Brachydactyly, Distal Symphalangism, Scoliosis, Tall Stature, and Club Feet: a New Syndrome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cavus Foot, from Neonates to Adolescents
Orthopaedics & Traumatology: Surgery & Research (2012) 98, 813—828 Available online at www.sciencedirect.com REVIEW ARTICLE ଝ Cavus foot, from neonates to adolescents P. Wicart Paris Descartes University, Necker—Sick Children Hospital (AP—HP), 149, rue de Sèvres, Paris 75015, France Accepted: 10 July 2012 KEYWORDS Summary Pes cavus, defined as a high arch in the sagittal plane, occurs in various clinical situa- Pes cavus; tions. A cavus foot may be a variant of normal, a simple morphological characteristic, seen in Charcot-Marie-Tooth healthy individuals. Alternatively, cavus may occur as a component of a foot deformity. When it disease; is the main abnormality, direct pes cavus should be distinguished from pes cavovarus. In direct Neurology; pes cavus, the deformity occurs only in the sagittal plane (in the forefoot, hindfoot, or both). Morphological types Direct pes cavus may be related to a variety of causes, although neurological diseases predom- inate in posterior pes cavus. Pes cavovarus is a three-dimensional deformity characterized by rotation of the calcaneopedal unit (the foot minus the talus). This deformity is caused by palsy of the intrinsic foot muscles, usually related to Charcot-Marie-Tooth disease. The risk of pro- gression during childhood can be eliminated by appropriate conservative treatment (orthosis to realign the foot). Extra-articular surgery is indicated when the response to orthotic treatment is inadequate. Muscle transfers have not been proven effective. Triple arthrodesis (talocalcanear, talonavicular, and calcaneocuboid) accelerates the mid-term development of osteoarthritis in the adjacent joints and should be avoided. © 2012 Published by Elsevier Masson SAS. Introduction The cavus may be either one of the components or the main component of the deformity (Tables 1 and 2). -
Orthopedic-Conditions-Treated.Pdf
Orthopedic and Orthopedic Surgery Conditions Treated Accessory navicular bone Achondroplasia ACL injury Acromioclavicular (AC) joint Acromioclavicular (AC) joint Adamantinoma arthritis sprain Aneurysmal bone cyst Angiosarcoma Ankle arthritis Apophysitis Arthrogryposis Aseptic necrosis Askin tumor Avascular necrosis Benign bone tumor Biceps tear Biceps tendinitis Blount’s disease Bone cancer Bone metastasis Bowlegged deformity Brachial plexus injury Brittle bone disease Broken ankle/broken foot Broken arm Broken collarbone Broken leg Broken wrist/broken hand Bunions Carpal tunnel syndrome Cavovarus foot deformity Cavus foot Cerebral palsy Cervical myelopathy Cervical radiculopathy Charcot-Marie-Tooth disease Chondrosarcoma Chordoma Chronic regional multifocal osteomyelitis Clubfoot Congenital hand deformities Congenital myasthenic syndromes Congenital pseudoarthrosis Contractures Desmoid tumors Discoid meniscus Dislocated elbow Dislocated shoulder Dislocation Dislocation – hip Dislocation – knee Dupuytren's contracture Early-onset scoliosis Ehlers-Danlos syndrome Elbow fracture Elbow impingement Elbow instability Elbow loose body Eosinophilic granuloma Epiphyseal dysplasia Ewing sarcoma Extra finger/toes Failed total hip replacement Failed total knee replacement Femoral nonunion Fibrosarcoma Fibrous dysplasia Fibular hemimelia Flatfeet Foot deformities Foot injuries Ganglion cyst Genu valgum Genu varum Giant cell tumor Golfer's elbow Gorham’s disease Growth plate arrest Growth plate fractures Hammertoe and mallet toe Heel cord contracture -
Loss of Correction in Cubitus Varus Deformity After Osteotomy
Loss of correction in cubitus varus deformity after osteotomy Chao You Shenzhen children's hospital Yibiao Zhou Shenzhen children's hospital https://orcid.org/0000-0001-9754-1089 Jingming Han ( [email protected] ) Research article Keywords: cubitus varus osteotomy Loss of correction Posted Date: May 5th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-26279/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/14 Abstract Purpose Cubitus varus deformity in the pediatric population is an infrequent but clinically important disease to orthopedic surgeons. Since these patient populations are different in many respects, we sought out to investigate the rates of loss of correction over time as well as the factors associated with loss of correction in pediatric patients undergoing osteotomy for treatment of cubitus varus deformity. Methods Between 2008-7 and 2017-7, we treated 30 cases of cubital varus had underwent the the osteotomy. We compared preoperative and postoperative clinical and imaging parameters (H-cobb angle,Baumman angle) for all patients. Postoperative evaluation was performed by telephone interview. Results In our study,there were 30 patients,included 17 males and 13 females.the mean age was 75 months old.In the rst follow-up,Approximately 80 % of patients had a loss of correction of H-cobband 83% of patients at the second follow-up. The Baumann angle also had a loss of correction,about 57% was lost at the rst follow-up,and 43% was lost at the second follow-up. The average interval between the rst follow-up and the second follow-up was 24 days The H-cobb angle mean loss was 2.4°.There was a statistically signicant difference between the H-cobb angle measured before surgery and the angle measured after surgery (p <0.05). -
Angular Limb Deformities in Foals: Treatment and Prognosis*
Article #4 CE Angular Limb Deformities in Foals: Treatment and Prognosis* Nicolai Jansson, DVM, PhD, DECVS Skara Equine Hospital Skara, Sweden Norm G. Ducharme, DVM, MSc, DACVS Cornell University ABSTRACT: This article presents an overview of the clinical management of foals with angular limb deformities. Both conservative and surgical treatment options exist; the choice of which to use should be based on the type, severity, and location of the deformity as well as the age of the foal. Conservative measures include controlled exercise, rigid external limb support, and corrective hoof trimming. Surgical treatment modalities comprise tech- niques for manipulating physeal growth and, after physeal closure, various corrective osteotomy or ostectomy methods. The prognosis is generally good if treatment is initi- ated well in advance of physeal closure. ngular limb deformities and their treat- Conservative Treatment ment in foals and young horses constitute In most foals born with mild to moderate a significant part of the orthopedic prob- angular deformities, spontaneous resolution A 2 lems that veterinarians must manage. This article occurs within the first 2 to 4 weeks of life. In discusses the clinical management and prognosis newborn foals, periarticular laxity is the most of these postural deformities. likely cause, and these foals require no special treatment other than a short period of con- TREATMENT trolled exercise. In our opinion, mildly and The absence of controlled studies has moderately affected foals should not be confined impaired the accumulation of scientific data to a stall because exercise is important for nor- guiding the management of angular limb defor- mal muscular development and resolution of the mities in foals (Table 1). -
Spinal Dysraphism an Orthopaedic Syndrome in Children Accompanying Occult Forms
Arch Dis Child: first published as 10.1136/adc.35.182.315 on 1 August 1960. Downloaded from SPINAL DYSRAPHISM AN ORTHOPAEDIC SYNDROME IN CHILDREN ACCOMPANYING OCCULT FORMS BY C. C. MICHAEL JAMES and L. P. LASSMAN From the Departments of Orthopaedic Surgery and Neurological Surgery, Newcastle General Hospital, Newcastle upon Tyne (RECEIVED FOR PUBLICATION OCTOBER 19, 1959) Much interest has been shown in the pathology which usually suffer. The treatment in the first of the more gross developmental anomalies of the place is principally in the field of neurosurgery since spinal cord and its coverings and in their clinical the removal of the primary cause, when it is possible, manifestations, most of which are not amenable to demands laminectomy and exploration around the treatment. It has not been appreciated that lesser spinal cord within the dura mater. Subsequent anomalies can also produce disabilities, that they orthopaedic care will be needed only to correct can be diagnosed in life and that they can frequently established deformity if the diagnosis has been be treated by surgery before the secondary effects made late. have become severe and irreversible. Clinical Spinal dysraphism is a term which has been experience over a number of years of the many applied to failure of complete development in the copyright. children sent to orthopaedic clinics with various midline of the dorsal aspect of the embryo. The types of foot or lower limb defect led us to suspect extent of this failure may be of mild, moderate or the presence in some children of a spinal cord severe degree. -
Knee Arthroplasty in Patients with Rheumatoid Arthritis
Ann. rheum. Dis. (1974), 33, 1 Ann Rheum Dis: first published as 10.1136/ard.33.1.1 on 1 January 1974. Downloaded from Knee arthroplasty in patients with rheumatoid arthritis B. BLUM,* A. G. MOWAT, G. BENTLEY, AND J. R. MORRIS Rheumatology Unit, Nuffield Departments ofMedicine and Orthopaedic Surgery, University ofOxford, Nuffield Orthopaedic Centre, Oxford MacIntosh metallic tibial plateau prostheses have based upon the failure of conservative therapy mani been used in the Nuffield Orthopaedic Centre since fested by unrelievable pain, limitation of function, and 1966 in the knees of patients with rheumatoid arthri- deformity. In all cases there was greater articular surface tis, following the description of the use of these damage than could be expected to be improved by synovectomy. The radiographic appearances were prostheses for the relief of pain and the correction of otherwise not important unless there was gross joint deformity by MacIntosh (1966). Since that time collapse or destruction, since there was considerable thfre have been several reports of the use of these discrepancy between the radiographic appearances and prostheses in both rheumatoid and osteoarthrotic the findings at operation. knees (Potter, 1969; MCCollum, Goldner, and Lang, 1970; Clary and Couk, 1972; Jessop and Moore, Methods 1972; Kay and Martins, 1972; MacIntosh and METHOD OF REVIEW Hunter, 1972; Potter, Weinfeld, and Thomas, 1972). At final review the patients were interviewed and examined In view of the different indications for and the by an independent orthopaedic surgeon (B.B.), followingcopyright. results of the operation described by these various a standard protocol* which assessed the technical success authors, it seemed valuable to undertake an in- of the procedure and stressed functional improvements dependent review of the patients treated in this and difficulties. -
Conformational Limb Abnormalities and Corrective Farriery for Foals
Conformational Limb Abnormalities and Corrective Farriery for Foals For the past couple of years the general public has questioned the horse industry, and one of the questions is “Are we breeding horses more prone to breakdown with injuries”? It seems that we hear more often now that there are more leg and foot problems than ever before. Is it that we are more aware of conformational deficits and limb deviations, or are there some underlying factors that make our horses prone to injury? To improve, or even just maintain the breed, racing should prove soundness as well as speed and stamina. 1 The male side is usually removed from the bloodline if unable to produce good results at the racetrack. However, the female may have such poor conformation that she never even gets into training, but yet she enters the broodmare band. The generational effect of this must surely lead to an increase in the number of conformational deficits in our foals and yearlings.1 Something that we hear quite often is “Whoever saw the perfect horse”? and “There are plenty of horses with poor conformation that win races”. That doesn’t mean we should not continue to attempt to produce horses with good conformation. There is an acceptable range of deviation from the ideal, and therefore these deformities have to be accepted if it does not jeopardize the overall athletic soundness of the horse. Although mild conformational deficits may not significantly impact soundness, more significant limb deformities cause abnormal limb loading, lameness, gait abnormalities, and interference issues. 2 Developmental deformities of the limb include angular, flexural, and rotational limb deformities. -
Peds Ortho: What Is Normal, What Is Not, and When to Refer
Peds Ortho: What is normal, what is not, and when to refer Future of Pedatrics June 10, 2015 Matthew E. Oetgen Benjamin D. Martin Division of Orthopaedic Surgery AGENDA • Definitions • Lower Extremity Deformity • Spinal Alignment • Back Pain LOWER EXTREMITY ALIGNMENT DEFINITIONS coxa = hip genu = knee cubitus = elbow pes = foot varus valgus “bow-legged” “knock-knee” apex away from midline apex toward midline normal varus hip (coxa vara) varus humerus valgus ankle valgus hip (coxa valga) Genu varum (bow-legged) Genu valgum (knock knee) bow legs and in toeing often together Normal Limb alignment NORMAL < 2 yo physiologic = reassurance, reevaluate @ 2 yo Bow legged 7° knock knee normal Knock knee physiologic = reassurance, reevaluate in future 4 yo abnormal 10 13 yo abnormal + pain 11 Follow-up is essential! 12 Intoeing 1. Femoral anteversion 2. Tibial torsion 3. Metatarsus adductus MOST LIKELY PHYSIOLOGIC AND WILL RESOLVE! BRACES ARE HISTORY! Femoral Anteversion “W” sitters Internal rotation >> External rotation knee caps point in MOST LIKELY PHYSIOLOGIC AND MAY RESOLVE! Internal Tibial Torsion Thigh foot angle MOST LIKELY PHYSIOLOGIC AND WILL RESOLVE BY SCHOOL AGE Foot is rotated inward Internal Tibial Torsion (Fuchs 1996) Metatarsus Adductus • Flexible = correctible • Observe vs. casting CURVED LATERAL BORDER toes point in NOT TO BE CONFUSED WITH… Clubfoot talipes equinovarus adductus internal varus rotation equinus CAN’T DORSIFLEX cavus Clubfoot START19 CASTING JUST AFTER BIRTH Calcaneovalgus Foot • Intrauterine positioning • Resolve -
Genetic, Cytogenetic and Physical Refinement of the Autosomal Recessive CMT Linked to 5Q31ð Q33: Exclusion of Candidate Genes I
European Journal of Human Genetics (1999) 7, 849–859 © 1999 Stockton Press All rights reserved 1018–4813/99 $15.00 t http://www.stockton-press.co.uk/ejhg ARTICLE Genetic, cytogenetic and physical refinement of the autosomal recessive CMT linked to 5q31–q33: exclusion of candidate genes including EGR1 Ang`ele Guilbot1, Nicole Ravis´e1, Ahmed Bouhouche6, Philippe Coullin4, Nazha Birouk6, Thierry Maisonobe3, Thierry Kuntzer7, Christophe Vial8, Djamel Grid5, Alexis Brice1,2 and Eric LeGuern1,2 1INSERM U289, 2F´ed´eration de Neurologie and 3Laboratoire de Neuropathologie R Escourolle, Hˆopital de la Salpˆetri`ere, Paris 4Laboratoire de cytog´en´etique, Villejuif 5G´en´ethon, Evry, France 6Service de Neurologie, Hˆopital des Sp´ecialit´es, Rabat, Morocco 7Service de Neurologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland 8Service D’EMG et de pathologie neuromusculaire, Hˆopital neurologique Pierre Wertheimer, Lyon, France Charcot-Marie-Tooth disease is an heterogeneous group of inherited peripheral motor and sensory neuropathies with several modes of inheritance: autosomal dominant, X-linked and autosomal recessive. By homozygosity mapping, we have identified, in the 5q23–q33 region, a third locus responsible for an autosomal recessive form of demyelinating CMT. Haplotype reconstruction and determination of the minimal region of homozygosity restricted the candidate region to a 4 cM interval. A physical map of the candidate region was established by screening YACs for microsatellites used for genetic analysis. Combined genetic, cytogenetic and physical mapping restricted the locus to a less than 2 Mb interval on chromosome 5q32. Seventeen consanguineous families with demyelinating ARCMT of various origins were screened for linkage to 5q31–q33. -
Realignment Surgery As Alternative Treatment of Varus and Valgus Ankle Osteoarthritis
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH Number 462, pp. 156–168 © 2007 Lippincott Williams & Wilkins Realignment Surgery as Alternative Treatment of Varus and Valgus Ankle Osteoarthritis Geert I. Pagenstert, MD*; Beat Hintermann, MD*; Alexej Barg, MD*; André Leumann, MD†; and Victor Valderrabano, MD, PhD† In patients with asymmetric (varus or valgus) ankle osteo- Level of Evidence: Level IV, therapeutic study. See the arthritis, realignment surgery is an alternative treatment to Guidelines for Authors for a complete description of levels of fusion or total ankle replacement in selected cases. To deter- evidence. mine whether realignment surgery in asymmetric ankle os- teoarthritis relieved pain and improved function, we clini- cally and radiographically followed 35 consecutive patients Surgical treatment for patients with symptomatic ankle with posttraumatic ankle osteoarthritis treated with lower osteoarthritis (OA) is controversial, particularly in me- leg and hindfoot realignment surgery. We further questioned if outcome correlated with achieved alignment. The average chanically induced, malaligned ankle OA in which joint patient age was 43 years (range, 26–68 years). We used a cartilage is partially preserved. These patients typically are standardized clinical and radiographic protocol. Besides dis- in their economically important, active middle ages be- tal tibial osteotomies, additional bony and soft tissue proce- cause early trauma is the predominant (70–80%) etiology dures were performed in 32 patients (91%). At mean fol- of their ankle OA.49,58 Currently, treatment recommenda- lowup of 5 years (range, 3–10.5 years), pain decreased by an tions after failed nonoperative therapy are polarized be- average of 4 points on a visual analog scale; range of ankle tween fusion2,11,33 and total ankle replacement motion increased by an average of 5°. -
Osteotomy Around the Knee: Evolution, Principles and Results
Knee Surg Sports Traumatol Arthrosc DOI 10.1007/s00167-012-2206-0 KNEE Osteotomy around the knee: evolution, principles and results J. O. Smith • A. J. Wilson • N. P. Thomas Received: 8 June 2012 / Accepted: 3 September 2012 Ó Springer-Verlag 2012 Abstract to other complex joint surface and meniscal cartilage Purpose This article summarises the history and evolu- surgery. tion of osteotomy around the knee, examining the changes Level of evidence V. in principles, operative technique and results over three distinct periods: Historical (pre 1940), Modern Early Years Keywords Tibia Osteotomy Knee Evolution Á Á Á Á (1940–2000) and Modern Later Years (2000–Present). We History Results Principles Á Á aim to place the technique in historical context and to demonstrate its evolution into a validated procedure with beneficial outcomes whose use can be justified for specific Introduction indications. Materials and methods A thorough literature review was The concept of osteotomy for the treatment of limb defor- performed to identify the important steps in the develop- mity has been in existence for more than 2,000 years, and ment of osteotomy around the knee. more recently pain has become an additional indication. Results The indications and surgical technique for knee The basic principle of osteotomy (osteo = bone, tomy = osteotomy have never been standardised, and historically, cut) is to induce a surgical transection of a bone to allow the results were unpredictable and at times poor. These realignment and a consequent transfer of weight bearing factors, combined with the success of knee arthroplasty from a damaged area to an undamaged area of joint surface. -
Flexible Flatfoot
REVIEW ORTHOPEDICS & TRAUMATOLOGY North Clin Istanbul 2014;1(1):57-64 doi: 10.14744/nci.2014.29292 Flexible flatfoot Aziz Atik1, Selahattin Ozyurek2 1Department of Orthopedics and Tarumatology, Balikesir University Faculty of Medicine, Balikesir, Turkey; 2Department of Orthopedics and Traumatology, Aksaz Military Hospital, Marmaris, Mugla, Turkey ABSTRACT While being one of the most frequent parental complained deformities, flatfoot does not have a universally ac- cepted description. The reasons of flexible flatfoot are still on debate, but they must be differentiated from rigid flatfoot which occurs secondary to other pathologies. These children are commonly brought up to a physician without any complaint. It should be kept in mind that the etiology may vary from general soft tissue laxities to intrinsic foot pathologies. Every flexible flatfoot does not require radiological examination or treatment if there is no complaint. Otherwise further investigation and conservative or surgical treatment may necessitate. Key words: Children; flatfoot; flexible; foot problem; pes planus. hough the term flatfoot (pes planus) is gener- forms again (Figure 2). When weight-bearing forces Tally defined as a condition which the longitu- on feet are relieved this arch can be observed. If the dinal arch of the foot collapses, it has not a clinically foot is not bearing any weight, still medial longitu- or radiologically accepted universal definition. Flat- dinal arch is not seen, then it is called rigid (fixed) foot which we frequently encounter in routine out- flatfoot. To differentiate between these two condi- patient practice will be more accurately seen as a re- tions easily, Jack’s test (great toe is dorisflexed as the sult of laxity of ligaments of the foot.