of the Electric Power Supply Industry 27 - 31 October 2008 Solutions for Smart and Super Grids with HVDC and FACTS M. Claus, D. Retzmann1, D. Sörangr, K. Uecker Siemens AG Erlangen, Germany [email protected] Abstract— Deregulation and privatization are posing new grid of the future must be secure, cost-effective and challenges to high-voltage transmission systems. High-voltage environmentally compatible [2]. The combination of these power electronics, such as HVDC (High Voltage Direct Current) three tasks can be tackled with the help of ideas, intelligent and FACTS (Flexible AC Transmission Systems), provide the solutions as well as innovative technologies. The combination necessary features to avoid technical problems in heavily loaded of these three tasks can be solved with the help of ideas, power systems; they increase the transmission capacity and system stability very efficiently and assist in preventing intelligent solutions as well as innovative technologies. cascading disturbances. Environmental constraints, such as Innovative solutions with HVDC and FACTS have the energy saving, loss minimization and CO2 reduction, will also potential to cope with the new challenges.
    [Show full text]
  • Features of Power System and Issues on International Connection in Japan
    Features of Power System and Issues on International Connection in Japan Ryuichi YOKOYAMA 横山 隆一 Waseda University 早稲田大学 名誉教授 1 Copyright: Ryuichi Yokoyama, Waseda University, Japan Outline of Presentation ・ Future Electric Power Grids for Effective Use of Sustainable Energy ・ Super Grid for Cross-Reginal Electricity Transfer ・ Features of Power System and Issues on International Connection in Japan 2 Copyright: Ryuichi Yokoyama, Waseda University, Japan Future Electric Power Grids for Effective Use of Sustainable Energy 3 Copyright: Ryuichi Yokoyama, Waseda University, Japan Paradigm Shift toward Best Energy Mix from Nuclear-Centered Generation Mix Generation Mix based on Large Scale Plants Thermal Plant Hydro Plant Residence Factory Wind Tsunami Nuclear Plant Generation 2011 Storage Storage Transmission Distribution Distribution Network Substation PV Generation Network Energy Saving Local Generation Best Energy Mix based on Distributed Generation and Network Generation Generation Battery Energy Storage GE with Fossil Energy with Sustainable Energy Lead Battery Ni-MH Battery - - e → 放 電 e → 負負 極 極 正正 極 極 ↑ e - e - ↓ H 2 O H 2 O N iO O H ← e - 水 素 H + - LNG Thermal Plant (1GW) - - e - → OH OH N i( O H ) 2 水 素 吸 蔵 合 金 オ キ シ 水 酸 化 ニ ッ ケ ル - Gas Combined Cycle (0.3GW) EDLC Li-Ion Battery 電子 - → e 放 電 - Gas Engine (10KW – 1MW) 負 極 正 極 Li+ - IGCC (Clean Coal Generation) 炭素材料 (黒鉛層間化合物) 遷移金属酸化物 - Fuel Cell 空のLi+サイト 4 Copyright: Ryuichi Yokoyama, Waseda University, Japan Issues in Power System Operation by Large Scale Instillation of Sustainable Energy ○ By large scale installation of sustainable energy such as PV generation, new problems in power grids ; Excess energy, Voltage increase and Shortage of frequency control capacity occur.
    [Show full text]
  • Scientific American: a Power Grid for the Hydrogen Economy 08/16/2006 06:42 PM
    Scientific American: A Power Grid for the Hydrogen Economy 08/16/2006 06:42 PM June 26, 2006 A Power Grid for the Hydrogen Economy Cryogenic, superconducting conduits could be connected into a "SuperGrid" that would simultaneously deliver electrical power and hydrogen fuel By Paul M. Grant, Chauncey Starr and Thomas J. Overbye On the afternoon of August 14, 2003, electricity failed to arrive in New York City, plunging the eight million inhabitants of the Big Apple--along with 40 million other people throughout the northeastern U.S. and Ontario--into a tense night of darkness. After one power plant in Ohio had shut down, elevated power loads overheated high-voltage lines, which sagged into trees and short-circuited. Like toppling dominoes, the failures cascaded through the electrical grid, knocking 265 power plants offline and darkening 24,000 square kilometers. That incident--and an even more extensive blackout that affected 56 million people in Italy and Switzerland a month later-- called attention to pervasive problems with modern civilization's vital equivalent of a biological circulatory system, its interconnected electrical networks. In North America the electrical grid has evolved in piecemeal fashion over the past 100 years. Today the more than $1-trillion infrastructure spans the continent with millions of kilometers of wire operating at up to 765,000 volts. Despite its importance, no single organization has control over the operation, maintenance or protection of the grid; the same is true in Europe. Dozens of utilities must cooperate even as they compete to generate and deliver, every second, exactly as much power as customers demand--and no more.
    [Show full text]
  • 'Supersmart Grid' Could Connect up Renewable Energy Across Europe
    4 June 2009 ‘SuperSmart Grid’ could connect up renewable energy across Europe Renewable energy could help Europe meet twin goals: a more secure energy supply and climate change mitigation. A recent study describes a new approach to electricity distribution in the form of a ‘SuperSmart Grid’. This supports both long-distance transmission and decentralised energy generation and could enable a 100 per cent renewable electricity system by 2050. A major problem with renewable energy, such as wind and solar power, is that supply is often intermittent, causing fluctuations and strain on the grid system. In addition, the current European grid system is unable to meet rising energy demands and needs to be transformed. Proposals for overcoming these problems include 1) a large-scale grid to transmit electricity from renewable sources over long distances, a ‘Super Grid’, and 2) decentralising production of renewable electricity from distributed, small installations, such as micro turbines, fuel cells or biogas digesters: a ‘Smart Grid’. The researchers, working under the EU CIRCE project1, suggest that these two proposals could be combined to create the SuperSmart Grid (SSG). This would transmit electricity over a wide area and connect up smaller, distributed generation installations. An efficient SSG would also even out any fluctuations over a wide area. The authors argue that a 100 per cent renewable electricity system is necessary if Europe is to meet its target of reducing greenhouse gas emissions by 60-80 per cent, compared with pre-industrial levels by 2050, (in line with the policy to limit the global average temperature increase to not more than 2ºC) and that the SSG would enable this system.
    [Show full text]
  • The Prospect for an Australian–Asian Power Grid: a Critical Appraisal
    energies Review The Prospect for an Australian–Asian Power Grid: A Critical Appraisal Edward Halawa 1,2,*, Geoffrey James 3, Xunpeng (Roc) Shi 4,5 ID , Novieta H. Sari 6,7 and Rabindra Nepal 8 1 Barbara Hardy Institute, School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia 2 Centre for Renewable Energy, Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia 3 Institute for Sustainable Futures, University of Technology Sydney, Ultimo, NSW 2007, Australia; [email protected] 4 Australia China Relations Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia; [email protected] 5 Energy Studies Institute, National University of Singapore, Singapore 119077, Singapore 6 Department of Communication, Universitas Nasional, Jakarta 12520, Indonesia; [email protected] 7 The School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK 8 School of Economics and Finance, Massey University, Auckland Campus, Albany 0632, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +61-8-8302-3329 Received: 17 October 2017; Accepted: 11 January 2018; Published: 15 January 2018 Abstract: Australia is an energy net self-sufficient country rich in energy resources, from fossil-based to renewable energy. Australia, a huge continent with low population density, has witnessed impressive reduction in energy consumption in various sectors of activity in recent years. Currently, coal and natural gas are two of Australia’s major export earners, yet its abundant renewable energy resources such as solar, wind, and tidal, are still underutilized. The majority of Asian countries, on the other hand, are in the middle of economic expansion, with increasing energy consumption and lack of energy resources or lack of energy exploration capability becoming a serious challenge.
    [Show full text]