Common Lower Extremity Problems in Children Susan A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Orthopedic-Conditions-Treated.Pdf
Orthopedic and Orthopedic Surgery Conditions Treated Accessory navicular bone Achondroplasia ACL injury Acromioclavicular (AC) joint Acromioclavicular (AC) joint Adamantinoma arthritis sprain Aneurysmal bone cyst Angiosarcoma Ankle arthritis Apophysitis Arthrogryposis Aseptic necrosis Askin tumor Avascular necrosis Benign bone tumor Biceps tear Biceps tendinitis Blount’s disease Bone cancer Bone metastasis Bowlegged deformity Brachial plexus injury Brittle bone disease Broken ankle/broken foot Broken arm Broken collarbone Broken leg Broken wrist/broken hand Bunions Carpal tunnel syndrome Cavovarus foot deformity Cavus foot Cerebral palsy Cervical myelopathy Cervical radiculopathy Charcot-Marie-Tooth disease Chondrosarcoma Chordoma Chronic regional multifocal osteomyelitis Clubfoot Congenital hand deformities Congenital myasthenic syndromes Congenital pseudoarthrosis Contractures Desmoid tumors Discoid meniscus Dislocated elbow Dislocated shoulder Dislocation Dislocation – hip Dislocation – knee Dupuytren's contracture Early-onset scoliosis Ehlers-Danlos syndrome Elbow fracture Elbow impingement Elbow instability Elbow loose body Eosinophilic granuloma Epiphyseal dysplasia Ewing sarcoma Extra finger/toes Failed total hip replacement Failed total knee replacement Femoral nonunion Fibrosarcoma Fibrous dysplasia Fibular hemimelia Flatfeet Foot deformities Foot injuries Ganglion cyst Genu valgum Genu varum Giant cell tumor Golfer's elbow Gorham’s disease Growth plate arrest Growth plate fractures Hammertoe and mallet toe Heel cord contracture -
Saethre-Chotzen Syndrome
Saethre-Chotzen syndrome Authors: Professor L. Clauser1 and Doctor M. Galié Creation Date: June 2002 Update: July 2004 Scientific Editor: Professor Raoul CM. Hennekam 1Department of craniomaxillofacial surgery, St. Anna Hospital and University, Corso Giovecca, 203, 44100 Ferrara, Italy. [email protected] Abstract Keywords Disease name and synonyms Excluded diseases Definition Prevalence Management including treatment Etiology Diagnostic methods Genetic counseling Antenatal diagnosis Unresolved questions References Abstract Saethre-Chotzen Syndrome (SCS) is an inherited craniosynostotic condition, with both premature fusion of cranial sutures (craniostenosis) and limb abnormalities. The most common clinical features, present in more than a third of patients, consist of coronal synostosis, brachycephaly, low frontal hairline, facial asymmetry, hypertelorism, broad halluces, and clinodactyly. The estimated birth incidence is 1/25,000 to 1/50,000 but because the phenotype can be very mild, the entity is likely to be underdiagnosed. SCS is inherited as an autosomal dominant trait with a high penetrance and variable expression. The TWIST gene located at chromosome 7p21-p22, is responsible for SCS and encodes a transcription factor regulating head mesenchyme cell development during cranial tube formation. Some patients with an overlapping SCS phenotype have mutations in the FGFR3 (fibroblast growth factor receptor 3) gene; especially the Pro250Arg mutation in FGFR3 (Muenke syndrome) can resemble SCS to a great extent. Significant intrafamilial -
Spinal Dysraphism an Orthopaedic Syndrome in Children Accompanying Occult Forms
Arch Dis Child: first published as 10.1136/adc.35.182.315 on 1 August 1960. Downloaded from SPINAL DYSRAPHISM AN ORTHOPAEDIC SYNDROME IN CHILDREN ACCOMPANYING OCCULT FORMS BY C. C. MICHAEL JAMES and L. P. LASSMAN From the Departments of Orthopaedic Surgery and Neurological Surgery, Newcastle General Hospital, Newcastle upon Tyne (RECEIVED FOR PUBLICATION OCTOBER 19, 1959) Much interest has been shown in the pathology which usually suffer. The treatment in the first of the more gross developmental anomalies of the place is principally in the field of neurosurgery since spinal cord and its coverings and in their clinical the removal of the primary cause, when it is possible, manifestations, most of which are not amenable to demands laminectomy and exploration around the treatment. It has not been appreciated that lesser spinal cord within the dura mater. Subsequent anomalies can also produce disabilities, that they orthopaedic care will be needed only to correct can be diagnosed in life and that they can frequently established deformity if the diagnosis has been be treated by surgery before the secondary effects made late. have become severe and irreversible. Clinical Spinal dysraphism is a term which has been experience over a number of years of the many applied to failure of complete development in the copyright. children sent to orthopaedic clinics with various midline of the dorsal aspect of the embryo. The types of foot or lower limb defect led us to suspect extent of this failure may be of mild, moderate or the presence in some children of a spinal cord severe degree. -
Peds Ortho: What Is Normal, What Is Not, and When to Refer
Peds Ortho: What is normal, what is not, and when to refer Future of Pedatrics June 10, 2015 Matthew E. Oetgen Benjamin D. Martin Division of Orthopaedic Surgery AGENDA • Definitions • Lower Extremity Deformity • Spinal Alignment • Back Pain LOWER EXTREMITY ALIGNMENT DEFINITIONS coxa = hip genu = knee cubitus = elbow pes = foot varus valgus “bow-legged” “knock-knee” apex away from midline apex toward midline normal varus hip (coxa vara) varus humerus valgus ankle valgus hip (coxa valga) Genu varum (bow-legged) Genu valgum (knock knee) bow legs and in toeing often together Normal Limb alignment NORMAL < 2 yo physiologic = reassurance, reevaluate @ 2 yo Bow legged 7° knock knee normal Knock knee physiologic = reassurance, reevaluate in future 4 yo abnormal 10 13 yo abnormal + pain 11 Follow-up is essential! 12 Intoeing 1. Femoral anteversion 2. Tibial torsion 3. Metatarsus adductus MOST LIKELY PHYSIOLOGIC AND WILL RESOLVE! BRACES ARE HISTORY! Femoral Anteversion “W” sitters Internal rotation >> External rotation knee caps point in MOST LIKELY PHYSIOLOGIC AND MAY RESOLVE! Internal Tibial Torsion Thigh foot angle MOST LIKELY PHYSIOLOGIC AND WILL RESOLVE BY SCHOOL AGE Foot is rotated inward Internal Tibial Torsion (Fuchs 1996) Metatarsus Adductus • Flexible = correctible • Observe vs. casting CURVED LATERAL BORDER toes point in NOT TO BE CONFUSED WITH… Clubfoot talipes equinovarus adductus internal varus rotation equinus CAN’T DORSIFLEX cavus Clubfoot START19 CASTING JUST AFTER BIRTH Calcaneovalgus Foot • Intrauterine positioning • Resolve -
SKELETAL DYSPLASIA Dr Vasu Pai
SKELETAL DYSPLASIA Dr Vasu Pai Skeletal dysplasia are the result of a defective growth and development of the skeleton. Dysplastic conditions are suspected on the basis of abnormal stature, disproportion, dysmorphism, or deformity. Diagnosis requires Simple measurement of height and calculation of proportionality [<60 inches: consideration of dysplasia is appropriate] Dysmorphic features of the face, hands, feet or deformity A complete physical examination Radiographs: Extremities and spine, skull, Pelvis, Hand Genetics: the risk of the recurrence of the condition in the family; Family evaluation. Dwarf: Proportional: constitutional or endocrine or malnutrition Disproportion [Trunk: Extremity] a. Height < 42” Diastrophic Dwarfism < 48” Achondroplasia 52” Hypochondroplasia b. Trunk-extremity ratio May have a normal trunk and short limbs (achondroplasia), Short trunk and limbs of normal length (e.g., spondylo-epiphyseal dysplasia tarda) Long trunk and long limbs (e.g., Marfan’s syndrome). c. Limb-segment ratio Normal: Radius-Humerus ratio 75% Tibia-Femur 82% Rhizomelia [short proximal segments as in Achondroplastics] Mesomelia: Dynschondrosteosis] Acromelia [short hands and feet] RUBIN CLASSIFICATION 1. Hypoplastic epiphysis ACHONDROPLASTIC Autosomal Dominant: 80%; 0.5-1.5/10000 births Most common disproportionate dwarfism. Prenatal diagnosis: 18 weeks by measuring femoral and humeral lengths. Abnormal endochondral bone formation: zone of hypertrophy. Gene defect FGFR fibroblast growth factor receptor 3 . chromosome 4 Rhizomelic pattern, with the humerus and femur affected more than the distal extremities; Facies: Frontal bossing; Macrocephaly; Saddle nose Maxillary hypoplasia, Mandibular prognathism Spine: Lumbar lordosis and Thoracolumbar kyphosis Progressive genu varum and coxa valga Wedge shaped gaps between 3rd and 4th fingers (trident hands) Trident hand 50%, joint laxity Pathology Lack of columnation Bony plate from lack of growth Disorganized metaphysis Orthopaedics 1. -
Arthrogryposis Multiplex Congenita Part 1: Clinical and Electromyographic Aspects
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.35.4.425 on 1 August 1972. Downloaded from Journal ofNeurology, Neurosurgery, anid Psychiatry, 1972, 35, 425-434 Arthrogryposis multiplex congenita Part 1: Clinical and electromyographic aspects E. P. BHARUCHA, S. S. PANDYA, AND DARAB K. DASTUR From the Children's Orthopaedic Hospital, and the Neuropathology Unit, J.J. Group of Hospitals, Bombay-8, India SUMMARY Sixteen cases with arthrogryposis multiplex congenita were examined clinically and electromyographically; three of them were re-examined later. Joint deformities were present in all extremities in 13 of the cases; in eight there was some degree of mental retardation. In two cases, there was clinical and electromyographic evidence of a myopathic disorder. In the majority, the appearances of the shoulder-neck region suggested a developmental defect. At the same time, selective weakness of muscles innervated by C5-C6 segments suggested a neuropathic disturbance. EMG revealed, in eight of 13 cases, clear evidence of denervation of muscles, but without any regenerative activity. The non-progressive nature of this disorder and capacity for improvement in muscle bulk and power suggest that denervation alone cannot explain the process. Re-examination of three patients after two to three years revealed persistence of the major deformities and muscle Protected by copyright. weakness noted earlier, with no appreciable deterioration. Otto (1841) appears to have been the first to ventricles, have been described (Adams, Denny- recognize this condition. Decades later, Magnus Brown, and Pearson, 1953; Fowler, 1959), in (1903) described it as multiple congenital con- addition to the spinal cord changes. -
Bilateral Both Bone Leg Fracture in a Case of Hereditary Multiple Exostoses with Bilateral Proximal and Distal Tibiofibular Synostosis
JMSCR Volume||2 ||Issue||5||Pages 1054-1058||May 2014 2014 www.jmscr.igmpublication.org Impact Factor-1.1147 ISSN (e)-2347-176x Bilateral Both Bone Leg Fracture in a Case of Hereditary Multiple Exostoses with Bilateral Proximal and Distal Tibiofibular Synostosis Authors Ganesh Singh1, Anshuman Vijay Roy2, Shailendra Singh Bhandari3, Pankaj Singh4 Author / Corresponding author Dr . Ganesh Singh M.S. (Orthopaedics) Assistant Professor , Department of Orthopaedics Room # 25 , New Resident Hostel , Medical Campus Government Medical College , Haldwani ( Uttarakhand ) . PIN -263139 Mobile no – 91-9319616456 , E mail – [email protected] Co –Authors Dr . Anshuman Vijay Roy M.S. (Orthopaedics ) Assistant Professor , Department of Orthopaedics Government Medical College , Haldwani ( Uttarakhand ). PIN – 263139 Mobile no. – 91-9927973777 E mail - [email protected] Dr Shailendra Singh Bhandari M.S.(Orthopaedics) Associatet Professor , Department of Orthopaedics Government Medical College , Haldwani ( Uttarakhand ). PIN – 263139 Mobile no. – 91-9837251168 E mail – [email protected] Dr . Pankaj Singh M.S. (Orthopaedics ) Professor , Department ofOrthopaedics Government Medical College , Haldwani ( Uttarakhand ). PIN – 263139 Mobile no. – 91-9927973777 E mail – [email protected] Ganesh Singh et al JMSCR Volume 2 Issue 5 May 2014 Page 1054 JMSCR Volume||2 ||Issue||5||Pages 1054-1058||May 2014 2014 Abstract The Hereditary Multiple Exostoses ( HME) is a neoplastic disorder affecting multiple skeletal sites in the form of bony protuberances of varying sizes and shapes . The clinical features are site specific and mostly relate to the effect of swelling on the adjacent tissues . Associated abnormalities like bowing deformities of bones, shortening and mechanical axes deviations may lead to increased risk of stresses over the bones . -
Mackenzie's Mission Gene & Condition List
Mackenzie’s Mission Gene & Condition List What conditions are being screened for in Mackenzie’s Mission? Genetic carrier screening offered through this research study has been carefully developed. It is focused on providing people with information about their chance of having children with a severe genetic condition occurring in childhood. The screening is designed to provide genetic information that is relevant and useful, and to minimise uncertain and unclear information. How the conditions and genes are selected The Mackenzie’s Mission reproductive genetic carrier screen currently includes approximately 1300 genes which are associated with about 750 conditions. The reason there are fewer conditions than genes is that some genetic conditions can be caused by changes in more than one gene. The gene list is reviewed regularly. To select the conditions and genes to be screened, a committee comprised of experts in genetics and screening was established including: clinical geneticists, genetic scientists, a genetic pathologist, genetic counsellors, an ethicist and a parent of a child with a genetic condition. The following criteria were developed and are used to select the genes to be included: • Screening the gene is technically possible using currently available technology • The gene is known to cause a genetic condition • The condition affects people in childhood • The condition has a serious impact on a person’s quality of life and/or is life-limiting o For many of the conditions there is no treatment or the treatment is very burdensome for the child and their family. For some conditions very early diagnosis and treatment can make a difference for the child. -
Flexible Flatfoot
REVIEW ORTHOPEDICS & TRAUMATOLOGY North Clin Istanbul 2014;1(1):57-64 doi: 10.14744/nci.2014.29292 Flexible flatfoot Aziz Atik1, Selahattin Ozyurek2 1Department of Orthopedics and Tarumatology, Balikesir University Faculty of Medicine, Balikesir, Turkey; 2Department of Orthopedics and Traumatology, Aksaz Military Hospital, Marmaris, Mugla, Turkey ABSTRACT While being one of the most frequent parental complained deformities, flatfoot does not have a universally ac- cepted description. The reasons of flexible flatfoot are still on debate, but they must be differentiated from rigid flatfoot which occurs secondary to other pathologies. These children are commonly brought up to a physician without any complaint. It should be kept in mind that the etiology may vary from general soft tissue laxities to intrinsic foot pathologies. Every flexible flatfoot does not require radiological examination or treatment if there is no complaint. Otherwise further investigation and conservative or surgical treatment may necessitate. Key words: Children; flatfoot; flexible; foot problem; pes planus. hough the term flatfoot (pes planus) is gener- forms again (Figure 2). When weight-bearing forces Tally defined as a condition which the longitu- on feet are relieved this arch can be observed. If the dinal arch of the foot collapses, it has not a clinically foot is not bearing any weight, still medial longitu- or radiologically accepted universal definition. Flat- dinal arch is not seen, then it is called rigid (fixed) foot which we frequently encounter in routine out- flatfoot. To differentiate between these two condi- patient practice will be more accurately seen as a re- tions easily, Jack’s test (great toe is dorisflexed as the sult of laxity of ligaments of the foot. -
Maternal Use of Opioids During Pregnancy and Congenital Malformations: a Systematic Review
Maternal Use of Opioids During Jennifer N. Lind, PharmD, MPH, a, b Julia D. Interrante, MPH, a, c Elizabeth C. Ailes, PhD, MPH, a Suzanne M. Gilboa, PhD, a PregnancySara Khan, MSPH, a, d, e Meghan T. Frey, and MA, MPH, a CongenitalApril L. Dawson, MPH, a Margaret A. Honein, PhD, MPH, a a a, b f, g a Malformations:Nicole F. Dowling, PhD, Hilda Razzaghi, PhD, MSPH, A Andreea Systematic A. Creanga, MD, PhD, Cheryl Review S. Broussard, PhD CONTEXT: abstract Opioid use and abuse have increased dramatically in recent years, particularly OBJECTIVES: among women. We conducted a systematic review to evaluate the association between prenatal DATA SOURCES: opioid use and congenital malformations. We searched Medline and Embase for studies published from 1946 to 2016 and STUDY SELECTION: reviewed reference lists to identify additional relevant studies. We included studies that were full-text journal articles and reported the results of original epidemiologic research on prenatal opioid exposure and congenital malformations. We assessed study eligibility in multiple phases using a standardized, DATA EXTRACTION: duplicate review process. Data on study characteristics, opioid exposure, timing of exposure during pregnancy, congenital malformations (collectively or as individual subtypes), length of RESULTS: follow-up, and main findings were extracted from eligible studies. Of the 68 studies that met our inclusion criteria, 46 had an unexposed comparison group; of those, 30 performed statistical tests to measure associations between maternal opioid use during pregnancy and congenital malformations. Seventeen of these (10 of 12 case-control and 7 of 18 cohort studies) documented statistically significant positive associations. Among the case-control studies, associations with oral clefts and ventricular septal defects/atrial septal defects were the most frequently reported specific malformations. -
On the Inheritance of Hand and Foot Anomalies in Six Families
On the Inheritance of Hand and Foot Anomalies in Six Families OLA JOHNSTON AND RALPH WALDO DAVIS Department of Biology, North Texas State College, Denton, Texas INTRODUCTION Malformations of the hands and feet are common and of many kinds. Ac- cording to Gates (1946) there probably are more abnormalities of the hands and feet than of any other part of the body, with the exception of the eye. It is true that some hand and foot anomalies are the result of accident and disease but it is equally true that many are the result of variation in heredity. The extent to which the latter is true and the mode of inheritance of those variations which have some genetic basis are questions which are not com- pletely answered. Hence when an opportunity presented itself to study a number of different hand and foot anomalies which appeared to have a he- reditary basis, it seemed worthwhile to investigate them and to present the findings. The malformations which are included are syndactyly and split hand and foot, polydactyly, and brachydactyly. Each will be considered more or less independently and in the order indicated. A BRIEF REVIEW OF LITERATURE 1. Syndactyly and Split Hand and Foot Syndactyly is the condition in which two or more fingers or toes are adherent or are more or less completely grown together. Split hand and foot (also called lobster claw) is a deformity in which the central digits of the hands and/or feet are lacking. It may represent an extreme variant of syndactyly. According to Lewis (1909) a description of split hand and foot is difficult because of the great variation in the deformity even within the same family. -
Surviving Campomelic Dysplasia Has the Radiological Features of The
1of5 J Med Genet: first published as 10.1136/jmg.39.9.e50 on 1 September 2002. Downloaded from ELECTRONIC LETTER Surviving campomelic dysplasia has the radiological features of the previously reported ischio-pubic-patella syndrome A C Offiah, S Mansour, S McDowall, J Tolmie, P Sim, C M Hall ............................................................................................................................. J Med Genet 2002;39:e50 (http://www.jmedgenet.com/cgi/content/full/39/9/e50) he radiological findings in five patients with features of and compares them with those of four other published cases the ischio-pubic-patella syndrome are presented. All of where this information was available.3–6 The reader should Tthese patients have genetic/cytogenetic evidence of refer to Mansour et al7 for more detailed clinical features of campomelic dysplasia. The ischio-pubic-patella syndrome these five patients. appears to be a distinct entity from the small patella syndrome as first described by Scott and Taor.1 The findings in the five presented cases with radiological evidence of the more severe RADIOLOGICAL FEATURES ischio-pubic-patella syndrome but genetic/cytogenetic evi- All five patients presented had defective ischio-pubic ossifica- dence of campomelic dysplasia suggests that they are the tion and hypoplastic lesser trochanters, and in the three same condition, that of surviving campomelic dysplasia. Cam- patients in whom radiographs of the knees were available pomelic dysplasia should be considered in patients with the hypoplastic patellae were seen. Four of the five patients had clinical and radiological features of the “ischio-pubic-patella elongated femoral necks. These are the major diagnostic syndrome”. features of the ischio-pubic-patella syndrome.