Regional Power Grid Connectivity for Sustainable Development in North-East Asia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Asia Pacific Super Grid – Solar Electricity Generation, Storage and Distribution
DOI 10.1515/green-2012-0013 Green 2012; 2(4): 189–202 Andrew Blakers*, Joachim Luther and Anna Nadolny Asia Pacific Super Grid – Solar electricity generation, storage and distribution Abstract: This paper explores the large scale transmission tries have rapidly growing economies leading to rapidly of solar electricity to Southeast Asia from Australia. growing energy demand (2). The continent of Australia Despite the expense and losses incurred in long distance has a population of 23 million people and an average pop- transmission of Australian solar electricity, it appears to ulation density of 3 people per square kilometer. Australia be competitive with locally produced solar electricity is well endowed with indigenous energy resources. In par- because of high insolation levels in Australia. Supplemen- ticular, Australia has immense solar energy resources in tation of locally produced electricity (both from renewable the centre and northwest (3). and conventional sources) with power from Australia, to- A glance at the South East Asian page of a world atlas gether with substantial integrated energy storage, would shows a long and narrow chain of islands between Austra- allow a high solar electricity fraction to be achieved in lia and the Malay Peninsula. Major desert regions exist to Southeast Asia. the north (central China) and south (central and north west Australia). This dipole suggests the possibility of Keywords: solar energy, HVDC, photovoltaics, energy storage, transporting large quantities of solar electricity to South renewable energy East Asia via high voltage cables from large solar farms located in Australia, and solar and wind farms in China. PACS® (2010). 88.05.Lg The latitudes are 20°S and 40°N respectively, which would provide seasonal balance to the solar resource from each region. -
Summary of Findings Plains Eastern Clean Line
United States Department of Energy Summary of Findings In re Application of Clean Line Energy Partners LLC Pursuant to Section 1222 of the Energy Policy Act of 2005 March 25, 2016 TABLE OF CONTENTS FREQUENTLY USED ACRONYMS ........................................................................................................ iii I. Executive Summary .............................................................................................................................. 1 II. Introduction ........................................................................................................................................... 2 a. Section 1222 of EPAct 2005......................................................................................................... 2 b. The Department’s 2010 Request for Proposals ............................................................................ 3 c. Clean Line’s Application .............................................................................................................. 4 d. Clean Line’s Regulatory Filings ................................................................................................... 5 e. DOE Review of Clean Line’s Application ................................................................................... 7 i. Environmental and Historic Property Review ....................................................................... 7 ii. Section 1222 Review............................................................................................................. -
CES Working Paper 07/00 RENEWABLE ENERGY SOURCES
CES Working Paper 07/00 RENEWABLE ENERGY SOURCES Author: Tim Jackson ISSN: 1464-8083 RENEWABLE ENERGY SOURCES Tim Jackson ISSN: 1464-8083 Published by: Centre for Environmental Strategy, University of Surrey, Guildford (Surrey) GU2 7XH, United Kingdom http://www.surrey.ac.uk/CES Publication date: 2000 © Centre for Environmental Strategy, 2007 The views expressed in this document are those of the authors and not of the Centre for Environmental Strategy. Reasonable efforts have been made to publish reliable data and information, but the authors and the publishers cannot assume responsibility for the validity of all materials. This publication and its contents may be reproduced as long as the reference source is cited. ROYAL COMMISSION ON ENVIRONMENTAL POLLUTION STUDY ON ENERGY AND THE ENVIRONMENT Paper prepared as background to the Study Renewable Energy Sources March 1998 Dr Tim Jackson* and Dr Ragnar Löfstedt Centre for Environmental Strategy University of Surrey Guildford Surrey GU2 5XH E-mail: [email protected] The views expressed in the paper are those of the authors and do not necessarily represent the thinking of the Royal Commission. Any queries about the paper should be directed to the author indicated * above. Whilst every reasonable effort has been made to ensure accurate transposition of the written reports onto the website, the Royal Commission cannot be held responsible for any accidental errors which might have been introduced during the transcription. Table of Contents Summary 1 Introduction 2 Renewable Energy Technologies -
Power Grid Connection and Its Technical Issues
Power Grid Connection and its Technical Issues The fourth in a 2020 series of webinars from the Clean Energy Ministerial Regional and Global Energy Interconnection Initiative May 26, 2020 1200(GMT)/2000(GMT+8, Beijing Time) Duration: 1 hour Event Link: https://meeting.tencent.com/s/5WUWiqfd9c1a(Conference ID: 950 855 652) Speaker: Prof. Ryuichi Yokoyama (Waseda University) The webinar will address: ➢ What are the current status and challenges of power grid connection in Japan and the rest of the world? ➢ Which technical performance is better in High Voltage Direct Current transmission regarding Line Commuted Converter (LCC) or Voltage Source Converter(VSC) ? ➢ What impacts does the COV-19 have on the development of energy interconnection in future? Ryuichi Yokoyama is a Professor Emeritus of Waseda University, a Life Fellow of IEEE, a Senior Life Member of IEE of Japan, a member of CIGRE. He is also Chairman of Standardization Commissions of Electric Apparatus in METI Japan. He received the degrees of B.S., M.S., and Ph.D. in electrical engineering from Waseda University, Tokyo, Japan, in 1968, 1970, and 1974 respectively. After working in Mitsubishi Research Institute, from 1978 through 2007, he was a professor in the Faculty of Technology of Tokyo Metropolitan University. Since 2007, he had been a professor of the Graduate School of Environment and Energy Engineering in Waseda University. His fields of interests include planning, operation, control and optimization of large-scale environment and energy systems, and economic analysis and risk management of deregulated power markets. About the Regional and Global Energy Interconnection (RGEI) Initiative The RGEI Initiative was established at the 9th Clean Energy Ministerial meeting in Copenhagen/Malmö in May 2018. -
Experience, Prospects and Social Implications of Solar PV in Mongolia
ERINA REPORT Vol. 50 Small-Scale Energy Development in Northeast Asia: Experience, Prospects and Social Implications of Solar PV in Mongolia D. Nachin Visiting Researcher, Research Division, ERINA The priority for small-energy development in many are under consideration. cases is economic growth and the alleviation of poverty. As Smaller 50W windmills manufactured by the domestic of today, one-third of the world's population has no access company Monmar Co., Ltd. are available for 167,000 to commercial energy. Many live in low-income developing togrog (MNT)2, for use in pastoral livestock farming, but countries, including some in Northeast Asia. not in sufficient quantity. 3-5 kW windmills have been Small-scale energy development may play a key role approved for use in activities involving greater in the eradication of disparities in standards of living, per consumption, such as water pumping and powering some capita electricity consumption, access to information and facilities at summer settlements. Winter settlements are modern communications, and medical and educational usually established on windless, sunny sites. The services. On the other hand, it is necessary to develop publication of the Wind Energy Atlas of Mongolia by the renewable energy resources. The development of small- National Renewable Energy Laboratory (2001) of the U.S. scale energy systems may play a part in increasing social Department of Energy will be very useful for designing stability. Government subsidies, incentives encouraging the wind power generators. utilization of renewable energy sources and the inclusion of Solar energy: Mongolia, the "Land of Blue Sky", these in the national energy policy portfolio are needed. -
Coal:25.0 Coal:31.0 :28.6 Just Before the After the Earthquake Earthquake FY 2010 FY 2014 Oil:6.6 Dependence Dependence Degree 62% Degree 88%
Magnesia Market Position Table of Contents Magnesia Division Yusuke Saitou FGD Market so far and from now on ①Recent trend in the domestic FGD market in Japan ②Chinese CCM supply situation to FGD market in Japan, Korea and Taiwan ③Movement of FGD facilities coming up in China Trend of Power Supply Composition in Japan Re-energy etc.:1.1 Re-energy etc.:3.2 Hydraulic power:8.5 Hydraulic power:9.0 Other gas: 1.1 Nuclear power Coal:25.0 Coal:31.0 :28.6 Just Before the After the Earthquake Earthquake FY 2010 FY 2014 Oil:6.6 Dependence Dependence degree 62% degree 88% Oil:9.5 Other gas:0.9 LNG :46.1 LNG :29.3 Source: Agency for Natural Resources and Energy ・After the earthquake, the proportion of coal-fired power has been increasing due to problems of nuclear power plant operation. Besides, LNG's proportion is also increasing. ・Domestic and Chinese MgO for FGD in part of coal-fired power generation (small & medium- sized )plants is around 10% share of total power generation. UBE MgO/MH Shipment ☆Compared to FY 2015, MH slurry shipment is expected to increase in FY 2020. ☆The anticipated increase in the quantity is expected to peak until 2020. 1,000mt(as MgO) UBE Material Estimated COP21 CO2 Regulation in the Paris Agreement 【Paris Agreement】 ・ We aim to make the global temperature rise of the whole world to 2℃ or lower, or even 1.5 ℃ or lower ・ Each country strengthens regulations, such as reporting CO2 missions every five years Source: draft committee submitted to the United Nations Framework Convention on Climate Change Asian FGD Market and Chinese CCM Trend Liaoning Province, Xiuyan District ( high purity CCM for FGD & large crystal FM ) Chinese CCM(30%) China 20,000? Unit: Mt / year (estimate as MgO) Domestic(70%) Korea 50,000 Japan Taiwan 200,000 China Expand? Japan Export 50,000 Chinese CCM (100%) North Korea With the environmental inspections by the central gov. -
Annex D Major Events in the Energy Industry
Annex D Major events in the Energy Industry 2017 Electricity The foundation stone for the new ElecLink electricity connection between Britain and France was laid in February 2017. The interconnector will run through the Channel Tunnel between Sellindge in the UK and Les Mandarins in France, and will provide 1000MW of electricity, enough capacity to power up to 2 million homes. Energy Efficiency Homes across Great Britain will get extra support to make their homes cheaper and easier to keep warm thanks to reforms that came into force in April 2017. Changes to the Energy Company Obligation (ECO) will make sure energy companies give support to people struggling to meet their heating bills, with plans announced to extend the scheme from April 2017 to September 2018. Smart Meters A Smart Meters bill was included in the Queen’s speech in June 2017 to allow the Government to continue to oversee the successful completion of the rollout of smart meters and protect consumers, leading to £5.7 billion of net benefits to Britain. 2016 Energy Policy The Energy Bill received Royal Assent in May 2016. In summary the Bill: Creates the framework to formally establish the Oil and Gas Authority (OGA) as an independent regulator, taking the form of a government company, so that it can act with greater flexibility and independence. It gives the OGA new powers including: access to external meetings; data acquisition and retention; dispute resolution; and sanctions. It also enables the transfer of the Secretary of State of the Department for Business, Energy and Industrial Strategy (BEIS) existing regulatory powers in respect of oil and gas to the OGA. -
How to Create Efficient, Reliable and Clean Electricity Markets: a Regulatory Design for Mongolia and Northeast Asia
MASTER’S THESIS HOW TO CREATE EFFICIENT, RELIABLE AND CLEAN ELECTRICITY MARKETS: A REGULATORY DESIGN FOR MONGOLIA AND NORTHEAST ASIA Working title: Beyond Mining: Barriers to Renewable Energy Investments in Mongolia Paul Maidowski International Relations (B.A.) University of Dresden, 2010 Thesis Advisor: Professor William Moomaw SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE: MASTER OF ARTS IN LAW AND DIPLOMACY THE FLETCHER SCHOOL OF LAW AND DIPLOMACY SEPTEMBER 13, 2012 Version history V 1. Original: September 13, 2012 V 2. Updated: December 7, 2012 V 2.1. Slightly edited: December 8, 2012 Abstract This paper develops a comprehensive proposal for how Mongolia’s domestic power sector could be made more efficient, reliable and sustainable. The analysis is based on inter- views in Ulaanbaatar. It reviews the literature on power sector reforms in small developing countries and regional electricity markets. In a second step, a framework is proposed for a re- gional electricity market between Mongolia, Russia and China. In principle, this framework is applicable also to South Korea and Japan. The findings include that inadequate regulation has contributed to performance prob- lems in every aspect of Mongolia’s power sector, which remains a horizontally integrated monopoly. A lack of generation capacity was ignored for decades; as a result, supply is ex- pected to fall critically short of demand for the coming 3 to 5 years. Mongolia possesses rich coal resources, but water scarcity, harmful emissions, high vulnerability to the effects of cli- mate change, social constraints and the need for economic diversification will limit the future role of conventional technologies. -
From Super Grid Transformers to Supercars
Young Freight Forwarder 2018 From Super Grid Transformers to Supercars 28th April 2018 From Super Grid Transformers to Supercars Contents Introduction ............................................................................................................................................ 3 Import Case Study – 180 tonne Super Grid Transformer .............................................................. 5 Project Description ........................................................................................................................... 5 Cargo Details and Dimensions ....................................................................................................... 6 Key Requirements ............................................................................................................................ 6 Areas of Consideration When Tailoring Our Solution ................................................................. 7 Port Selection and Route Restrictions .......................................................................................... 8 To Crane or Not to Crane ............................................................................................................... 8 Specialist Road Haulage ............................................................................................................... 10 Delivery Site Restrictions and Installation .................................................................................. 11 Delivery of the Project .................................................................................................................. -
Distribution Network Review
A DISTRIBUTION NETWORK REVIEW ETSU K/EL/00188/REP Contractor P B Power Merz & McLellan Division PREPARED BY R J Fairbairn D Maunder P Kenyon The work described in this report was carried out under contract as part of the New and Renewable Energy Programme, managed by the Energy Technology Support Unit (ETSU) on behalf of the Department of Trade and Industry. The views and judgements expressed in this report are those of the contractor and do not necessarily reflect those of ETSU or the Department of Trade and Industry.__________ First published 1999 © Crown copyright 1999 Page iii 1. EXECUTIVE SUMMARY.........................................................................................................................1.1 2. INTRODUCTION.......................................................................................................................................2.1 3. BACKGROUND.........................................................................................................................................3.1 3.1 Description of the existing electricity supply system in England , Scotland and Wales ...3.1 3.2 Summary of PES Licence conditions relating to the connection of embedded generation 3.5 3.3 Summary of conditions required to be met by an embedded generator .................................3.10 3.4 The effect of the Review of Electricity Trading Arrangements (RETA)..............................3.11 4. THE ABILITY OF THE UK DISTRIBUTION NETWORKS TO ACCEPT EMBEDDED GENERATION...................................................................................................................................................4.1 -
Europe's Supergrid
PROTECTING EUROPEAN CIVILISATION: EUROPE’S SUPERGRID Eddie O’Connor Marcos Byrne Introduction 1. What Europe will look like in 2050. I. What will our electrical demand be? II. How influential will rooftop solar and storage be? III. What effect will electric vehicles have on this demand? IV. How will the demand be met by renewables? 2. What Resources are available to meet this demand. I. Where will the main sources of generation be located? II. How can we access the areas of great potential? 3. How we can distribute this renewable energy. I. How do we interconnect countries with great wind and/or solar resources with those with weaker renewable resources? II. What are the challenges involved? Hemispheric Temperature Change – Annual Mean Hemispheric Temperature Change - 5-Year Running Mean 1.4 1.2 Northern Hemishpere 5-Year Running Mean 1 Southern Hemisphere 5-Year Running Mean 0.8 0.6 0.4 0.2 0 -0.2 Hemispheric Temperature Change (C) Change Temperature Hemispheric -0.4 -0.6 1880 1900 1920 1940 1960 1980 2000 2020 EU 2020 Strategy and the Paris Climate Agreement • 20% reduction in greenhouse gas emissions (from 1990 levels). • 20% of EU energy from renewables • This target varies between countries depending on their starting points. • 20% increase in energy efficiency. • The 2020 strategy feeds into future targets such as reducing EU emissions by 40% by 2040. • All EU countries are also part of the Paris Climate Agreement. Source: UNEP What does European demand look like now? EU Electricity Generation by Fuel Type 4,000 3,500 3,335 3,269 -
Mongolia Master Plan Study for Coal Development and Utilization
Ministry of Mining Mongolia Mongolia Master Plan Study for Coal Development and Utilization November 2013 Japan International Cooperation Agency (JICA) Japan Coal Energy Center IL JR 13-164 Table of contents Chapter 1 Introduction .................................................................................................................................... 1 1.1 Background of the study ....................................................................................................................... 1 1.1.1 Outline of Mongolia ....................................................................................................................... 1 1.1.2 Present condition of industry and economic growth of Mongolia ................................................. 2 1.2 Purpose of study .................................................................................................................................... 4 1.3 Flow of study ........................................................................................................................................ 4 1.4 Study system ......................................................................................................................................... 4 1.4.1 Counterpart mechanism ................................................................................................................. 4 1.4.2 Old and New Government organizations ....................................................................................... 6 1.4.3 Structure and allotment