Lecture 19 Inductance & Rl Circuits

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 19 Inductance & Rl Circuits LECTURE 19 INDUCTANCE & RL CIRCUITS Lecture 19 2 ¨ Reading chapter 28-6 to 28-8. ¤ Inductance ¤ Magnetic energy ¤ RL circuits Demo: 1 3 ¨ Two coils ¤ Demonstration of mutual induction. ¤ Intensity of induced current changes with separation. Mutual inductance 4 ¨ Current �" produces a magnetic flux through circuit 2 given by ¨ Similarly the magnetic flux through circuit 1 due to current �# is given by S1 ¨ We call M the mutual inductance of the two circuits. ¨ The mutual inductance depends on the geometrical arrangement of the two circuits. � for two coaxial solenoids ¨ The inner solenoid has a current �" flowing through �" turns in length �. The magnetic ) + - field is given by � = * , ,. " . ¨ This causes a magnetic flux through the outer # solenoid of �0"# = �#�" ��" = ��", ) 345+ + where � = * , , 5. Self-inductance 6 ¨ A current in a loop produces a magnetic flux through the loop proportional to the current. The constant of proportionality L is called the self-inductance in Henry, H. ¨ The self-inductance depends only on the geometry. ¨ Every loop has an inductance, but an object designed to have a large inductance is called an inductor and is represented by the following symbol in a circuit diagram: ¨ The inductance of a long solenoid with N turns of cross sectional area A and length ℓ is: Example: 1 7 ¨ An inductor is made by tightly winding a wire with a diameter d = 0.30 mm around a cylinder with a radius r = 2.0 mm. How long does the cylinder have to be to have an inductance of L = 10 µH? Quiz: 1 8 Self-induced emf 9 ¨ The potential difference across an inductor is given by Quiz: 2 Example: 2 11 ¨ A current I = 1.0 A passes through an inductor coil with L = 10.0 mH. What potential difference is induced across the coil if the current drops steadily to zero in Δt = 5.0 μs? Energy in inductors and magnetic fields 12 ¨ When magnetic field is created due to a current through an inductor, energy is stored in the magnetic field. ¨ An inductor with an inductance, L, carrying current, I, stores magnetic energy, Um, given by ¨ Magnetic energy density, um, is the magnetic energy per unit volume. Example: 3 13 ¨ A solenoid with N = 2000 turns has a cross-sectional area equal to A = 4.0 × 10-4 m2 and a length equal to l = 0.30 m. The solenoid carries a current of I = 4.0 A. a) Calculate the magnetic energy stored in the solenoid. b) Find the magnetic energy density in the solenoid. RL circuit 14 ¨ A circuit containing a resistor and an inductor is called an RL circuit. ¤ Current in a RL circuit cannot change discontinuously. Energizing an RL circuit 15 ¨ The switch is closed at t = 0. dI E0 − IR − L = 0 From Kirchhoff’s loop rule dt ¨ The current in the circuit grows and approaches the final value If. E I t 0 1 e−t /( L/ R) I 1 e−t /τ ( ) = ( − ) = f ( − ) R ¨ The time constant of the circuit is given by L τ = R Current after a short time or a long time 16 ¨ The switch was open, then closed. ¨ Immediately afterwards, the inductor can be treated as an open circuit. ¨ A long time after the switch is closed, the inductor can be treated as a short circuit. Quiz: 3 De-energizing an RL circuit 18 ¨ The switch has been at position e for a long time, then switched to position f at t = 0. ¨ The current in the inductor starts out at I0 and exponentially decays. dI −IR − L = 0 From Kirchhoff’s loop rule dt E I t I e−t/τ 0 e−t/τ ( ) = 0 = R1 + R Demo: 2 19 ¨ RL circuit ¤ An inductor in series with a resistor, a battery and a switch. ¤ When the switch is closed the current rises slowly from zero to a steady- state value. E I t 0 1 e−t /( L/ R) I 1 e−t /τ ( ) = ( − ) = f ( − ) R E I t I e−t/τ 0 e−t/τ ( ) = 0 = R1 + R Example: 4 20 ¨ The switch shown has been in position a for a long time. It changes to position b at t = 0. a) What is the current in the circuit at t = 5 μs? b) At what time has the current decayed to 1% of its original value? Demo: 3 21 ¨ Lamp in parallel with solenoid ¤ A large DC current introduced suddenly to a large inductor cannot pass through the coil at first, so a lamp in parallel with the coil lights up. ¤ After the current becomes steady, the coil draws more current and bulb dims. ¤ When the current is switched off suddenly, the induced voltage in the coil (back EMF) again lights the lamp. ¤ A separate neon lamp in parallel with the coil shows that the direction of the second voltage surge is the opposite of the first. Make-before-break switch 22 ¨ A make-before-break switch allows us to remove the battery from the circuit without sparks. ¨ If the contact e was broken before making a contact with f, the current in the inductor has nowhere to go..
Recommended publications
  • Electro Magnetic Fields Lecture Notes B.Tech
    ELECTRO MAGNETIC FIELDS LECTURE NOTES B.TECH (II YEAR – I SEM) (2019-20) Prepared by: M.KUMARA SWAMY., Asst.Prof Department of Electrical & Electronics Engineering MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) Recognized under 2(f) and 12 (B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India ELECTRO MAGNETIC FIELDS Objectives: • To introduce the concepts of electric field, magnetic field. • Applications of electric and magnetic fields in the development of the theory for power transmission lines and electrical machines. UNIT – I Electrostatics: Electrostatic Fields – Coulomb’s Law – Electric Field Intensity (EFI) – EFI due to a line and a surface charge – Work done in moving a point charge in an electrostatic field – Electric Potential – Properties of potential function – Potential gradient – Gauss’s law – Application of Gauss’s Law – Maxwell’s first law, div ( D )=ρv – Laplace’s and Poison’s equations . Electric dipole – Dipole moment – potential and EFI due to an electric dipole. UNIT – II Dielectrics & Capacitance: Behavior of conductors in an electric field – Conductors and Insulators – Electric field inside a dielectric material – polarization – Dielectric – Conductor and Dielectric – Dielectric boundary conditions – Capacitance – Capacitance of parallel plates – spherical co‐axial capacitors. Current density – conduction and Convection current densities – Ohm’s law in point form – Equation of continuity UNIT – III Magneto Statics: Static magnetic fields – Biot‐Savart’s law – Magnetic field intensity (MFI) – MFI due to a straight current carrying filament – MFI due to circular, square and solenoid current Carrying wire – Relation between magnetic flux and magnetic flux density – Maxwell’s second Equation, div(B)=0, Ampere’s Law & Applications: Ampere’s circuital law and its applications viz.
    [Show full text]
  • Phasor Analysis of Circuits
    Phasor Analysis of Circuits Concepts Frequency-domain analysis of a circuit is useful in understanding how a single-frequency wave undergoes an amplitude change and phase shift upon passage through the circuit. The concept of impedance or reactance is central to frequency-domain analysis. For a resistor, the impedance is Z ω = R , a real quantity independent of frequency. For capacitors and R ( ) inductors, the impedances are Z ω = − i ωC and Z ω = iω L. In the complex plane C ( ) L ( ) these impedances are represented as the phasors shown below. Im ivL R Re -i/vC These phasors are useful because the voltage across each circuit element is related to the current through the equation V = I Z . For a series circuit where the same current flows through each element, the voltages across each element are proportional to the impedance across that element. Phasor Analysis of the RC Circuit R V V in Z in Vout R C V ZC out The behavior of this RC circuit can be analyzed by treating it as the voltage divider shown at right. The output voltage is then V Z −i ωC out = C = . V Z Z i C R in C + R − ω + The amplitude is then V −i 1 1 out = = = , V −i +ω RC 1+ iω ω 2 in c 1+ ω ω ( c ) 1 where we have defined the corner, or 3dB, frequency as 1 ω = . c RC The phasor picture is useful to determine the phase shift and also to verify low and high frequency behavior. The input voltage is across both the resistor and the capacitor, so it is equal to the vector sum of the resistor and capacitor voltages, while the output voltage is only the voltage across capacitor.
    [Show full text]
  • Magnetism Known to the Early Chinese in 12Th Century, and In
    Magnetism Known to the early Chinese in 12th century, and in some detail by ancient Greeks who observed that certain stones “lodestones” attracted pieces of iron. Lodestones were found in the coastal area of “Magnesia” in Thessaly at the beginning of the modern era. The name of magnetism derives from magnesia. William Gilbert, physician to Elizabeth 1, made magnets by rubbing Fe against lodestones and was first to recognize the Earth was a large magnet and that lodestones always pointed north-south. Hence the use of magnetic compasses. Book “De Magnete” 1600. The English word "electricity" was first used in 1646 by Sir Thomas Browne, derived from Gilbert's 1600 New Latin electricus, meaning "like amber". Gilbert demonstrates a “lodestone” compass to ER 1. Painting by Auckland Hunt. John Mitchell (1750) found that like electric forces magnetic forces decrease with separation (conformed by Coulomb). Link between electricity and magnetism discovered by Hans Christian Oersted (1820) who noted a wire carrying an electric current affected a magnetic compass. Conformed by Andre Marie Ampere who shoes electric currents were source of magnetic phenomena. Force fields emanating from a bar magnet, showing Nth and Sth poles (credit: Justscience 2017) Showing magnetic force fields with Fe filings (Wikipedia.org.) Earth’s magnetic field (protects from damaging charged particles emanating from sun. (Credit: livescience.com) Magnetic field around wire carrying a current (stackexchnage.com) Right hand rule gives the right sign of the force (stackexchnage.com) Magnetic field generated by a solenoid (miniphyiscs.com) Van Allen radiation belts. Energetic charged particles travel along B lines Electric currents (moving charges) generate magnetic fields but can magnetic fields generate electric currents.
    [Show full text]
  • Network Analysis
    LECTURE NOTES ON NETWORK ANALYSIS B. Tech III Semester (IARE-R18) Ms. S Swathi Asistant professor ELECTRICAL AND ELECTRONICS ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) DUNDIGAL, HYDERABAD - 50043 1 SYLLABUS MODULE-I NETWORK THEOREMS (DC AND AC) Network Theorems: Tellegen‘s, superposition, reciprocity, Thevenin‘s, Norton‘s, maximum power transfer, Milliman‘s and compensation theorems for DC and AC excitations, numerical problems. MODULE-II SOLUTION OF FIRST AND SECOND ORDER NETWORKS Transient response: Initial conditions, transient response of RL, RC and RLC series and parallel circuits with DC and AC excitations, differential equation and Laplace transform approach. MODULE-III LOCUS DIAGRAMS AND NETWORKS FUNCTIONS Locus diagrams: Locus diagrams of RL, RC, RLC circuits. Network Functions: The concept of complex frequency, physical interpretation, transform impedance, series and parallel combination of elements, terminal ports, network functions for one port and two port networks, poles and zeros of network functions, significance of poles and zeros, properties of driving point functions and transfer functions, necessary conditions for driving point functions and transfer functions, time domain response from pole-zero plot. MODULE-IV TWO PORTNETWORK PARAMETERS Two port network parameters: Z, Y, ABCD, hybrid and inverse hybrid parameters, conditions for symmetry and reciprocity, inter relationships of different parameters, interconnection (series, parallel and cascade) of two port networks, image parameters. MODULE-V FILTERS Filters: Classification of filters, filter networks, classification of pass band and stop band, characteristic impedance in the pass and stop bands, constant-k low pass filter, high pass filter, m- derived T-section, band pass filter and band elimination filter. Text Books: 1.
    [Show full text]
  • F = BIL (F=Force, B=Magnetic Field, I=Current, L=Length of Conductor)
    Magnetism Joanna Radov Vocab: -Armature- is the power producing part of a motor -Domain- is a region in which the magnetic field of atoms are grouped together and aligned -Electric Motor- converts electrical energy into mechanical energy -Electromagnet- is a type of magnet whose magnetic field is produced by an electric current -First Right-Hand Rule (delete) -Fixed Magnet- is an object made from a magnetic material and creates a persistent magnetic field -Galvanometer- type of ammeter- detects and measures electric current -Magnetic Field- is a field of force produced by moving electric charges, by electric fields that vary in time, and by the 'intrinsic' magnetic field of elementary particles associated with the spin of the particle. -Magnetic Flux- is a measure of the amount of magnetic B field passing through a given surface -Polarized- when a magnet is permanently charged -Second Hand-Right Rule- (delete) -Solenoid- is a coil wound into a tightly packed helix -Third Right-Hand Rule- (delete) Major Points: -Similar magnetic poles repel each other, whereas opposite poles attract each other -Magnets exert a force on current-carrying wires -An electric charge produces an electric field in the region of space around the charge and that this field exerts a force on other electric charges placed in the field -The source of a magnetic field is moving charge, and the effect of a magnetic field is to exert a force on other moving charge placed in the field -The magnetic field is a vector quantity -We denote the magnetic field by the symbol B and represent it graphically by field lines -These lines are drawn ⊥ to their entry and exit points -They travel from N to S -If a stationary test charge is placed in a magnetic field, then the charge experiences no force.
    [Show full text]
  • 33. RLC Parallel Circuit. Resonant Ac Circuits
    University of Rhode Island DigitalCommons@URI PHY 204: Elementary Physics II -- Lecture Notes PHY 204: Elementary Physics II (2021) 12-4-2020 33. RLC parallel circuit. Resonant ac circuits Gerhard Müller University of Rhode Island, [email protected] Robert Coyne University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/phy204-lecturenotes Recommended Citation Müller, Gerhard and Coyne, Robert, "33. RLC parallel circuit. Resonant ac circuits" (2020). PHY 204: Elementary Physics II -- Lecture Notes. Paper 33. https://digitalcommons.uri.edu/phy204-lecturenotes/33https://digitalcommons.uri.edu/ phy204-lecturenotes/33 This Course Material is brought to you for free and open access by the PHY 204: Elementary Physics II (2021) at DigitalCommons@URI. It has been accepted for inclusion in PHY 204: Elementary Physics II -- Lecture Notes by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. PHY204 Lecture 33 [rln33] AC Circuit Application (2) In this RLC circuit, we know the voltage amplitudes VR, VC, VL across each device, the current amplitude Imax = 5A, and the angular frequency ω = 2rad/s. • Find the device properties R, C, L and the voltage amplitude of the ac source. Emax ~ εmax A R C L V V V 50V 25V 25V tsl305 We pick up the thread from the previous lecture with the quantitative anal- ysis of another RLC series circuit. Here our reasoning must be in reverse direction compared to that on the last page of lecture 32. Given the
    [Show full text]
  • Magnetic Flux and Flux Linkage
    Magnetic Flux and Flux Linkage To be able to calculate and explain the magnetic flux through a coil of wire To be able to calculate the magnetic flux linkage of a coil of wire To be able to calculate the magnetic flux linkage of a rotating coil Magnetic Flux, Magnetic flux is a measure of how many magnetic field lines are passing through an area of A m2. The magnetic flux through an area A in a magnetic field of flux density B is given by: BA This is when B is perpendicular to A, so the normal to the area is in the same direction as the field lines. Magnetic Flux is measured in Webers, Wb The more field pass through area A, the greater the concentration and the stronger magnetic field. This is why a magnet is strongest at its poles; there is a high concentration of field lines. We can see that the amount of flux flowing through a loop of wire depends on the angle it makes with the field lines. The amount of flux passing through the loop is given by: θ is the angle that the normal to the loop makes with the field lines. Magnetic Flux Density We can now see why B is called the magnetic flux density. If we rearrange the top equation for B we get: B So B is a measure of how many flux lines (field lines) passes through each unit area (per m2). A A flux density of 1 Tesla is when an area of 1 metre squared has a flux of 1 Weber.
    [Show full text]
  • Lecture 8: Magnets and Magnetism Magnets
    Lecture 8: Magnets and Magnetism Magnets •Materials that attract other metals •Three classes: natural, artificial and electromagnets •Permanent or Temporary •CRITICAL to electric systems: – Generation of electricity – Operation of motors – Operation of relays Magnets •Laws of magnetic attraction and repulsion –Like magnetic poles repel each other –Unlike magnetic poles attract each other –Closer together, greater the force Magnetic Fields and Forces •Magnetic lines of force – Lines indicating magnetic field – Direction from N to S – Density indicates strength •Magnetic field is region where force exists Magnetic Theories Molecular theory of magnetism Magnets can be split into two magnets Magnetic Theories Molecular theory of magnetism Split down to molecular level When unmagnetized, randomness, fields cancel When magnetized, order, fields combine Magnetic Theories Electron theory of magnetism •Electrons spin as they orbit (similar to earth) •Spin produces magnetic field •Magnetic direction depends on direction of rotation •Non-magnets → equal number of electrons spinning in opposite direction •Magnets → more spin one way than other Electromagnetism •Movement of electric charge induces magnetic field •Strength of magnetic field increases as current increases and vice versa Right Hand Rule (Conductor) •Determines direction of magnetic field •Imagine grasping conductor with right hand •Thumb in direction of current flow (not electron flow) •Fingers curl in the direction of magnetic field DO NOT USE LEFT HAND RULE IN BOOK Example Draw magnetic field lines around conduction path E (V) R Another Example •Draw magnetic field lines around conductors Conductor Conductor current into page current out of page Conductor coils •Single conductor not very useful •Multiple winds of a conductor required for most applications, – e.g.
    [Show full text]
  • ELECTRICAL CIRCUIT ANALYSIS Lecture Notes
    ELECTRICAL CIRCUIT ANALYSIS Lecture Notes (2020-21) Prepared By S.RAKESH Assistant Professor, Department of EEE Department of Electrical & Electronics Engineering Malla Reddy College of Engineering & Technology Maisammaguda, Dhullapally, Secunderabad-500100 B.Tech (EEE) R-18 MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY II Year B.Tech EEE-I Sem L T/P/D C 3 -/-/- 3 (R18A0206) ELECTRICAL CIRCUIT ANALYSIS COURSE OBJECTIVES: This course introduces the analysis of transients in electrical systems, to understand three phase circuits, to evaluate network parameters of given electrical network, to draw the locus diagrams and to know about the networkfunctions To prepare the students to have a basic knowledge in the analysis of ElectricNetworks UNIT-I D.C TRANSIENT ANALYSIS: Transient response of R-L, R-C, R-L-C circuits (Series and parallel combinations) for D.C. excitations, Initial conditions, Solution using differential equation and Laplace transform method. UNIT - II A.C TRANSIENT ANALYSIS: Transient response of R-L, R-C, R-L-C Series circuits for sinusoidal excitations, Initial conditions, Solution using differential equation and Laplace transform method. UNIT - III THREE PHASE CIRCUITS: Phase sequence, Star and delta connection, Relation between line and phase voltages and currents in balanced systems, Analysis of balanced and Unbalanced three phase circuits UNIT – IV LOCUS DIAGRAMS & RESONANCE: Series and Parallel combination of R-L, R-C and R-L-C circuits with variation of various parameters.Resonance for series and parallel circuits, concept of band width and Q factor. UNIT - V NETWORK PARAMETERS:Two port network parameters – Z,Y, ABCD and hybrid parameters.Condition for reciprocity and symmetry.Conversion of one parameter to other, Interconnection of Two port networks in series, parallel and cascaded configuration and image parameters.
    [Show full text]
  • Juan Alberto Garcia the University of Texas at El Paso
    Juan Alberto Garcia The University of Texas at El Paso Is that all there is about E&M then??? F*@# no!! Electricity and Magnetism… no more! Electromagnetism!! • Hans Christian Ørsted ‐ Professor at Copenhagen ‐ Discovered (in 1820) one connection!! ‐ This one ‐ Well actually.. • One problem… he didn’t follow his experiment, but he published it tough. ! =D • Meanwhile in the Faraday world.. Devy kept Faraday performing tasks that were not desired by him.. • 1821 Ampère published his research…. Ampère • Force between two wires with electricity • They attract or repel each other .. Depending on the direction of the current!! • Led to the foundation of Electrodynamics • It was not until 1831 that Faraday finally started working in E&M and explained… • .. • Induction!!!! But First!!, Flux • Magnetic Flux A A B B Induction • Explained by Faraday! (this guy) • That is faraday’s law… well the easy form.. • It means the following…. • Well this is better… Lenz’s Law • Corollary of Faraday’s Law and Ohm’s Law • The emf induced in an electric circuit always acts in such a direction that the current it drives around the circuit opposes the change in magnetic flux which produces the emf. Maxwell • And then.. There was Maxwell • On Physical Lines of Force, March 1861 , Published 20 equations with 20 variables which were a compilation of what was know at the time. • Then on A Treatise on Electricity and Magnetism in 1873 he published what are known as the Maxwell’s Equations. Maxwell’s Equations • 4 PDE’s that describe the “Fields.” • They are in descending order (in free space): • Gauss’s law for E‐fields • Gauss’s law for B‐fields • Faraday’s Law • Ampère’s Law And then, there was light… • Turns out Maxwell’s Equations describe fields that Oscillate through space.
    [Show full text]
  • Ee334lect37summaryelectroma
    EE334 Electromagnetic Theory I Todd Kaiser Maxwell’s Equations: Maxwell’s equations were developed on experimental evidence and have been found to govern all classical electromagnetic phenomena. They can be written in differential or integral form. r r r Gauss'sLaw ∇ ⋅ D = ρ D ⋅ dS = ρ dv = Q ∫∫ enclosed SV r r r Nomagneticmonopoles ∇ ⋅ B = 0 ∫ B ⋅ dS = 0 S r r ∂B r r ∂ r r Faraday'sLaw ∇× E = − E ⋅ dl = − B ⋅ dS ∫∫S ∂t C ∂t r r r ∂D r r r r ∂ r r Modified Ampere'sLaw ∇× H = J + H ⋅ dl = J ⋅ dS + D ⋅ dS ∫ ∫∫SS ∂t C ∂t where: E = Electric Field Intensity (V/m) D = Electric Flux Density (C/m2) H = Magnetic Field Intensity (A/m) B = Magnetic Flux Density (T) J = Electric Current Density (A/m2) ρ = Electric Charge Density (C/m3) The Continuity Equation for current is consistent with Maxwell’s Equations and the conservation of charge. It can be used to derive Kirchhoff’s Current Law: r ∂ρ ∂ρ r ∇ ⋅ J + = 0 if = 0 ∇ ⋅ J = 0 implies KCL ∂t ∂t Constitutive Relationships: The field intensities and flux densities are related by using the constitutive equations. In general, the permittivity (ε) and the permeability (µ) are tensors (different values in different directions) and are functions of the material. In simple materials they are scalars. r r r r D = ε E ⇒ D = ε rε 0 E r r r r B = µ H ⇒ B = µ r µ0 H where: εr = Relative permittivity ε0 = Vacuum permittivity µr = Relative permeability µ0 = Vacuum permeability Boundary Conditions: At abrupt interfaces between different materials the following conditions hold: r r r r nˆ × (E1 − E2 )= 0 nˆ ⋅(D1 − D2 )= ρ S r r r r r nˆ × ()H1 − H 2 = J S nˆ ⋅ ()B1 − B2 = 0 where: n is the normal vector from region-2 to region-1 Js is the surface current density (A/m) 2 ρs is the surface charge density (C/m ) 1 Electrostatic Fields: When there are no time dependent fields, electric and magnetic fields can exist as independent fields.
    [Show full text]
  • How to Design Analog Filter Circuits.Pdf
    a b FIG. 1-TWO LOWPASS FILTERS. Even though the filters use different components, they perform in a similiar fashion. MANNlE HOROWITZ Because almost every analog circuit contains some filters, understandinghow to work with them is important. Here we'll discuss the basics of both active and passive types. THE MAIN PURPOSE OF AN ANALOG FILTER In addition to bandpass and band- age (because inductors can be expensive circuit is to either pass or reject signals rejection filters, circuits can be designed and hard to find); they are generally easier based on their frequency. There are many to only pass frequencies that are either to tune; they can provide gain (and thus types of frequency-selective filter cir- above or below a certain cutoff frequency. they do not necessarily have any insertion cuits; their action can usually be de- If the circuit passes only frequencies that loss); they have a high input impedance, termined from their names. For example, are below the cutoff, the circuit is called a and have a low output impedance. a band-rejection filter will pass all fre- lo~~passfilter, while a circuit that passes A filter can be in a circuit with active quencies except those in a specific band. those frequencies above the cutoff is a devices and still not be an active filter. Consider what happens if a parallel re- higlzpass filter. For example, if a resonant circuit is con- sonant circuit is connected in series with a All of the different filters fall into one . nected in series with two active devices signal source.
    [Show full text]