Spinal Dysraphism an Orthopaedic Syndrome in Children Accompanying Occult Forms

Total Page:16

File Type:pdf, Size:1020Kb

Spinal Dysraphism an Orthopaedic Syndrome in Children Accompanying Occult Forms Arch Dis Child: first published as 10.1136/adc.35.182.315 on 1 August 1960. Downloaded from SPINAL DYSRAPHISM AN ORTHOPAEDIC SYNDROME IN CHILDREN ACCOMPANYING OCCULT FORMS BY C. C. MICHAEL JAMES and L. P. LASSMAN From the Departments of Orthopaedic Surgery and Neurological Surgery, Newcastle General Hospital, Newcastle upon Tyne (RECEIVED FOR PUBLICATION OCTOBER 19, 1959) Much interest has been shown in the pathology which usually suffer. The treatment in the first of the more gross developmental anomalies of the place is principally in the field of neurosurgery since spinal cord and its coverings and in their clinical the removal of the primary cause, when it is possible, manifestations, most of which are not amenable to demands laminectomy and exploration around the treatment. It has not been appreciated that lesser spinal cord within the dura mater. Subsequent anomalies can also produce disabilities, that they orthopaedic care will be needed only to correct can be diagnosed in life and that they can frequently established deformity if the diagnosis has been be treated by surgery before the secondary effects made late. have become severe and irreversible. Clinical Spinal dysraphism is a term which has been experience over a number of years of the many applied to failure of complete development in the copyright. children sent to orthopaedic clinics with various midline of the dorsal aspect of the embryo. The types of foot or lower limb defect led us to suspect extent of this failure may be of mild, moderate or the presence in some children of a spinal cord severe degree. The best known clinical form is lesion responsible for a particular pattern of lower meningomyelocoele which is an example of an overt limb abnormalities. Such children were watched lesion, but the lesion may not be visible on the carefully and the development of their abnormalities surface nor make itself evident clinically. Spina and subsequent radiological and neurological bifida occulta is such a condition and is so com- investigations confirmed us in our belief that in monly noted in routine x-ray investigations that a number of those children presenting at first with it is regarded as a curiosity rather than as an entity http://adc.bmj.com/ relatively trivial foot defects, there was an under- with possible clinical implications. Ingraham and lying spinal anomaly causing their troubles which Lowrey (1943) have given an indication of the might well be dealt with at an early stage, thus types of lesion to be found clinically, and other preventing further disability and perhaps improving writers have described the particular lesions which such disability as had already occurred. We interested them. None appears to have regarded therefore decided to operate, at first upon those these lesions as being of the same origin except children whose abnormalities were beginning to Lichtenstein (1940), who revived the term spinal increase seriously, and later, in the light of experi- dysraphism and under this heading grouped dis- on October 1, 2021 by guest. Protected ence gained, upon all those in whom we had good orders according to whether they manifested them- reason to suspect the presence of a spinal selves as arising from cutaneous, mesodermal or lesion. neural derivatives of the dorsal median region of We now believe that we can identify with certainty the developing embryo. a syndrome associated with and diagnostic of spinal In this communication we are concerned only dysraphism when there is an occult lesion affecting with those forms of spinal dysraphism which directly the spinal cord. By diagnosing this condition early or indirectly affect the spinal cord and spinal nerves we can undertake spinal surgery before severe and our aims are to describe these lesions, to indicate deformity and disability of the lower limbs has the general pattern of the associated orthopaedic occurred confident that surgery will be beneficial. syndrome and to draw attention to the value of The clinical manifestations are for the most part spinal surgery as a preventive measure when orthopaedic in that it is the lower limbs and feet undertaken early. 315 2.A Arch Dis Child: first published as 10.1136/adc.35.182.315 on 1 August 1960. Downloaded from 316 ARCHIVES OF DISEASE IN CHILDHOOD The Lesions of congenital scoliosis resulting from hemivertebrae Lesions affecting the spinal cord or cauda equina which develop paraplegia at about the age of may be classified into three groups, those which 12 years. produce a traction effect, those which exert local The Combined Group. This group consists of a pressure and those which combine traction and variety of lesions which incorporate external pressure. pressure by a fatty fibrous mass or by a transverse The Traction Group. In the growing child, there band with traction by some form of fibrous band is a difference between the rate of growth of the attaching to the meninges, bone or skin. spinal cord and that of the vertebral column. This is described as the ascent of the spinal cord within Symptoms and Signs-Early Stages the vertebral canal, because the length of the latter, Occult forms of spinal dysraphism are rarely as the vertebral column grows, increases at a evident at birth. At that time, the function of the greater rate than the length of the spinal cord. spinal cord may not be impaired, but as the child At birth the distal end of the spinal cord is normally grows, a dysraphic lesion will begin to have an effect, situated at or about the upper border of the body either by preventing the spinal cord from 'ascending' of LV.3 and at the end of growth, in adult life, is within the vertebral canal or by pressure from the situated at the lower border of the body of LV.1 or increasing size of some abnormal tissue such as the upper border of LV.2 (Streeter, 1919). Any a lipoma. The effect, then, of a dysraphic lesion lesion which prevents this ascent of the spinal cord is a gradual interference with conduction in the will do so by fixing it at a definite level in the spinal cord or its nerve roots, so that according vertebral canal. In such circumstances the spinal to the site of the lesion there will be a gradual loss cord or nerve roots or both will be stretched as the of sensation and a slowly developing weakness of bone column grows and this stretching will produce some muscles leading to muscle imbalance and injury either to the tracts within the spinal cord, or ultimately to deformity. to the nerve fibres and indirectly to both of these by interfering with their blood supply. In all proba- Symptoms. A child of any age is commonly copyright. bility the commonest lesion of this type is dia- referred because of a peculiarity of gait or because stematomyelia in which the spinal cord is bifid in of distortion of one shoe, itself the result of a part of its course. This is also the most easily peculiarity of gait unnoticed by the parents. Some- diagnosed lesion when it is associated with a bone times a child attends because of poor posture septum lying anteroposteriorly across the vertebral associated with a short leg or because one leg has canal and transfixing the spinal cord. This bone been noticed to be shorter and thinner than the septum can be seen on a plain x-ray film. A septum other. is, however, not always calcified; it may be fibrous Pain is not a feature but there is occasionally a http://adc.bmj.com/ and therefore not demonstrable by plain x rays. complaint of pain in one or more metatarso- Fibrous bands are also found tethering the spinal phalangeal joints which may be associated with a cord or cauda equina to the bone or skin directly protective kind of gait. This is possibly the earliest or through attachment to the meninges. These evidence of this syndrome since in such cases at this may be associated with the fibrolipomata found in stage there is no foot deformity. the pressure type of lesion. A tight filum terminale has often been cited as a similar traction lesion. Gait. The abnormality of gait, almost imper- ceptible early on, consists in an elevation of the on October 1, 2021 by guest. Protected The Pressure Group. The best known type is first metatarsal head as though something like a the intrathecal lipoma, which consists of a fatty drawing pin were underneath it, the great toe fibrous mass lying inside the dura mater. In some usually remaining flexed. Occasionally this is cases the fatty fibrous mass is entirely extradural; accompanied by adduction movement of the fore- in others it may be extradural and intrathecal. foot, but there is no evidence of abnormal function Another type of pressure lesion occurs when a in the foot or toes when standing or when not fibrous band constricts the lower end of the spinal bearing weight; voluntary actions are normal. In cord situated at an abnormally low level (LUri, the course of review the peculiar action is more 1926). Occasionally, when the vertebral canal is easily seen and the deformity which follows is quite already narrowed by inversion of one or more obviously the result of this peculiar action; even so, laminae, pressure may arise from increasing thick- the foot may still have a normal appearance at rest. ness of the bone with normal growth. If allowed to continue, the pes cavo-varus observed Within this group may also be placed those cases only when walking becomes fixed. The arch Arch Dis Child: first published as 10.1136/adc.35.182.315 on 1 August 1960.
Recommended publications
  • Orthopedic-Conditions-Treated.Pdf
    Orthopedic and Orthopedic Surgery Conditions Treated Accessory navicular bone Achondroplasia ACL injury Acromioclavicular (AC) joint Acromioclavicular (AC) joint Adamantinoma arthritis sprain Aneurysmal bone cyst Angiosarcoma Ankle arthritis Apophysitis Arthrogryposis Aseptic necrosis Askin tumor Avascular necrosis Benign bone tumor Biceps tear Biceps tendinitis Blount’s disease Bone cancer Bone metastasis Bowlegged deformity Brachial plexus injury Brittle bone disease Broken ankle/broken foot Broken arm Broken collarbone Broken leg Broken wrist/broken hand Bunions Carpal tunnel syndrome Cavovarus foot deformity Cavus foot Cerebral palsy Cervical myelopathy Cervical radiculopathy Charcot-Marie-Tooth disease Chondrosarcoma Chordoma Chronic regional multifocal osteomyelitis Clubfoot Congenital hand deformities Congenital myasthenic syndromes Congenital pseudoarthrosis Contractures Desmoid tumors Discoid meniscus Dislocated elbow Dislocated shoulder Dislocation Dislocation – hip Dislocation – knee Dupuytren's contracture Early-onset scoliosis Ehlers-Danlos syndrome Elbow fracture Elbow impingement Elbow instability Elbow loose body Eosinophilic granuloma Epiphyseal dysplasia Ewing sarcoma Extra finger/toes Failed total hip replacement Failed total knee replacement Femoral nonunion Fibrosarcoma Fibrous dysplasia Fibular hemimelia Flatfeet Foot deformities Foot injuries Ganglion cyst Genu valgum Genu varum Giant cell tumor Golfer's elbow Gorham’s disease Growth plate arrest Growth plate fractures Hammertoe and mallet toe Heel cord contracture
    [Show full text]
  • Peds Ortho: What Is Normal, What Is Not, and When to Refer
    Peds Ortho: What is normal, what is not, and when to refer Future of Pedatrics June 10, 2015 Matthew E. Oetgen Benjamin D. Martin Division of Orthopaedic Surgery AGENDA • Definitions • Lower Extremity Deformity • Spinal Alignment • Back Pain LOWER EXTREMITY ALIGNMENT DEFINITIONS coxa = hip genu = knee cubitus = elbow pes = foot varus valgus “bow-legged” “knock-knee” apex away from midline apex toward midline normal varus hip (coxa vara) varus humerus valgus ankle valgus hip (coxa valga) Genu varum (bow-legged) Genu valgum (knock knee) bow legs and in toeing often together Normal Limb alignment NORMAL < 2 yo physiologic = reassurance, reevaluate @ 2 yo Bow legged 7° knock knee normal Knock knee physiologic = reassurance, reevaluate in future 4 yo abnormal 10 13 yo abnormal + pain 11 Follow-up is essential! 12 Intoeing 1. Femoral anteversion 2. Tibial torsion 3. Metatarsus adductus MOST LIKELY PHYSIOLOGIC AND WILL RESOLVE! BRACES ARE HISTORY! Femoral Anteversion “W” sitters Internal rotation >> External rotation knee caps point in MOST LIKELY PHYSIOLOGIC AND MAY RESOLVE! Internal Tibial Torsion Thigh foot angle MOST LIKELY PHYSIOLOGIC AND WILL RESOLVE BY SCHOOL AGE Foot is rotated inward Internal Tibial Torsion (Fuchs 1996) Metatarsus Adductus • Flexible = correctible • Observe vs. casting CURVED LATERAL BORDER toes point in NOT TO BE CONFUSED WITH… Clubfoot talipes equinovarus adductus internal varus rotation equinus CAN’T DORSIFLEX cavus Clubfoot START19 CASTING JUST AFTER BIRTH Calcaneovalgus Foot • Intrauterine positioning • Resolve
    [Show full text]
  • Flexible Flatfoot
    REVIEW ORTHOPEDICS & TRAUMATOLOGY North Clin Istanbul 2014;1(1):57-64 doi: 10.14744/nci.2014.29292 Flexible flatfoot Aziz Atik1, Selahattin Ozyurek2 1Department of Orthopedics and Tarumatology, Balikesir University Faculty of Medicine, Balikesir, Turkey; 2Department of Orthopedics and Traumatology, Aksaz Military Hospital, Marmaris, Mugla, Turkey ABSTRACT While being one of the most frequent parental complained deformities, flatfoot does not have a universally ac- cepted description. The reasons of flexible flatfoot are still on debate, but they must be differentiated from rigid flatfoot which occurs secondary to other pathologies. These children are commonly brought up to a physician without any complaint. It should be kept in mind that the etiology may vary from general soft tissue laxities to intrinsic foot pathologies. Every flexible flatfoot does not require radiological examination or treatment if there is no complaint. Otherwise further investigation and conservative or surgical treatment may necessitate. Key words: Children; flatfoot; flexible; foot problem; pes planus. hough the term flatfoot (pes planus) is gener- forms again (Figure 2). When weight-bearing forces Tally defined as a condition which the longitu- on feet are relieved this arch can be observed. If the dinal arch of the foot collapses, it has not a clinically foot is not bearing any weight, still medial longitu- or radiologically accepted universal definition. Flat- dinal arch is not seen, then it is called rigid (fixed) foot which we frequently encounter in routine out- flatfoot. To differentiate between these two condi- patient practice will be more accurately seen as a re- tions easily, Jack’s test (great toe is dorisflexed as the sult of laxity of ligaments of the foot.
    [Show full text]
  • Maternal Use of Opioids During Pregnancy and Congenital Malformations: a Systematic Review
    Maternal Use of Opioids During Jennifer N. Lind, PharmD, MPH, a, b Julia D. Interrante, MPH, a, c Elizabeth C. Ailes, PhD, MPH, a Suzanne M. Gilboa, PhD, a PregnancySara Khan, MSPH, a, d, e Meghan T. Frey, and MA, MPH, a CongenitalApril L. Dawson, MPH, a Margaret A. Honein, PhD, MPH, a a a, b f, g a Malformations:Nicole F. Dowling, PhD, Hilda Razzaghi, PhD, MSPH, A Andreea Systematic A. Creanga, MD, PhD, Cheryl Review S. Broussard, PhD CONTEXT: abstract Opioid use and abuse have increased dramatically in recent years, particularly OBJECTIVES: among women. We conducted a systematic review to evaluate the association between prenatal DATA SOURCES: opioid use and congenital malformations. We searched Medline and Embase for studies published from 1946 to 2016 and STUDY SELECTION: reviewed reference lists to identify additional relevant studies. We included studies that were full-text journal articles and reported the results of original epidemiologic research on prenatal opioid exposure and congenital malformations. We assessed study eligibility in multiple phases using a standardized, DATA EXTRACTION: duplicate review process. Data on study characteristics, opioid exposure, timing of exposure during pregnancy, congenital malformations (collectively or as individual subtypes), length of RESULTS: follow-up, and main findings were extracted from eligible studies. Of the 68 studies that met our inclusion criteria, 46 had an unexposed comparison group; of those, 30 performed statistical tests to measure associations between maternal opioid use during pregnancy and congenital malformations. Seventeen of these (10 of 12 case-control and 7 of 18 cohort studies) documented statistically significant positive associations. Among the case-control studies, associations with oral clefts and ventricular septal defects/atrial septal defects were the most frequently reported specific malformations.
    [Show full text]
  • On the Inheritance of Hand and Foot Anomalies in Six Families
    On the Inheritance of Hand and Foot Anomalies in Six Families OLA JOHNSTON AND RALPH WALDO DAVIS Department of Biology, North Texas State College, Denton, Texas INTRODUCTION Malformations of the hands and feet are common and of many kinds. Ac- cording to Gates (1946) there probably are more abnormalities of the hands and feet than of any other part of the body, with the exception of the eye. It is true that some hand and foot anomalies are the result of accident and disease but it is equally true that many are the result of variation in heredity. The extent to which the latter is true and the mode of inheritance of those variations which have some genetic basis are questions which are not com- pletely answered. Hence when an opportunity presented itself to study a number of different hand and foot anomalies which appeared to have a he- reditary basis, it seemed worthwhile to investigate them and to present the findings. The malformations which are included are syndactyly and split hand and foot, polydactyly, and brachydactyly. Each will be considered more or less independently and in the order indicated. A BRIEF REVIEW OF LITERATURE 1. Syndactyly and Split Hand and Foot Syndactyly is the condition in which two or more fingers or toes are adherent or are more or less completely grown together. Split hand and foot (also called lobster claw) is a deformity in which the central digits of the hands and/or feet are lacking. It may represent an extreme variant of syndactyly. According to Lewis (1909) a description of split hand and foot is difficult because of the great variation in the deformity even within the same family.
    [Show full text]
  • Prevalence and Associated Factors of Flat Feet Among Patients With
    Arch Physiother Rehabil 2020; 3 (4): 076-083 DOI: 10.26502/fapr0016 Research Article Prevalence and Associated Factors of Flat Feet among Patients with Hypertension; Findings from a Cross Sectional Study Carried Out at a Tertiary Care Hospital in Sri Lanka Jithmi N Samarakoon1, Nipun Lakshitha de Silva2, Deepika Fernando3* 1Department of Allied Health Sciences, Faculty of Medicine, Colombo, Sri Lanka 2Department of Clinical Sciences, Faculty of Medicine, General Sir John Kotelawala Defence University, Ratmalana, Sri Lanka 3Department of Parasitology, Faculty of Medicine, Colombo, Sri Lanka *Corresponding author: Deepika Fernando, Department of Parasitology, Faculty of Medicine, Colombo, 00800, Sri Lanka, Tel: +94717229509; E-mail: [email protected] Received: 24 October 2020; Accepted: 03 November 2020; Published: 05 November 2020 Citation: Jithmi N Samarakoon, Nipun Lakshitha de Silva, Deepika Fernando. Prevalence and Associated Factors of Flat Feet among Patients with Hypertension; Findings from a Cross Sectional Study Carried Out at a Tertiary Care Hospital in Sri Lanka. Archives of Physiotherapy and Rehabilitation 3 (2020): 076-083. Abstract recognized risk factors were enrolled. Socio- Background: Hypertension is considered a risk factor demographic details and clinical information were for flat feet as it causes posterior tibial tendon collected using a pre-tested interviewer administered dysfunction. The objectives of this study were to questionnaire. Arch index was obtained by a static identify the prevalence and associated factors of flat feet footprint on the Harris mat. Body weight and height among patients with hypertension. were measured using standard instruments. Body Mass Index was calculated. Descriptive statistics, Independent Methods: A cross sectional study with systematic t- test, Chi-square test and Pearson correlation were sampling was done in three selected hypertension used for data analysis.
    [Show full text]
  • Common Lower Extremity Problems in Children Susan A
    Article orthopedics Common Lower Extremity Problems in Children Susan A. Scherl, MD* Objectives After completing this article, readers should be able to: 1. Describe the presentation of hip joint pathology in children. 2. Know how to treat most rotational and angular deformities. 3. Describe the hallmark of clubfoot that helps to differentiate it from isolated metatarsus adductus. 4. Explain why screening for developmental dysplasia of the hip should be performed. 5. Describe foot problems that can be markers for a neurologic disorder. Overview Growing children are susceptible to a variety of developmental lower extremity disorders of varying degrees of seriousness. Because children are growing and developing and are not simply smaller versions of adults, it can be difficult to treat some conditions, but in other cases, there is leeway in the results of treatment not available to adults. Long-term outcome is of utmost importance for pediatric patients because their bones, joints, and muscles optimally should remain functional and pain-free during childhood and throughout their lives. Treatment should disrupt daily life as little as possible to minimize the social and psychological toll of the illness. Common lower extremity problems in children can be grouped broadly into four categories: rotational deformities, angular deformities, foot deformities, and hip disorders. This article covers the major conditions in each group. Pediatricians and other primary care clinicians can expect to encounter these disorders in their practices. A working knowledge of the basics of these disorders will help in appropriate diagnosis, treatment, counseling, and referral of patients. Rotational Deformities The developmental rotational deformities, intoeing and outtoeing, probably are the most common childhood musculoskeletal entities that prompt parents to consult a physician.
    [Show full text]
  • Escobar Syndrome Associated with Spine and Orthopedic Pathologies
    tics: Cu ne rr e en G t y R r e a Balioglu, Hereditary Genet 2015, 4:2 t s i e d a e r r c DOI: 10.4172/2161-1041.1000145 e h H Hereditary Genetics ISSN: 2161-1041 Case Report Open Access Escobar Syndrome Associated with Spine and Orthopedic Pathologies: Case Reports and Literature Review Balioglu MB* Metin Sabanci Baltalimani Bone Disease Education and Research Hospital, Istanbul, Turkey Abstract Escobar syndrome (ES) is associated with a web across every flexion crease in the extremities (most notably the popliteal space) and other structural anomalies such as a vertical talus, clubfoot, thoracic kyphoscoliosis and severe restrictive lung disease. In our study, we evaluated 3 patients diagnosed with multiple pterygium syndrome (MPS) type Escobar. The purpose of this study was to assess the abnormalities of the vertebrae and concomitant orthopedic pathologies. Two male patients (17 and 20-year-old siblings) and one female patient (9 year-old) were diagnosed with ES by genetic analysis. Patients had been diagnosed with kyphosis and progressive scoliosis (except one), high-set palate, ptosis, low-set ears, arachnodactyly, craniofacial dysmorphism, mild deafness, clubfoot, hip luxation, and joint contractures. Patients received operations for dislocation of the hip, clubfoot correction (except the female patient), and contractures of the knee and ankle. Furthermore, patients also underwent surgery for ptosis and inguinal hernias (except the female patient). One male patient received posterior vertebral instrumentation and fusion for a progressive spine deformity. Spinal and orthopedic pathologies commonly occur in patients with ES and scoliosis, and kyphosis may progress considerably over time.
    [Show full text]
  • Common Anomalies Associated To
    ISSN: 2643-3885 Muhsin. Int J Foot Ankle 2018, 2:013 Volume 2 | Issue 2 Open Access International Journal of Foot and Ankle RESEARCH ARTICLE Common Anomalies Associated To Congenital Vertical Talus: A Single Center Experience Elmas Muhsin* Check for Department of Medical Genetic, Afyon Kocatepe University, Turkey updates *Corresponding author: Elmas Muhsin, Department of Medical Genetic, Afyon Kocatepe University, Afyonkarahisar, Turkey vicular. The incidence is estimated to be one in 10,000. Abstract Approximately half of all cases (idiopathic) are associ- Background: Congenital vertical talus is defined as a foot deformity in which the calcaneus is in equinus, the talus is ated with deformity and 2-5 neuromuscular and genet- plantarflexed, and there is a rigid and irreducible dislocation ic disorders in the remaining cases. There is evidence of the talonavicular joint complex, with the navicular articu- that some isolated deformities are transmitted as an lating on the dorsolateral aspect of the talar neck. It is often autosomal dominant feature with incomplete pene- associated with systemic involvement. trance [1-4]. The deformity is also known by congenital Aims: To identify the most common anomalies accompany- “rocker-bottom” flatfoot because of its rigid deformity ing to CVT (Congenital Vertical Talus). No literature investi- gating similar clinical data was found in the literature review. with the forefoot dorsiflexed and the hindfoot plantar- Study design: CVT has a systemic effect and is accom- flexed. The term “congenital convex pes valgus” is also panied by many anomalies. At the same time as this study, frequently used. To make a definite diagnosis, it is im- anomalies were frequently found accompanying CVT.
    [Show full text]
  • Congenital Anomalies and in Utero Antiretroviral Exposure in Human Immunodeficiency Virus– Exposed Uninfected Infants
    Supplementary Online Content Williams PL, Crain MJ, Yildirim C, et al; Pediatric HIV/AIDS Cohort Study. Congenital anomalies and in utero antiretroviral exposure in human immunodeficiency virus– exposed uninfected infants. Published online November 10, 2014. JAMA Pediatr. doi:10.1001/jamapediatrics.2014.1889. eTable 1. Frequency of Specific Major Congenital Anomalies Within Anomaly Categories eTable 2. Anomalies Reported Among Children Exposed to Atazanavir During the First Trimester eTable 3. Association of Timing of the First ARV Exposure During Pregnancy With Congenital Anomalies by ARV Drug Class and for Specific ARV Drugs This supplementary material has been provided by the authors to give readers additional information about their work. © 2014 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/24/2021 eTable 1. Frequency of Specific Major Congenital Anomalies Within Anomaly Categories # of children with at Total # of least one major anomaly in Anomaly anomalies category Category (Total=242) (Total=201) List of Major Anomalies Musculoskeletal 72 59 Polydactyly (15), torticollis/muscular anomaly (12), clubfoot, talipes, other foot deformity (9), congenital dislocation of hip (5), craniosynostosis (4), plagiocephaly (4), pectus excavatum/funnel chest (3), lower limb anomaly (3), hypertelorism/other face or skull anomaly (3), spina bifida occulta/spine anomaly (3), syndactyly (3), inguinal hernia (2), diaphragmatic hernia/Morgagni, genu recurvatum/bowed legs, rib/sternum anomaly, scoliosis/congenital
    [Show full text]
  • Equinus Deformity in the Pediatric Patient: Causes, Evaluation, and Management
    Equinus Deformity in the Pediatric Patient: Causes, Evaluation, and Management a,b,c Monique C. Gourdine-Shaw, DPM, LCDR, MSC, USN , c, c Bradley M. Lamm, DPM *, John E. Herzenberg, MD, FRCSC , d,e Anil Bhave, PT KEYWORDS Equinus Pediatric External fixation Achilles tendon lengthening Gastrocnemius recession Tendo-Achillis lengthening Different body and limb segments grow at different rates, inducing varying muscle tensions during growth.1 In addition, boys and girls grow at different rates.1 The rate of growth for girls spikes at ages 5, 7, 10, and 13 years.1 The estrogen-induced pubertal growth spurt in girls is one of the earliest manifestations of puberty. Growth of the legs and feet accelerates first, so that many girls have longer legs in proportion to their torso during the first year of puberty. The overall rate of growth tends to reach a peak velocity (as much as 7.5 to 10 cm) midway between thelarche and menarche and declines by the time menarche occurs.1 In the 2 years after menarche, most girls grow approximately 5 cm before growth ceases at maximal adult height.1 The rate of growth for boys spikes at ages 6, 11, and 14 years.1 Compared with girls’ early growth spurt, growth accelerates more slowly in boys and lasts longer, resulting in taller adult stature among men than women (on average, approximately 10 cm).1 The difference is attributed to the much greater potency of estradiol compared with testosterone in Two authors (BML and JEH) host an international teaching conference supported by Smith & Nephew.
    [Show full text]
  • Costello Syndrome: Clinical Phenotype, Genotype, and Management Guidelines
    Received: 31 March 2019 Revised: 22 May 2019 Accepted: 1 June 2019 DOI: 10.1002/ajmg.a.61270 ORIGINAL ARTICLE Costello syndrome: Clinical phenotype, genotype, and management guidelines Karen W. Gripp1 | Lindsey A. Morse2 | Marni Axelrad3 | Kathryn C. Chatfield4 | Aaron Chidekel5 | William Dobyns6 | Daniel Doyle7 | Bronwyn Kerr8 | Angela E. Lin9 | David D. Schwartz3 | Barbara J. Sibbles10 | Dawn Siegel11 | Suma P. Shankar12 | David A. Stevenson13 | Mihir M. Thacker14 | K. Nicole Weaver15 | Sue M. White16 | Katherine A. Rauen12 1Division of Medical Genetics, Department of Pediatrics, A.I. duPont Hospital for Children, Wilmington, Delaware 2Ferre Institute, Binghamton, New York, New York 3Psychology Section, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 4Section of Cardiology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 5Division of Pulmonology, Department of Pediatrics, A.I. duPont Hospital for Children, Wilmington, Delaware 6Division of Medical Genetics, Seattle Children's Hospital, Seattle, Washington 7Division of Endocrinology, A.I. duPont Hospital for Children, Wilmington, Delaware 8Manchester Center for Genomic Medicine, University of Manchester, Manchester, UK 9Medical Genetics Unit, Department of Pediatrics, MassGeneral Hospital for Children, Boston, Massachusetts 10Division of Pediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands 11Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin 12Division of Genomic Medicine, Department
    [Show full text]