<<

Electronic Instrumentation ENGR-4300 Experiment 2

Experiment 2 Complex Impedance, Steady State Analysis, and Filters

Purpose: Theobjectiveofthisexerciseistolearnaboutsteadystateanalysis.Youwillalsobeintroducedtofilters. EquipmentRequired • DMM (Digit) • Rensselaer IOBoard Rev D (withMobileStudioDesktop) • (RensselaerIOBoard) • Function Generator (RensselaerIOBoard) • DC (RensselaerIOBoard) • Impedance Bridge (locatedoncentertable) • Components: 1k,1 F,100mH,0.068 F(683)capacitor • Protoboard Helpfullinksforthisexperimentcanbefoundonthelinkspageforthiscourse: http://hibp.ecse.rpi.edu/~connor/education/EILinks.html#Exp2 Part A – RC circuits, RL circuits, and AC Sweeps

Background

Complex polar coordinates: Complexnumbersallowyoutoexpressasinglenumberintermsofitsrealand imaginaryparts:z=x+jy.j(iinmathematics)isusedtorepresentthesquarerootof1.Youcanalsorepresenta numberinthecomplexplaneintermsofpolarquantities,asshowninFigureA1.Thelengthofthelinesegment betweenapointandtheoriginandtheanglebetweenthissegmentandthepositivexaxisformanewcomplex 2 2 −1 y number:z=Acos θ+jAsin θwhere A = x + y and θ = tan (x ).

Figure A-1. Impedance and basic circuit components: Eachbasiccircuitcomponenthasaneffectonacircuit.Wecallthis effectimpedance.Youshouldrememberthatimpedancecausesacircuittochangeintwoways.Itchangesthe magnitude(amplitude)andthephase(startingpositionalongthetimeaxis).Whenaresistorisplacedinacircuit,it affectsonlytheamplitudeofthe.Whenandareplacedinacircuit,theyinfluence

K.A. Connor, S. Bonner, P. Schoch 1 Revised: 1/31/2008 Rensselaer Polytechnic Institute Troy, New York, USA Electronic Instrumentation ENGR-4300 Experiment 2 both.Wecanusecomplexpolarcoordinatestorepresentthisinfluence.Acapacitorwillchangetheamplitudeby 1/ ωCandshiftthephaseby90 °.Aninductorwillchangetheamplitudeby ωLandshiftthephaseby+90 °. (Recallthat ωiscalledangularfrequencyandisequalto2 πf.)Wecanrepresentthesechangeseasilyinthe complexpolarplane.WerepresentimpedancebytheletterZ.Therefore, j 1 Z = R Z = − = Z = jωL R C ωC jωC L

Experiment The Influence of a Capacitor Inthissection,wewillexaminehowacapacitorinfluencesacircuitusing Capture/PSpice . • CreatethesimpleRCcircuitshowninFigureA2in Capture o LocatetheVSINsourceintheSOURCElibrary.Settheamplitudeto200mV,frequencyto1kHzand offsetto0V. o Locatetheresistor(R)andcapacitor(C)intheANALOGlibrary.Leavetheresistorat1k,butchangethe valueofthecapacitorto1uF.[In PSpice ,urepresentsmicro, (10 6). o Choosethe0groundfromthegroundSOURCElibraryandputthewiresintothecircuit. V V R1

1k V1 VOFF = 0 C1 VAMPL = 100mV200mV FREQ = 1K 1u

0 Figure A-2. • Setupasimulationforthiscircuit.ChooseaTransientAnalysis.Runtotime4ms.Chooseastepsizeof4us. • Placetwomarkersonthecircuit:oneattheinputandoneatthecorner.Theleftmostmarkerinthe circuitshowsyoutheinputtothecircuit.Therightmostmarkershowsyouhowthecircuitisinfluencingthis input. • Runthesimulation.Youshouldgetanoutputwithtwosinusoidsonit.Youshouldseethatthecircuithas influencedboththeamplitudeandthephaseoftheinput.Howcloseisthephaseshiftto90 °?Note:Useone ofthelatercyclestodeterminethis.Printthisplotandincludeitinyourreport. • PSpice hasanothertypeofanalysisthatletsyoulookatthebehaviorofacircuitoverawholerangeof frequencies.ItiscalledanACsweep.Weknowthattheinfluenceofthecapacitordependson ωandthisis relatedtothefrequencyoftheinputsignal.Shouldthebehaviorofthecircuitchangeatdifferentfrequencies? Let’ssetupanACsweepandfindout. o Edityoursimulationbypressingontheeditsimulationbutton. o ChooseACSweep/Noisefromthedropdownlistbox. o Choosealogarithmicsweeptypewithastartfrequencyof1andanendfrequencyof1Meg.Setthepoints perdecadeto100.(Thiswillgiveyouplentyofpoints.) o Youneedtodoonemore important thingbeforeyourunthesimulation.Forsomereasonknownonlyto PSpice ,youcannotdoanACsweepwithoutsettingaparameterfortheVSINsourcecalledAC.Each

K.A. Connor, S. Bonner, P. Schoch 2 Revised: 1/31/2008 Rensselaer Polytechnic Institute Troy, New York, USA Electronic Instrumentation ENGR-4300 Experiment 2

componentin PSpice hasmanymoreparametersthanthosethatappearonthescreen.Ifyoudoubleclick onyoursource,youwillopenthespreadsheetfortheVSINsource.SettheACparametertoyour amplitude,200mV,(400mVpp.) o Runthesimulation. • Youshouldseetwotraces.Thesetracesareshowingyoutheamplitudeofyouroutputatallfrequencies between1and1MegHz.Notethatthehorizontalscaleoftheplotisnowinhertz.Theinputtraceisastraight lineat200mV.Thismakessensebecausetheamplitudeoftheinputis200mVatallfrequencies.The amplitudeoftheoutput,however,changeswithfrequency.Atwhatfrequenciesistheamplitudeoftheoutput equaltotheamplitudeoftheinput?Atwhatfrequenciesisitnearzero?Whatistheamplitudeat1kHz?Does thismatchtheamplitudeofthetransientyouplottedat1kHz?PrinttheACsweepplotofyourRCcircuitand includeitinyourreport. • Wenowknowthatacapacitorwillinfluencetheamplitudeofacircuitandthisamplitudeinfluencechangesat differentfrequencies.Whataboutthephase? Capture /PSpice providesspecialmarkersforlookingatthe phase.First,removebothvoltagemarkersfromyourcircuit.Fromthe Capture mainmenuchoose PSpice Markers Advanced PhaseofVoltage.Placetwophasemarkers(markedwithVP)onyourcircuit inthesamelocationsasthevoltagemarkerswerebefore.ReruntheACsweepsimulation. • Nowyoushouldbelookingattwotracesthatrepresentthephaseoftheinputandtheoutputofthecircuitatall frequenciesbetween1and1MegHz.Notethattheyaxisisnowindegrees.Theinputphasedoesnotchange. Itisalwayszerobecausethesinewavein PSpice isdrawnstartingatzerobydefault.However,thephasefor theoutputoverthecapacitordoeschangewithfrequency.Atwhatfrequenciesisthephaseoftheoutputthe sameasthephaseoftheinput?Atwhatfrequenciesisthephaseshift90 °?Whatisthephaseshiftat1kHz? Doesthiscorrespondwiththephaseshiftofthelatercyclesthatyougotinyourtransientat1kHz?Printthe ACsweepplotofthephaseofyourRCcircuitandincludeitinyourreport. The Influence of an Inductor Inthissection,wewillrepeattheprocedureaboveforthesimplecircuitwithaninductorshowninFigureA3 below. R1

1k V V V1 VOFF = 0 L1 VAMPL = 100mV200mV FREQ = 1K 100mH

0 Figure A-3. • CreatetheRLcircuitin Capture o Deletethecapacitorinyourcircuit. o Locatetheinductor(L)intheANALOGlibrary.Changethevalueoftheinductorto100mH. • ReturntoyourtransientanalysisbychoosingTransientinthedropdownbox.Yoursimulationvalues(runto 4msandstepsize4us)shouldstillbethere. • Removethephasemarkersandreplacethevoltagemarkersonthecircuit

K.A. Connor, S. Bonner, P. Schoch 3 Revised: 1/31/2008 Rensselaer Polytechnic Institute Troy, New York, USA Electronic Instrumentation ENGR-4300 Experiment 2

• Runthetransientsimulation.Again,thecircuithasinfluencedboththeamplitudeandthephaseoftheinput. Howcloseisthephaseshiftto+90 °?Note:Useoneofthelatercyclestodeterminethis.Printthisplotand includeitinyourreport. • NowreturntoyourACsweepanalysisbychangingthevalueinthedropdownlistbox.Againtheparameters yousetbefore(from1to1Megwith100pointsperdecade)shouldnothavechanged.Runthesimulation. • Youshouldseetwotraces.Atwhatfrequenciesistheamplitudeoftheoutputequaltotheamplitudeofthe input?Atwhatfrequenciesisitnearzero?Whatistheamplitudeat1kHz?Doesthismatchtheamplitudeof thetransientyouplottedat1kHz?Howisthissweepdifferentthanthesweepyoucreatedusingthecircuitwith thecapacitor?PrinttheACsweepplotoftheRLcircuitandincludeitinyourreport. • Thefinalthingweneedtodoisplotthephase.Removebothvoltagemarkersfromyourcircuit.Fromthe Capture mainmenuchoosePSpice Markers Advanced PhaseofVoltage.Placetwophasemarkers (markedwithVP)onyourcircuitinthesamelocationsasthevoltagemarkerswerebefore.ReruntheAC sweepsimulation. • Again,youwillseetwotraces.Atwhatfrequenciesisthephaseoftheoutputthesameasthephaseofthe input?Atwhatfrequenciesisthephaseshift+90 °?Whatisthephaseshiftat1kHz?Doesthiscorrespond withthephaseshiftyougotinyourtransientat1kHz?PrinttheACsweepplotofthephaseofyourRLcircuit andincludeitinyourreport. Summary

Inthispartoftheexperiment,youhavelearnedthatcapacitorsandinductorsinfluencethebehaviorofacircuit. Theychangeboththephaseandtheamplitude.Thedegreeofinfluencedependsonthefrequencyoftheinput source.YoualsolearnedhowtoexaminethebehaviorofacircuitoverarangeoffrequenciesusingtheACsweep featurein PSpice . Part B – Transfer Functions and Filters Inthissection,wewillcontinueouranalysisofthetwosimplecircuitswecreatedinpartAandintroducethe conceptsoftransferfunctionsandfilters. Background Transfer functions :Weknowthatacircuitwithonlywillbehavethesameatanyfrequency.Avoltage dividerwithtwo1kresistorsdividesavoltageinhalfat10Hzaswellasitdoesat100kHz.Wealsoknowthat circuitscontainingcapacitorsand/orinductorsbehaveverydifferentlyatdifferentfrequencies.Whatifwecould findafunctionthat,whenappliedtoanyinputsignal,itwouldgiveyoutheoutputsignal?Thiscannotbedone easilyinthetimedomain,however,itisquitesimpleinthecomplexpolardomainweintroducedinpartA.Wecan defineafunctionH(j ω)foranycircuitsuchthat

Vout = H ( jω *) Vin Finding transfer functions: Forasimpleseriescircuit,wecanfindthetransferfunctionusingaconceptsimilarto thevoltagedividerrule.Wesimplyneedtoexpandtheideaofresistancetoincludecompleximpedance.Howand whywecandothatisdiscussedindetailinthecoursenotes.Now,wecancombineimpedancesinthecomplex polardomaininjustthesamewaythatwecombineresistancesinthetimedomain.Nowwecanalsoeasilydefine ourtransferfunctionusingthevoltagedividerrule,asillustratedinFigureB1.

K.A. Connor, S. Bonner, P. Schoch 4 Revised: 1/31/2008 Rensselaer Polytechnic Institute Troy, New York, USA Electronic Instrumentation ENGR-4300 Experiment 2

Z2 Z2 Vout = Vin H = Z1+ Z 2 Z1+ Z 2 Figure B-1. Filters :Mostelectricalsignalsaremadeupofmanyfrequencies.Inthefirstexperiment,youlearnedthatsound waveswithinhumanhearingrangecoverarangeoffrequenciesfromverylowtoveryhigh.Sometimeswemaynot wanttoincludeallthesefrequenciesinoursignal.Wemaywanttofilterouttheveryhighfrequenciesthatsound likenoise,forinstance,sothatweonlyhearthepartofthesoundthatwewantto.Inacircuitthatfilters outcertainfrequencieswhileallowingotherstoremainunchangediscalledafilter.

Figure B-2. Thetwobasictypesoffilterswewillconsiderinthispartarelowpassfilters(LPF)andhighpassfilters(HPF).An idealizedrepresentationofthesetwotypesoffiltersisshowninFigureB2.Lowpassfiltersfilterouthigh frequencieswhileallowinglowfrequenciestopassthroughunchanged.Highpassfiltersblockoutlowfrequencies whileallowinghighfrequenciestopassthroughunchanged.Inanidealworld,thetransferfunctionwouldbe1for thefrequenciesthatyouwanttoremainunchanged(asignalmultipliedby1isthesame)and0forthefrequencies youwanttofilterout(asignalmultipliedby0is0).Inanidealfilter,thetransitionbetween1and0is instantaneous.Inarealfilter,thistransitionislessexact. Using transfer functions to determine filter behavior: WecandeterminewhatkindoffilterthesimpleRCcircuit picturedinFigureB3is,byfindingthetransferfunctionandexaminingitsbehavioratlowandhighfrequencies. Firstdothecomplexalgebratodeterminethecapacitorvoltage.Youwillnoticethatonceagainwehaveavoltage dividercircuit,exceptthatoneoftheimpedancesisimaginaryandoneisreal.Foranoperatingfrequency 1 ω = 2πf ,theimpedanceofthecapacitorC1isequalto Z = ,whiletheimpedanceoftheresistorR1is C1 jω C1

ZRR1 = 1.

K.A. Connor, S. Bonner, P. Schoch 5 Revised: 1/31/2008 Rensselaer Polytechnic Institute Troy, New York, USA Electronic Instrumentation ENGR-4300 Experiment 2

Figure B-3. Applyingtheusualvoltagedividerrelationforthisseriescombinationoftwoimpedancesgivesus 1 Z jω C1 V = C1 V = V B ZZ+ AA1 CR1 1 jω C1 + R1 NotethattherelationshipbetweentheinputvoltageV AandtheoutputvoltageV Bisnowcomplex. Itisusefultobeabletosetuptheseexpressionsandthensimplifythemforverylowandveryhighfrequencies.We willbeabletousetheresultingexpressionstoseeifour PSpice plotsmakeanysense.Wewillfirstlookatverylow frequencies.Wecannotsetfrequencyequaltozero,sincepartsofourformulawillblowup.Rather,wewill assumethatthefrequencyisverysmall,butnotzero.ThenthecapacitiveimpedanceZ C1 willbeverymuchlarger thantheresistiveimpedanceZ R1 andwecanneglectthelatterterm.Wehavethen,atlowfrequencies,that

ZC1 Vout VVout= B ≈VVVA = A = in or,moresimply,that = 1.Notethattheinputandoutputvoltagesare ZC1 Vin essentiallyidentical.Athighfrequencies,thecapacitiveimpedancewillbethesmallterm,sowecanneglectitin thedenominator.Wecannotneglectitinthenumerator,sinceitistheonlytermthere.Thus,athighfrequencies,

1 1 Vout 1 VVout= B ≈V A = V in orthat = .Thisratioclearlygoestozeroasthe jω R1 C 1 j ω R1 C 1 Vin jω R1 C 1 frequencygoestoinfinity.Itisalsonegativeimaginaryand,thus,hasaphaseof–90 o. Note about “Low” and “High”: Whileitmayseemthattermslikelow andhigh ,whenappliedtosomethinglike frequency,arefuzzy,illdefinedterms,thatisdefinitelynotthecase.Here,wemeansomethingquitespecificby theexpressionlowfrequency .Afrequencyisonlylowwhenthecapacitiveimpedanceissomuchlargerthanthe resistiveimpedancethatwecanneglecttheresistiveterm.Weusuallyneedtodefinetherequiredaccuracytomake astatementlikethis.Forexample,wecansaythatafrequencyislowaslongastheapproximaterelationshipwe foundbetweentheinputandoutputvoltagesiswithin5%ofthefullexpression.Mostofthepartsweuseincircuits arenomoreaccuratethanthis,sothereisnoparticularneedtodoourcalculationswithbetteraccuracy.Inother applicationswemightneedbetteraccuracy. Corner frequency :Whenwedesignahighorlowpassfilter,weonlyneedtoknowthreethings:howitbehavesat lowfrequencies(0or1),howitbehavesathighfrequencies(0or1),andatwhatfrequencyitswitches(0to1or1to 0).ForasimpleRCorRLfilter,thefrequencyatwhichitswitchesiscalledthecornerfrequency.Itisdefinedas thepointatwhichthemagnitudeofthetransferfunctionisequalto1/ √2. Experiment

The Equation Inthissectionwewillexploretheimpedanceofthecapacitorcircuit.Ifwewanttoapplythevoltagedivider equationtoformthetransferfunction,thenthevoltagedropoverthetwocomponentsmustadduptotheinput voltageatallfrequencies.

K.A. Connor, S. Bonner, P. Schoch 6 Revised: 1/31/2008 Rensselaer Polytechnic Institute Troy, New York, USA Electronic Instrumentation ENGR-4300 Experiment 2

• In Capture /PSpice ,loadthecapacitorcircuit(FigureA2)orrecreateitbyreplacingtheinductor(FigureA3) witha1uFcapacitor.Removethemarkersfromthecircuit.Totestthevalidityofapplyingavoltagedividerto compleximpedances,wewanttoshowthat,justlikewiththevoltagedividermadewithresistors,thesource voltage(V1)isequaltothesumofthevoltagesacrosstheresistorandthecapacitor(V R+V C).Todetermine VRandV C,usewewillusevoltagedifferentialmarkers. o Choseadifferentialmarker.Placethepositivevoltagemarker(markedwithaplus)attheendofthe capacitorclosesttothesource.Thisfollowstheconventionthatvoltageispositiveattheendwherethe currententers.Placethenegativemarkerontheendofthecapacitorclosesttoground. o Placeaseconddifferentialmarkeroneithersideoftheresistor. o Placearegularvoltagemarkerattheinput(nexttothesource). • RerunthetransientanalysisfrompartA(4mswithastepsizeof4us).

• Whenyourunyoursimulation,youwillobtainthreevoltagestraces.ToseethesumofV RandV C, wemustadd atracein PSpice . o FindthesymbolicnamefortheV Rtracebylookingatthebottomofyourplot.Eachtraceontheplothasa namethatcorrespondstoitscolor.ItshouldlooksomethinglikeV(R1:1,R1:2).Ifyourresistorhasa differentnameoradifferentpolarityrelativetoground,theexpressionwillnotbeexactlythesame. o GototheTracemenuinthe PSpice programandchooseAddTrace. o TypeinthenameoftheV Rtracefromthebottomoftheplot. o Typein+(plus)orclickonthe+symbolinthefunctionsmenu. o FindthesignalcorrespondingtoV Contheplot.TypeinthenameoftheV Ctrace. o Theexpressioninthebottomboxshouldlooksomethinglike:V(R1:1,R1:2)+V(C1:2,0).(Sincethenames andpolaritiesofyourcomponentsmayvary,yourexpressionmaynotbeidentical.) o ClickonOK. • Whenhaveaddedthetracecorrectly,youshouldseethatthesumwillequalthesourcevoltage.Printoutaplot ofyourresults,andincludeitinyourreport.

• Runatransientsimulationforfrequenciesof10Hz(runtime=400msandstepsize=400us)and10kHz(runtime= 0.4msandstepsize=0.4us).PlacethetraceofV RandV Coneachplot.Verifythatthevoltagesaddasexpected.Print theseplotsandincludetheminyourreport. • Sincewehaveaseriescircuit,weknowthatthecurrent,I,isthesamethroughallthecomponents.Therefore,V=IZfor eachcomponentandfortheentirecircuit.Thismeansthatthetransferfunction,H=Vout/Vin,becomesindependentof current,andsimplifiestoanexpressionintermsofthecomponentvaluesonly. Vout IZ Z H = = C = C Vin IZ R + IZ C Z R + ZC Transfer Function of the Capacitor Circuit Inthispart,wewillfindthetransferfunctionofourcapacitorcircuitfrompartAanddeterminewhattypeoffilterit is. • Removethedifferentialmarkersfromthecapacitorcircuit(FigureA2)andreplacethetwooriginalvoltage markers.RuntheACsweep(from1to1MegHzat100pointsperdecade). • WeknowthatHistheratiooftheoutputvoltagetotheinputvoltage.Wecanobservethisdirectlybyaddinga tracetotaketheratiobetweenthetwotraceswehaveonourplot. o GototheTracemenuinthe PSpice programandchooseAddTrace. o Findthesignalcorrespondingtoyouroutputinthelistonthelefthandside.Thenameofthissignalis writtenatthebottomofyourplotnexttoasymbolindicatingthecolorofthetrace.Thetrace correspondingtotheoutputistheonethatisnotconstant.Clickonthenameoftheoutputtrace. o Typein/(dividedby)orclickonthe/symbolinthefunctionsmenu. o Findthesignalcorrespondingtoyourinputandclickonit.

K.A. Connor, S. Bonner, P. Schoch 7 Revised: 1/31/2008 Rensselaer Polytechnic Institute Troy, New York, USA Electronic Instrumentation ENGR-4300 Experiment 2

o Theexpressioninthebottomboxshouldlooksomethinglike:V(R1:2)/V(V1:+) o ClickonOK. • Anothertraceshouldappearonyourplot.Thistraceisthetransferfunctionofthecircuit.Isthetransfer function0or1atlowfrequencies?Isit0or1athighfrequencies?Whatkindoffilteristhis? • Thecornerfrequencyofthecircuitisthefrequencyatwhichthetransferfunctionis0.707.Usethecursorsto markthislocationonyourplot.

o Clickonthecursorbuttononthe PSpice toolbar. o Clickonthecoloredsymbolforthetraceyouadded(H)atthebottomofyourplot.Thisplacesthecursor onthistrace. o Dragthecursoralongthetraceuntiltheycoordinateisascloseaspossibleto0.707

o Markthispointwiththebuttononthetoolbar. o Whatisthecornerfrequency?Printthisplotandincludeitinyourreport .

• InclassyouweregivenanexpressionforthecornerfrequencyofanRCcircuit: ωC=1/RC.Calculatethe cornerfrequencyusingtheequationyouderived.Don’tforgetthatf(inhertz)is ω/2 π.Howdoesthiscompare tothefrequencyyoufoundwith PSpice ? Z 2 • Theequationforthetransferfunctionofaseriescircuitis H = .Usethisexpressiontofindthe Z1 + Z 2 transferfunctionofthecapacitorcircuit.Takethelimitofthisfunctionathighandlowfrequencies.Doesthe plotyoumadewith PSpice behavethesameatlowandhighfrequencies? Transfer Function of the Inductor Circuit Inthispart,wewillfindthetransferfunctionofourinductorcircuitfrompartAanddeterminewhattypeoffilterit is. • In Capture /PSpice ,recreatetheinductorcircuit(FigureA3)byreplacingthecapacitorwitha100mHinductor. RuntheACsweep. • Createthetransferfunctionbyaddingatracethatdividestheoutputvoltagebytheinputvoltage. • Isthetransferfunction0or1atlowfrequencies?Isit0or1athighfrequencies?Whatkindoffilteristhis? • Usethecursorstomarkthelocationofthecornerfrequencyonyourplot.Whatisthecornerfrequency?Print thisplotandincludeitinyourreport. • Canyouderivetheequationforthecornerfrequencyofthiscircuit?Calculatethecornerfrequencyusingthe equationyouderived.Don’tforgetthatf(inhertz)is ω/2 π.Howdoesthiscomparetothefrequencyyoufound with PSpice ? • FindthetransferfunctionoftheinductorcircuitusingtheequationforH.Takethelimitofthisfunctionathigh andlowfrequencies.Doestheplotyoumadewith PSpice behavethesameatlowandhighfrequencies? Build the circuit Nowyoucanbuildoneofthesecircuitsonyourprotoboard,hookittothefunctiongeneratorandcompareits behaviortothesimulation. • Buildthecapacitorfiltercircuit(FigureA2)onyourprotoboardusinga1uFcapacitoranda1kresistor. • Setthefunctiongeneratortoa1kHzsignalwithanamplitudeof200mV,(400mVpp).

K.A. Connor, S. Bonner, P. Schoch 8 Revised: 1/31/2008 Rensselaer Polytechnic Institute Troy, New York, USA Electronic Instrumentation ENGR-4300 Experiment 2

• Displaytheinputsignalonchannel1andtheoutputsignalonchannel2.Takeapictureofthissignalwiththe camerafunctioninthesoftwareandincludeitinyourreport. Howdoestheoutputofthiscircuitcompare (amplitudeandphase)withthetransientanalysisyoumadeofthiscircuitatthisfrequency? • Youshouldnoticethattheamplitudeandphaseofthiscircuitchangesasyouchangethefrequency.Atwhat frequenciesdoestheoutputlookroughlythesameastheinput?Atwhatfrequenciesdoestheoutputessentially disappear? • Atthecornerfrequency,thetransferfunctionisequalto0.707.ThetransferfunctionisdefinedasVout/Vin.If Vinis200mV,whatshouldtheamplitudeoftheoutputbeatthecornerfrequency?Adjustthe frequency ofthe inputsignaluntiltheoutputamplitudeis70.7%oftheinputamplitude.Recordthisfrequencyandtakea pictureofthesignalwiththecamerafunctioninthesoftwareandincludeitinyourreport.

• ThecornerfrequencyforanRCcircuitisgivenbyf C=1/(2πRC).Howcloseisthecornerfrequencyofthe circuityoubuilttothecalculatedone? Summary

Transferfunctionsrelatetheoutputvoltagetotheinputvoltageforallfrequenciesofacircuit.Youcanusetransfer functionstodeterminethetypeoffilteracircuitrepresents.Youcanderivethetransferfunctionforaseriescircuit byusingcircuitanalysisrulestocombinethecompleximpedancesintoaratioH=Zout/Zin. Part C – Transfer Functions, Filters and RLC Circuits

Background : Circuits,likemostengineeringsystems,canbedividedupintobasicbuildingblocks,eachwithitsown function.Ifweassumethatthefunctionofsuchabuildingblockistochangeavoltageinsomeway(i.e.filterit, amplifyit,etc.),thenwelabeltheinputvoltageasV in andtheoutputvoltageasV out .Sinceitiseasiesttoreference thephaseoftheinputtozero,wecanwriteasinusoidalinputvoltageas

Vin =V ocos( ωt)andtheoutputvoltageasV out =V 1cos( ωt+ φo)where ω=2 πf. WhenworkingexclusivelywithACsteadystateconditions,itisgenerallyeasiertoanalyzecircuitsusingwhatis callednotation.Euler'sidentitytellsusthatexponentialswithimaginaryargumentscanberelatedtosines andcosinesbye j( ωt+ φ)=cos( ωt+ φ)+jsin( ωt+ φ)thatpermitsustowritetheoutputvoltage,forexample,inthe j( ωt+ φ) jωt jφ equivalentformV out =Re{V 1e }=Re{V out e }whereV out =V 1e isacomplexnumberandiscalledthe phasorformofV out .Muchofthetimewefinditconvenienttoconsidertherealandimaginarypartsofthiscomplex representationseparatelyV out =V Re +jV Im where VRe =V 1cos( φ)andV Im =V 1sin( φ) Thus,wewillalsobekeepingtrackoftherealandimaginarypartsofvoltagesandcurrents.Whenwerun PSpice simulations,wewillbeabletoaddvoltagemarkersthatwilldothisforus.Onecanaccessthesemarkersbystarting atthe PSpice menu,thengoingtothe Markers menuand,finally,the Advanced menu. Ifweapplythephasorformtotheequationsthatcharacterizevoltageandcurrentforcapacitorsandinductors,we jωt jωt jωt obtainthefollowingV L=Re{V oe }=LdI L/dt=L(d/dt)Re{I oe }=j ωLRe{I oe }=j ωLI Lormoresimply, VL=j ωLI Land,followingthesamekindofanalysis,IC=j ωCV C Thus,insteadofadifferentialequation,weobtainthesamekindofalgebraicrelationshipwehadforresistors,

Law,exceptthattheimpedances(ageneralizationofresistance)ofinductorsandcapacitorsaregivenbyZL=j ωL andZ C=1/(j ωC).Forresistors,Z R=R,whileingeneralZ=R+jX.

K.A. Connor, S. Bonner, P. Schoch 9 Revised: 1/31/2008 Rensselaer Polytechnic Institute Troy, New York, USA Electronic Instrumentation ENGR-4300 Experiment 2

RLC circuits :Circuitswithresistors,inductorsandcapacitorsarecalledresonantcircuits.Theyfindwide applicationinelectronicsbecausetherearemanycircumstancesinwhichwewishtoproduceorblockasingle frequency.Therearetwocommontypesofresonantcircuits,parallelandseriescombinationsofaresistor,an inductorandacapacitor.ThisfigureshowsseriesRLCcircuitswith4possibleinputoutputchoices.

Figure C-1.

Oscillatingsystemsusuallyhavesuchanaturalresonance.Thisfrequency,wheretheinductiveandcapacitive 1 impedancescancel,iscalledtheresonantfrequency.Theexpressionfortheresonantfrequencyis ω 0 = . LC More complex filters: SimpleRLCcircuitscanbeusedtocreatemoretypesoffiltersthansimpleRCorRLcircuits. YoucancreateanyofthefourcircuittypesshowninFigureC2.

Figure C-2. Eachoftheabovecircuitshasalowfrequencyandahighfrequencyapproximation,foundinthesamemanneraswe haveseenforRCandRLcircuits.Lookingatthelimitingcasesof H(j ω)forfrequenciesnearzeroandforvery largefrequencies,wecandeterminewhichtypeoffilterstheyare.Forexample,notethatatbothhighandlow frequencies,thetransferfunctionforcaseC1(d)isequaltoone,andthustheinputvoltageappearsunchangedatthe output.[Ifyouwanttoverifythis,redrawthecircuitatlowandhighfrequenciesreplacingthecapacitorandthe inductorbytheappropriateapproximation(shortoropen).Youshouldbeabletoseethatineachcase,theoutput point,C,isatthesamevoltageasthesource.Thismeansthattheinputsignalisappearingattheoutput.Thecircuit is“passing”verylowandveryhighfrequencies.]Also,sincetheimpedanceofacapacitorisnegativeimaginary andthatofaninductorispositiveimaginary,therewillbeafrequency ωowherethenetimpedanceacrosstheoutput terminalsCandDwillbezero.Nearthisfrequency,theoutputvoltagewillbezerooratleastverysmall.These frequenciesare“rejected”bythisfilter.Itmustbeabandrejectfilter. Modeling electrical components: Whenwebuildcircuits, weuseafunctiongeneratortoproducetheinputvoltage,a resistor,aninductorandacapacitor.However,wecannotusejustavoltagesourceandthreeothercomponents whenwemodelthemin PSpice ,sincerealdevicesusuallycannotbemodeledbyasingleparameter.Letusgo througheachofthefourcomponentsofcircuitsandseewhatisnecessaryforrealisticanalysisorsimulation.

K.A. Connor, S. Bonner, P. Schoch 10 Revised: 1/31/2008 Rensselaer Polytechnic Institute Troy, New York, USA Electronic Instrumentation ENGR-4300 Experiment 2

• Function Generator – Wehavealreadyseenseveraltimesthatmanyfunctiongeneratorshaveaninternal resistanceof50.Thus,inarealisticcircuit,wemustuseanidealsinusoidalvoltagesourceandaresistorto representthefunctiongenerator.InthecaseoftheFGontheIOBoardthisresistancecanbeneglected. • Resistor – Exceptatveryhighfrequencies,resistorsbehaveinanessentiallyidealmanner.Thusitisalmost alwayssufficienttorepresenttheresistorinacircuitasasingleresistor. • Inductor – Sinceinductorsaremadewithalongpieceofwire,theyusuallyhaveasignificantresistance,in additiontotheir.Thus,wemustincludeanadditionalresistortomodeltheresistanceofareal inductor. • Capacitor – Acapacitortypicallyconsistsoftwolargemetalplatesseparatedbyathininsulator.Ifthe insulatorisverygood,almostnocurrentwillflowbetweentheplates.Then,liketheresistor,thecapacitorwill behaveinanessentiallyidealmannerandwedon’tneedtoaddanyextracomponentsinacircuittorepresenta capacitor. Nocomponentswecanmakearereallyideal.Resistorsalsohaveinductanceand,sometimes,. Inductorshavecapacitance.Capacitorshaveresistanceandinductance.Fortunately,wehavefiguredouthowto makethesedevicessothattheybehaveinanearlyidealmannerforquiteabroadrangeoffrequencies.However, whenwepushthelimitsofacircuit,wehavetorememberthatitmaybehaveasifitconsistsofmorecomponents thatwecanseewhenwebuildit.WhentheRLCcircuitisbuilt,wewillonlyseethethreecomponentsR1,L1and C1. Experiment Simulation of an RLC Circuit Inthissection,wewilluse PSpice tosimulateanRLCcircuitandplotthemagnitudeandphaseofitstransfer function. • SetupthecircuitasshowninFigureC3below. V V L1 R1 Vin 1 2 1 2 Vout 100mH 90 1 Inductor L V1 C1 with intrinsic R 1uF 2

Figure C-3. AssumethattheamplitudeofV1is200mV,(400mVpp).Notethatthereisnothingtorepresentsthe impedanceofthefunctiongenerator(assumedzero)andR1representstheresistanceofthe100mH inductor. • AddavoltagemarkerattheinputofL1(topofV1).Thisistheinputvoltage.Addasecondmarkeratthe upperrighthandcornerbetweenR1andC1.Thisistheoutputvoltage.PerformanACsweepfrom10Hzto 100kHz.SincewehavenowdoneseveralACsweeps,canyouexplainwhywedo Decade sweepsratherthan Linear sweeps? • Createadoubleplotofthemagnitudeandphaseofthetransferfunction. o UsetheAddPlotWindowmenuunderthePlotmenuinProbe. o AddatraceoftheabsolutevalueoftheratioofVout toV in, tothetopplot.Youcanusetheabs()function forthispurpose.[Thetraceexpressionshouldlooksomethinglikeabs(V(C1:1)/V(R1:1)).Tofindthe actualnamesofyourinputandoutputvoltagetraces,lookatthebottomlefthandcornerofyourplot.]This isthemagnitudeofthetransferfunction. o OnthebottomplotdisplaythetraceofthephaseofthetransferfunctionVout/Vin.Addatraceofthe phaseoftheratioofVouttoVin.Youcanusethephasefunction(p)forthispurpose.[Thetrace expressionshouldlooksomethinglikep(V(C1:1)/V(R1:1)).Tofindtheactualnamesofyourinputand

K.A. Connor, S. Bonner, P. Schoch 11 Revised: 1/31/2008 Rensselaer Polytechnic Institute Troy, New York, USA Electronic Instrumentation ENGR-4300 Experiment 2

outputvoltagetraces,lookatthebottomlefthandcornerofyourplot.]Whatisthephaseshiftbetweenthe outputandinputatlowandhighfrequencies? o Printoutthisplot.Labeltheresonantfrequency(extremepoint)withthecursors. o Youshouldalsocalculatethevalueforthetheoreticalresonantfrequencyusingtheequationandmarkiton theplot. 1 f 0 = 2π LC o Youwillalsomarktheactualresonantfrequencyofthecircuityoubuildinthenextsectiononthisplot. o Notethatthecalculatedvalueiscloseto,butnotexactlyat,theresonantfrequency.Theequationgives youasimplemathematicalwaytogetclosetotheresonantfrequencyofacircuit.Sometimesthe expressionwillgivetheexactvalue,itdependsupontheconfigurationofthecircuit.Theexactvalueof theresonantfrequencycanbefoundbyexaminingwhendenominatorofthetransferfunctiongoestozero. Wedonotgointothesedetailsinthisclass.Forustheapproximationissufficient. • Whattypeoffilteristhis? Build the Circuit NowyoucanbuildthecircuitinFigureC3onyourprotoboard,hookittothefunctiongeneratorandcompareits behaviortothesimulation. • Beforeyoubuildthecircuit,youshouldmeasuretheexactvaluesofthecomponents. o MeasuretheDCresistanceoftheinductor’sresistorusingthe DMM .Theimpedancebridgemaynotwork aswellforthismeasurement. o Measuretheinductanceoftheinductorandthecapacitanceofthecapacitorusingtheimpedancebridgeon thecentertable. • Changeyour PSpice simulationtocorrespondtotheactualparametersofyourcircuit.RuntheACsweepagain toseewhatitlookslikenow.PrintouttheACsweepplotandincludeitinyourreport. Arethereany significantdifferencesbetweenthetwosimulations? Buildthecircuitonyourprotoboard.Rememberthatyouneedonlytwocomponents:the100mHinductor (withaninternalresistanceofabout90)andthe1 Fcapacitor.The1 Fcapacitorwillhave105written onitifitdoesn’thave1 Fwrittendirectly.RememberthatR1representstheresistanceofthe100mH inductor. DO NOT addaseparateresistortoyourcircuitforthis. • Findtheresonantfrequencyofthecircuit.Thisisthepointwherethevoltageoftheoutputisatamaximum.It willexceedtheinputvoltageatthispoint.Youshouldfinditisclosetotheresonantfrequencyyoufoundusing PSpiceandtheoneyoucalculatedusingthetheoreticalequation.Itwillnotfallinexactlythesameplace becauseoferrorsintroducedbythetolerancesofthecomponentsandtheinfluenceofotherpartsofthecircuit. MarktheactualresonantfrequencyontheACplotyougeneratedusingthetheoreticalcomponentvalues. Note thatdependinguponhowyoufoundtheresonance,thesamecircuitgaveyouthreesimilar,butnotexact, values. • Determine5representativefrequenciesthatcovertherangeofyoursimulation:alowfrequency,ahigh frequency,theresonantfrequency,somepointbetweentheresonantfrequencyandthehighfrequency,and somepointbetweentheresonantfrequencyandthelowfrequency.Donotchooseapointwheretheoutput disappearscompletely. • Ateachfrequency,determinetheratiooftheinputandoutputamplitudes(magnitudeofthetransferfunction) andthephaseshift.Thereisnomagicbuttonfordeterminingeitherthetransferfunctionorthephaseshift betweentwosignals.Youwillhavetodothisbydisplayingtheinputandoutputvoltagesonthescopeand manuallydeterminingtheratiooftheamplitudesandthephaseshift. • Putthevaluesthatyoumeasuredonthe PSpice ACsweepplotyoumadeusingtheactualcomponentvalues.

K.A. Connor, S. Bonner, P. Schoch 12 Revised: 1/31/2008 Rensselaer Polytechnic Institute Troy, New York, USA Electronic Instrumentation ENGR-4300 Experiment 2

Summary

Inthissection,youextendedyourknowledgeoftransferfunctionsandfilterstoincludecircuitswithallthree componenttypes:R,LandC.Thesecircuitsarecalledresonantcircuits.Forthesecircuitsthecenteroftheband forbandpassandbandrejectfiltersoccursattheresonantfrequency.Inhighandlowpassfilters,theresonant frequencycanbeusedtodeterminethelocationofthetransitionbetweenpassedandrejectedfrequencies. Part D – Equivalent Impedance Background Combined Impedance of Parallel Components: Wehavecoveredseveralseriescircuitswithavarietyofdifferentcomponent combinations.Whataboutparallelcircuits?Weknowthatwecannotuseasimplevoltagedivideranalysisonaresistive circuitwithparallelcomponents.Wehavetocombinetheparallelcomponentsuntilwenaveaseriescircuitandthenwecan applythevoltagedivider.Thesameistrueofcompleximpedance.Ifwecombinetheimpedancesuntilwehaveaseries circuit,thenwecanfindthetransferfunctionforthesimplifiedcircuitusingthesamemethodalreadydescribedinthis experiment.Therulesforcombiningcompleximpedancesarethesameasthoseforcombiningresistors:

series Z T = Z1 + Z 2 +L+ Z n 1 1 1 1 parallel = + +L+ Z n Z1 Z 2 Z n Experiment Combining Impedances Inthispartoftheexperiment,wewillconsiderwhathappenswhenwecombinetwoimpedancesinparallel.

Figure D-1. • Setupavoltagedividerin Capture withtwo50resistorsandaVSINsourcewith200mVamplitude,1kHzfrequency andnoDCoffset.Adda1 Fcapacitorinparallelwiththesecondresistor,asshowninFigureD1.Sincewearegoing todoanACsweep, don’t forget to open the spreadsheet for the VSIN source and set the AC parameter to the amplitude of your signal, 200mV. • SetupanACsweepofthiscircuit.Doalogarithmicsweepwithastartfrequencyof1Hzandanendfrequencyof 15MEG.Youshoulduseabout100pointsperdecade.TheACSweepTypehasbeenchosenas Logarithmic - Decade sincefrequencyeffectsusuallyonlybecomeobviouswhenwechangeordersofmagnitude.Thisgeneratesalogscale forfrequency.Thestartfrequenciesandendfrequenciesarechosentocoveraninterestingrange.Usuallythisrangeis selectedfromsomeknowledgeoftheexpectedperformanceofthecircuit.However,sinceweareassumingthatwe knowverylittleaboutthiscircuit,wecansettherangetoberoughlythatcoveredbytheHPfunctiongenerator. • ForwhatrangeoffrequenciesdoesthecapacitorchangethevoltageacrossR2bylessthan5%?Usethecursortofinda reasonablypreciseanswertothisquestion.Markthelocationonyourplot.Printoutthisplotandincludeitinyour report.

K.A. Connor, S. Bonner, P. Schoch 13 Revised: 1/31/2008 Rensselaer Polytechnic Institute Troy, New York, USA Electronic Instrumentation ENGR-4300 Experiment 2

• LetusseeifwecanfigureoutatleastthemagnitudeoftheequivalentimpedanceofthecombinationofR2andC1atthe frequencyof1MegHz. o Gobacktoyourschematicandchangethevalueofthesource(V1)frequencyto1MEG. o Setupatransientanalysis.Clickonthe Edit Simulation Settings buttonandsetupfortransientanalysisusing smallertimes.Since1MHzis1000timeslargerthan1kHz,youwillhavetomaketheruntimeandstepsize1000 timessmallertoproducethreecyclesoftheoscillatingvoltagesignal. o Runthetransientanalysis. Inthecircuityouareanalyzing,R2andC1togetherhaveadifferentimpedanceatdifferentinputfrequencies.This meansthatatanyonegivenfrequency,wecouldreplacethecombinationbyasingleresistor(thatwewillcallZ).Note thatatthehigherfrequenciesthevoltageisverysmallandthecombinationofthecapacitorandR2shouldlooklikea verysmallresistorindeed. • Youshouldseethatthesourceoscillatesasitdidbefore,althoughatamuchhigherrateandthatthevoltageacrossR2 andthecapacitorseemstonotchangewithtimeatall.Actually,thelattervoltageisstilloscillating,butatsuchasmall amplitudethatyoucannotseeit.Deletethetracethatshowsthesourcevoltage. o ClickonthenodelabelatthebottomofthePROBEwindowthatcorrespondstothesideofresistorR1connectedto thesource. o HittheDeletebuttononyourcomputerkeyboard. • Usingthecursors,determinetheamplitudeofthesinewaveoscillationacrossR2andthecapacitor.Thevoltagewill alsohaveaDClevel,butweonlywanttodeterminethesinewaveamplitude.Thepeaktopeakamplitudecanbe determinedbysubtractingthevoltageataminimumfromthevoltageatamaximum.Theactualamplitudeofthesine wavewillbehalfthepeaktopeakvalue.Writedowntheamplitudeyoudeterminedhere. • Fromthisamplitudeandyourknowledgeofhowvoltagedividerswork,determinethemagnitudeoftheequivalent impedanceoftheR2/C1combination,thatwearecallingZ.[Hint:FigureD2showsthevoltagedivider.Youcanuse thevoltagedividerequation:Vz=V1*(Z)/(R1+Z)] R1

50 Equivalent V1 Impedance Z

0 Figure D-2. • Checkyouranswerbyreplacingthecapacitor/resistorcombinationwithasingleresistorwiththevalueofZyou calculated.Rerunthesimulation.Doestheoutputhavethesameamplitudeasthecombination? • Nowwecancheckifthetransferfunctiongivesusthesameamplitude.Usetheparallelrulesforimpedancetocombine 1/j ωCandR.Thensetupthetransferfunctionforthecircuit.Determineitsmagnitudeat1MegHz.(Don’tforgetthat ω=2 πf).MultiplythevalueofHatthisfrequencybytheinputvoltageamplitude(200mV).Istheoutputamplitudeof yourplotcomparabletotheoneyoucalculated?

Summary

Inthissectionyouexploredwhathappenswhenyoucombinetwoimpedancesinparallel.Youhavelearnedthatit ispossibletofindtransferfunctionsforandanalyzecircuitswithcomponentsinparallel.Yousimplyneedto combinetheimpedance,Z,oftheparallelcomponentsintoanequivalentimpedanceusingrulessimilartothose usedtocombineresistors.

K.A. Connor, S. Bonner, P. Schoch 14 Revised: 1/31/2008 Rensselaer Polytechnic Institute Troy, New York, USA Electronic Instrumentation ENGR-4300 Experiment 2

Report and Conclusions Thefollowingshouldbeincludedinyourreport.Everythingshouldbelabeledandeasytofind.Partialcreditwill bedeductedforpoorlabelingorunclearpresentation. Part A (16 points) Includethefollowingplots: 1. PSpice transientplotofRCcircuit(inFigureA2).(1pt) 2. PSpice ACsweepplotoftheRCcircuitvoltage.(1pt) 3. PSpice ACsweepplotoftheRCcircuitphase.(1pt) 4. PSpice transientplotofRLcircuit(inFigureA3).(1pt) 5. PSpice ACsweepplotoftheRLcircuit.(1pt) 6. PSpice ACsweepplotofRLcircuitphase.(1pt) Answerthefollowingquestions: 1. WhatistheamplitudeandphaseoftheoutputoftheRCcircuitat1kHz?(1pt) 2. InwhatfrequencyrangeistheamplitudeoftheoutputoftheRCcircuitaboutequaltotheinputamplitude? Inwhatfrequencyrangeistheamplitudeoftheoutputaboutzero?(2pt) 3. InwhatfrequencyrangeisthephaseoftheoutputoftheRCcircuitaboutequaltotheinputphase?Inwhat frequencyrangeisthephaseoftheoutputabout90 °?(2pt) 4. WhatistheamplitudeandphaseoftheoutputoftheRLcircuitat1kHz?(1pt) 5. InwhatfrequencyrangeistheamplitudeoftheoutputoftheRLcircuitaboutequaltotheinputamplitude? Inwhatfrequencyrangeistheamplitudeoftheoutputaboutzero?(2pt) 6. InwhatfrequencyrangeisthephaseoftheoutputoftheRLcircuitaboutequaltotheinputphase?Inwhat frequencyrangeisthephaseoftheoutputabout+90 °?(2pt) Part B (24 points) Includethefollowingplots: 1. PSpice plotofcapacitorandresistorsumaddingtotheinputvoltageat1kHz.(1pt) 2. PSpice plotofcapacitorandresistorsumaddingtotheinputvoltageat10Hz.(1pt) 3. PSpice plotofcapacitorandresistorsumaddingtotheinputvoltageat10kHz.(1pt) 4. PSpice plotoftransferfunctionofRCcircuit(FigureA2)withcornerfrequencymarked.(2pt) 5. PSpice plotoftransferfunctionofRLcircuit(FigureA3)withcornerfrequencymarked.(2pt) 6. MobileStudiopictureofRCcircuitat1kHz.(1pt) 7. MobileStudiopictureofRCcircuitatcornerfrequency.(1pt) Answerthefollowingquestions: 1. WriteoutthemathematicalexpressionsfortheoutputvoltageofthecapacitorforthefirstRCcircuitcaseyou considered(plot1).WriteitintheformV(t)=ASin( ωt+ φ).(1pt) 2. WhatkindoffilteristheRCcircuit?(1pt) 3. Atwhatfrequencydidyoufindthecorneronthe PSpice plotofthetransferfunctionoftheRCcircuit? Whatfrequencydidyoucalculateusingf=1/(2πRC)?Howdothetwocompare?(3pt) 4. FindthetransferfunctionoftheRCcircuitintermsofR,Candj ω.Takethelimitofthisfunctionatvery lowandveryhighfrequencies.Showthattheseresultsareconsistentwiththe PSpice plotofthetransfer function.(3pt) 5. WhatkindoffilteristheRLcircuit(FigureA3)?(1pt) 6. DerivetheequationforthecornerfrequencyoftheRLcircuit.(2pt) 7. Atwhatfrequencydidyoufindthecorneronthe PSpice plotofthetransferfunctionoftheRLcircuit? Whatfrequencydidyoucalculateusingtheequationyouderivedinthepreviousquestion?Howdothe twocompare?(3pt)

K.A. Connor, S. Bonner, P. Schoch 15 Revised: 1/31/2008 Rensselaer Polytechnic Institute Troy, New York, USA Electronic Instrumentation ENGR-4300 Experiment 2

8. AtwhatfrequenciesdidtheoutputoftheRCcircuityoubuiltlookroughlythesameastheinput?Atwhat frequenciesdidtheoutputdisappearintothenoise?(1pt) Part C (16 points)

Includethefollowingplots: 1. PSpice plotofthetransferfunctionoftheRLCcircuitinFigureC3(magnitudeandphase),withthree resonantfrequencyvaluesmarked[PSpicevalue,calculatedvalue,experimentalvalue](original componentvalues).(3pt) 2. PSpice plotofthetransferfunctionoftheRLCcircuitinFigureC3(magnitudeandphase),withthe resonantfrequencymarked(realcomponentvalues).Alsoputthe5experimentalpointsonthisplot.(3pt) Answerthefollowingquestions: 1. Whyisitnecessarytoplotthephaseandthemagnitudeofthetransferfunctionseparately,ratherthanon thesameplot?(1pt) 2. ForthethreeRLCcircuitslabeled(a),(b)and(c)inFigureC1indicatewhattypeoffilterthecircuitis (highpass,lowpass,bandreject,orbandpassfilter)andexplainwhyeachisthefilteritis.[Filter(d)is discussedintheBackgroundsectionforpartC.]Recallthatacapacitorcanbemodeledasanopencircuit allowfrequenciesandashortathighfrequencies.Alsorecallthataninductorcanbemodeledasashortat lowfrequenciesandanopencircuitathighfrequencies.Redrawthecircuitsatlowandhighfrequencies andconsiderthevalueoftheoutputbetweenCandDforeachcase.Youcancheckyouranswersin PSpice ifyouwant . (3pt) 3. Whatisthephaseshiftbetweentheoutputandinputofplot1aboveatlowandhighfrequencies?Doesthe phaseshiftchangewhenyouadjustthevaluesofthecomponentstocreateplot2?Whyorwhynot?(2pt) 4. DeterminetheresonantfrequencyoftheRLCcircuityouanalyzedwith PSpice .(Thisoccursattheextreme point.)Calculatetheresonantfrequencywiththeequationf=1/[2π√(LC)].Howsimilararethey?What factorsdoyouthinkaccountforthediscrepancy?(3pt) 5. Whydoyousupposeitisthat,inpractice,wegenerallyusefiltersdesignedwithcapacitorsandnot inductors?(1pt) Part D (12 points) Includethefollowingplots: 1. PSpice ACSweepplotofcircuitinFigureD1with5%pointmarkedwithcursor.(2pt) Answerthefollowingquestions: 1. Whenthecapacitorisadded,forwhatrangeoffrequenciesdoesthecapacitorchangethevoltageacrossR2byless than5%?(1pt) 2. WhatistheamplitudeoftheoutputoftheparallelRCcircuit?Whatisthevalueyoucalculatedfortheequivalent impedance(Z)oftheparallelcombinationat1MegHz?(3pt) 3. FindthetransferfunctionfortheparallelRCcircuit.Determinethemagnitudeofthetransferfunctionat1MegHz. Calculatetheamplitudeoftheoutputvoltageforthiscircuitat1MegHz?Howwelldoesitagreewiththeoutput amplitudeyoufoundusing PSpice ?(6pt)

Summary (12 points) 1. Summarizekeypoints(8pt) 2. Discussmistakesandproblems(2pt) 3. Listmemberresponsibilities(2pt) Total: 80 points for write up +20 for attendance = 100 points

Attendance: 3 classes (20 points), 2 classes (10 points), 1 class (0 points), out of 20 possible points Minus 5 points for each late. No attendance at all = No grade for experiment.

K.A. Connor, S. Bonner, P. Schoch 16 Revised: 1/31/2008 Rensselaer Polytechnic Institute Troy, New York, USA