Source Free Rc Circuits

Total Page:16

File Type:pdf, Size:1020Kb

Source Free Rc Circuits ELL 100 - Introduction to Electrical Engineering LECTURE 9: TRANSIENT RESPONSE OF FIRST ORDER CIRCUITS (NATURAL RESPONSE) SOURCE-FREE RC CIRCUITS EXAMPLE Fluid-flow analogy: Electrical circuit: water tank emptying Capacitor discharging through a small pipe through resistance 2 SOURCE-FREE RC CIRCUITS EXAMPLE Mechanical system Electrical equivalent (velocity decays (charge dissipated through damping) through resistance) 3 SOURCE-FREE RC CIRCUITS APPLICATIONS High pass filter Low pass filter 4 SOURCE-FREE RC CIRCUITS APPLICATIONS Timers Camera Flash 555 Timer Oscillators circuits 5 SOURCE-FREE RC CIRCUITS APPLICATIONS Delay Circuits Warning Blinkers 6 SOURCE FREE RC CIRCUITS APPLICATIONS Computer Circuits Digital and Time delay circuits 7 SOURCE FREE RC CIRCUITS APPLICATIONS Pacemakers Timing device in automobile intermittent wiper system 8 SOURCE-FREE RL CIRCUIT APPLICATIONS Pulse Generators Electronic filter Tubelight choke 9 TRANSIENT RESPONSE OF FIRST ORDER CIRCUITS • A first-order circuit is characterized by a first-order differential equation. • Example : • a circuit comprising a resistor and capacitor (RC circuit) • a circuit comprising a resistor and an inductor (RL circuit) Applying Kirchhoff’s laws to RC or RL circuit results in differential equations involving voltage or current, which are first-order. 10 TRANSIENT RESPONSE OF FIRST ORDER CIRCUITS EXCITATION There are two ways to excite the circuits. • Initial conditions of the storage elements– Source-Free Circuits (Energy stored in the capacitor, Energy stored in the inductor) • Independent sources – Forced Excitation circuits (DC sources, Sinusoidal sources, Exponential Sources) 11 TRANSIENT RESPONSE OF FIRST ORDER CIRCUITS NATURAL RESPONSE • The natural response of a circuit refers to the behavior (in terms of voltage or current) with no external sources of excitation. • The circuit has a response only because of the energy initially stored in the energy storage elements (i.e. capacitor or inductor). 12 SOURCE-FREE RC CIRCUIT • A source-free RC circuit occurs when its DC source is suddenly disconnected. • The energy already stored in the capacitor(s) is released to the resistor(s) & dissipated. • RC source-free circuit is analyzed from its initial voltage v(0) = V0 and time constant τ 13 SOURCE-FREE RC CIRCUIT DERIVATION • Assume the voltage v(t) across the capacitor. • Since the capacitor is initially charged, Assume that at time t = 0, the initial voltage is, vV(0) 0 with the corresponding value of the energy stored as 1 w(0) CV 2 2 0 14 SOURCE-FREE RC CIRCUIT DERIVATION Applying KCL at the top node of the circuit, yields iCR + i = 0 By definition, iC = C dv∕dt and iR = v ∕ R. Thus, dv v dv v C 0 or 0 dt R dt RC This is a first-order differential equation. 15 SOURCE-FREE RC CIRCUIT DERIVATION dv 1 => dt v RC t Integrating both sides, we get lnv ln A RC vt => ln A RC t/ RC dv v => v( t ) A e 0 dt RC But from the initial conditions, v(0) = A = V0. t/ RC Hence, v( t ) V0 e (Exponentially Decaying) 16 SOURCE-FREE RC CIRCUIT VOLTAGE RESPONSE • As t increases, the voltage decreases exponentially towards zero. The rapidity with which the voltage decreases is expressed in terms of the time constant, denoted by τ. 17 SOURCE-FREE RC CIRCUIT TIME CONSTANT The time constant of a circuit is the time required for the response to decay to a factor of 1/e or 36.8 percent of its initial value. - /RC -1 V0 e = V 0 e 0.368V 0 RC v( t ) V et/ t/ RC0 v( t ) V0 e 18 SOURCE-FREE RC CIRCUIT TIME CONSTANT t v(t)/V0 τ 0.36788 2τ 0.13534 3τ 0.04979 4τ 0.01832 5τ 0.00674 Graphical determination of the time constant τ from the response curve. 19 SOURCE-FREE RC CIRCUIT TIME CONSTANT 20 SOURCE-FREE RC CIRCUIT POWER DISSIPATION The power dissipated in the resistor is V 2 p( t ) vi 0 e2/t R R The energy absorbed by the resistor up to time t is ttV 2 w()() t p d 0 e2/ d R 00R V 2 1 0 e2 / |t CV 2 (1(1 – ee- 22 t/ /τ ) ), RC 22R 00 1 t ,() w CV 2 R 2 0 21 SOURCE-FREE RL CIRCUIT • A circuit with series connection of a resistor and inductor • Current i(t) through the inductor is considered as response of this system. At t = 0, assume that the inductor has an initial current I0, or iI(0) 0 1 Initial energy stored in the inductor w(0) LI 2 2 0 22 SOURCE-FREE RL CIRCUIT RESPONSE OF THE CIRCUIT Applying KVL around the loop, vvLR0 vL = L di/dt and vR = iR. Thus, di di R L Ri 00 i dt dt L it()dit R => dt iL I0 0 i() t Rt Rt/ L => ln i ( t ) I0 e IL0 23 SOURCE FREE RL CIRCUIT RESPONSE OF THE CIRCUIT • Current through inductor decays Rt /L exponentially i() t I0 e • Time constant for the RL circuit is L R t/ i() t I0 e 24 SOURCE FREE RL CIRCUIT POWER DISSIPATION -/t Voltage across the resistor is vR () t iR I0 Re 2 -2t / The power dissipated in the resistor is p vR i I0 Re The energy absorbed by the resistor is tt w()() t p d I2 Re 2 / d R 0 00 1 I2 Re 2 / |t LI 2 (1 e 2 / ), L / R 0 02 0 1 t ,() w LI 2 R 2 0 25 SOLVING NUMERICALS Points to remember : Elements DC steady state Continuous quantity (from t=0- to t=0+) R R - L Short-circuit Current i (v = 0) C Open-circuit Voltage v (i = 0) 26 SOURCE-FREE RC CIRCUIT Q1. Consider the circuit below. Let vC (0)=15 V. Find vc , vx and ix for t > 0. 27 SOURCE-FREE RC CIRCUIT Solution : • We first convert the given circuit into a simple R-C circuit. • Find the equivalent resistance or the Thevenin resistance at the capacitor terminals. 28 SOURCE-FREE RC CIRCUIT 20 5 R4 eq 20 5 The time constant is Req Cs 4(0.1) 0.4 29 SOURCE-FREE RC CIRCUIT t/0.4 2.5t C v( t ) 15 ev( t V ) 15 e V we can use voltage division to get vx 12 2.5t 2.5t vx vC 0.6(15 e ) 9 e V 12 8 t/ v( t ) V0 e v ix 0.75 e2.5t A x 12 30 SOURCE-FREE RC CIRCUIT Q2. The switch in the circuit below is closed for a long time, and then opened at t = 0. Find v(t) for t ≥ 0. Also calculate the energy stored in the capacitor before opening of the switch. 31 SOURCE-FREE RC CIRCUIT Solution: For t < 0, the switch is closed and the capacitor is an open circuit in steady state, as represented in Fig.(a). Using voltage division 9 v( t ) (20)=15 V, t 0 C 93 Since the voltage across a capacitor cannot change instantaneously, the voltage across the capacitor at t = 0− is the same at t = 0+, or vVC (0) V0 15 32 SOURCE-FREE RC CIRCUIT Solution: For t > 0, the switch is open, and we have the RC circuit shown in Fig. (b), Req 1 + 9 10 The time constant is 3 = Req C 10 20 10 0.2s Thus, the voltage across the capacitor for t ≥ 0 is t/ t/0.2 5t v( t ) vC (0)e 15e V 15 e V The initial energy stored 11 w (0)Cv2 (0) 20 10 3 15 2 2.25 J in the capacitor is: C 22C 33 SOURCE-FREE RL CIRCUIT Q3. Assuming that i(0) = 10 A, calculate i(t) and ix(t) in the circuit below 34 SOURCE-FREE RL CIRCUIT Solution: There are two ways we can solve this problem Method -1: The equivalent resistance is the same as the Thevenin resistance at the inductor terminals. Because of the dependent source, we insert a voltage source with vo = 1 V at the inductor terminals a-b, as shown below 35 SOURCE-FREE RL CIRCUIT Applying KVL to the two loops, 1 2(i i ) 1 0 i i (1) 1 2 1 2 2 5 6i 2 i 3 i 0 i i (2) 2 1 1 26 1 Substituting Eq. (2) into Eq. (1) gives vo 1 i = -3A, i = - i =3A => R eqR Th 1 0 1 i 3 1 o L 3 2 s The time constant is 1 R2eq 3 The current through the inductor is i( t ) i (0) ett/ 10 e ( 2/3) A , t 0 36 SOURCE-FREE RL CIRCUIT Method-2: Applying KVL to the circuit For loop 1, 1 di 1 2(ii ) 0 (3) 2 dt 12 For loop 2, 5 6i 2 i 3 i 0 i i 2 1 1 26 1 di 2 Substituting above into Eq. (3) gives 1 i 0 dt 3 1 i(t) 2 => ln t |t i ()(0) t i e(2/3) t 10 e (2/3) t A , t 0 i(0) 3 0 37 SOURCE-FREE RL CIRCUIT The voltage across the inductor is di 2(2/3)tt 10 (2/3) v L 0.5(10) e e V dt 33 Since the inductor and the 2-Ω resistor are in parallel, v i( t ) 1.6667 e(2/3)t A , t 0 x 2 38 SOURCE-FREE RL CIRCUIT Q4. The switch in the circuit below is closed for a long time.
Recommended publications
  • Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram
    Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram - Simple steps to draw phasor diagram of a series RC circuit without memorizing: * Start with the quantity (voltage or current) that is common for the resistor R and the capacitor C, which is here the source current I (because it passes through both R and C without being divided). Figure (1) Series RC circuit * Now we know that I and resistor voltage VR are in phase or have the same phase angle (there zero crossings are the same on the time axis) and VR is greater than I in magnitude. * Since I equal the capacitor current IC and we know that IC leads the capacitor voltage VC by 90 degrees, we will add VC on the phasor diagram as follows: * Now, the source voltage VS equals the vector summation of VR and VC: Figure (2) Series RC circuit Phasor Diagram Prepared by: Eng. Wiam Anabousi - Important notes on the phasor diagram of series RC circuit shown in figure (2): A- All the vectors are rotating in the same angular speed ω. B- This circuit acts as a capacitive circuit and I leads VS by a phase shift of Ө (which is the current angle if the source voltage is the reference signal). Ө ranges from 0o to 90o (0o < Ө <90o). If Ө=0o then this circuit becomes a resistive circuit and if Ө=90o then the circuit becomes a pure capacitive circuit. C- The phase shift between the source voltage and its current Ө is important and you have two ways to find its value: a- b- = - = - D- Using the phasor diagram, you can find all needed quantities in the circuit like all the voltages magnitude and phase and all the currents magnitude and phase.
    [Show full text]
  • Phasor Analysis of Circuits
    Phasor Analysis of Circuits Concepts Frequency-domain analysis of a circuit is useful in understanding how a single-frequency wave undergoes an amplitude change and phase shift upon passage through the circuit. The concept of impedance or reactance is central to frequency-domain analysis. For a resistor, the impedance is Z ω = R , a real quantity independent of frequency. For capacitors and R ( ) inductors, the impedances are Z ω = − i ωC and Z ω = iω L. In the complex plane C ( ) L ( ) these impedances are represented as the phasors shown below. Im ivL R Re -i/vC These phasors are useful because the voltage across each circuit element is related to the current through the equation V = I Z . For a series circuit where the same current flows through each element, the voltages across each element are proportional to the impedance across that element. Phasor Analysis of the RC Circuit R V V in Z in Vout R C V ZC out The behavior of this RC circuit can be analyzed by treating it as the voltage divider shown at right. The output voltage is then V Z −i ωC out = C = . V Z Z i C R in C + R − ω + The amplitude is then V −i 1 1 out = = = , V −i +ω RC 1+ iω ω 2 in c 1+ ω ω ( c ) 1 where we have defined the corner, or 3dB, frequency as 1 ω = . c RC The phasor picture is useful to determine the phase shift and also to verify low and high frequency behavior. The input voltage is across both the resistor and the capacitor, so it is equal to the vector sum of the resistor and capacitor voltages, while the output voltage is only the voltage across capacitor.
    [Show full text]
  • Network Analysis
    LECTURE NOTES ON NETWORK ANALYSIS B. Tech III Semester (IARE-R18) Ms. S Swathi Asistant professor ELECTRICAL AND ELECTRONICS ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) DUNDIGAL, HYDERABAD - 50043 1 SYLLABUS MODULE-I NETWORK THEOREMS (DC AND AC) Network Theorems: Tellegen‘s, superposition, reciprocity, Thevenin‘s, Norton‘s, maximum power transfer, Milliman‘s and compensation theorems for DC and AC excitations, numerical problems. MODULE-II SOLUTION OF FIRST AND SECOND ORDER NETWORKS Transient response: Initial conditions, transient response of RL, RC and RLC series and parallel circuits with DC and AC excitations, differential equation and Laplace transform approach. MODULE-III LOCUS DIAGRAMS AND NETWORKS FUNCTIONS Locus diagrams: Locus diagrams of RL, RC, RLC circuits. Network Functions: The concept of complex frequency, physical interpretation, transform impedance, series and parallel combination of elements, terminal ports, network functions for one port and two port networks, poles and zeros of network functions, significance of poles and zeros, properties of driving point functions and transfer functions, necessary conditions for driving point functions and transfer functions, time domain response from pole-zero plot. MODULE-IV TWO PORTNETWORK PARAMETERS Two port network parameters: Z, Y, ABCD, hybrid and inverse hybrid parameters, conditions for symmetry and reciprocity, inter relationships of different parameters, interconnection (series, parallel and cascade) of two port networks, image parameters. MODULE-V FILTERS Filters: Classification of filters, filter networks, classification of pass band and stop band, characteristic impedance in the pass and stop bands, constant-k low pass filter, high pass filter, m- derived T-section, band pass filter and band elimination filter. Text Books: 1.
    [Show full text]
  • 33. RLC Parallel Circuit. Resonant Ac Circuits
    University of Rhode Island DigitalCommons@URI PHY 204: Elementary Physics II -- Lecture Notes PHY 204: Elementary Physics II (2021) 12-4-2020 33. RLC parallel circuit. Resonant ac circuits Gerhard Müller University of Rhode Island, [email protected] Robert Coyne University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/phy204-lecturenotes Recommended Citation Müller, Gerhard and Coyne, Robert, "33. RLC parallel circuit. Resonant ac circuits" (2020). PHY 204: Elementary Physics II -- Lecture Notes. Paper 33. https://digitalcommons.uri.edu/phy204-lecturenotes/33https://digitalcommons.uri.edu/ phy204-lecturenotes/33 This Course Material is brought to you for free and open access by the PHY 204: Elementary Physics II (2021) at DigitalCommons@URI. It has been accepted for inclusion in PHY 204: Elementary Physics II -- Lecture Notes by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. PHY204 Lecture 33 [rln33] AC Circuit Application (2) In this RLC circuit, we know the voltage amplitudes VR, VC, VL across each device, the current amplitude Imax = 5A, and the angular frequency ω = 2rad/s. • Find the device properties R, C, L and the voltage amplitude of the ac source. Emax ~ εmax A R C L V V V 50V 25V 25V tsl305 We pick up the thread from the previous lecture with the quantitative anal- ysis of another RLC series circuit. Here our reasoning must be in reverse direction compared to that on the last page of lecture 32. Given the
    [Show full text]
  • 5 RC Circuits
    Physics 212 Lab Lab 5 RC Circuits What You Need To Know: The Physics In the previous two labs you’ve dealt strictly with resistors. In today’s lab you’ll be using a new circuit element called a capacitor. A capacitor consists of two small metal plates that are separated by a small distance. This is evident in a capacitor’s circuit diagram symbol, see Figure 1. When a capacitor is hooked up to a circuit, charges will accumulate on the plates. Positive charge will accumulate on one plate and negative will accumulate on the other. The amount of charge that can accumulate is partially dependent upon the capacitor’s capacitance, C. With a charge distribution like this (i.e. plates of charge), a uniform electric field will be created between the plates. [You may remember this situation from the Equipotential Surfaces lab. In the lab, you had set-ups for two point-charges and two lines of charge. The latter set-up represents a capacitor.] A main function of a capacitor is to store energy. It stores its energy in the electric field between the plates. Battery Capacitor (with R charges shown) C FIGURE 1 - Battery/Capacitor FIGURE 2 - RC Circuit If you hook up a battery to a capacitor, like in Figure 1, positive charge will accumulate on the side that matches to the positive side of the battery and vice versa. When the capacitor is fully charged, the voltage across the capacitor will be equal to the voltage across the battery. You know this to be true because Kirchhoff’s Loop Law must always be true.
    [Show full text]
  • ELECTRICAL CIRCUIT ANALYSIS Lecture Notes
    ELECTRICAL CIRCUIT ANALYSIS Lecture Notes (2020-21) Prepared By S.RAKESH Assistant Professor, Department of EEE Department of Electrical & Electronics Engineering Malla Reddy College of Engineering & Technology Maisammaguda, Dhullapally, Secunderabad-500100 B.Tech (EEE) R-18 MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY II Year B.Tech EEE-I Sem L T/P/D C 3 -/-/- 3 (R18A0206) ELECTRICAL CIRCUIT ANALYSIS COURSE OBJECTIVES: This course introduces the analysis of transients in electrical systems, to understand three phase circuits, to evaluate network parameters of given electrical network, to draw the locus diagrams and to know about the networkfunctions To prepare the students to have a basic knowledge in the analysis of ElectricNetworks UNIT-I D.C TRANSIENT ANALYSIS: Transient response of R-L, R-C, R-L-C circuits (Series and parallel combinations) for D.C. excitations, Initial conditions, Solution using differential equation and Laplace transform method. UNIT - II A.C TRANSIENT ANALYSIS: Transient response of R-L, R-C, R-L-C Series circuits for sinusoidal excitations, Initial conditions, Solution using differential equation and Laplace transform method. UNIT - III THREE PHASE CIRCUITS: Phase sequence, Star and delta connection, Relation between line and phase voltages and currents in balanced systems, Analysis of balanced and Unbalanced three phase circuits UNIT – IV LOCUS DIAGRAMS & RESONANCE: Series and Parallel combination of R-L, R-C and R-L-C circuits with variation of various parameters.Resonance for series and parallel circuits, concept of band width and Q factor. UNIT - V NETWORK PARAMETERS:Two port network parameters – Z,Y, ABCD and hybrid parameters.Condition for reciprocity and symmetry.Conversion of one parameter to other, Interconnection of Two port networks in series, parallel and cascaded configuration and image parameters.
    [Show full text]
  • How to Design Analog Filter Circuits.Pdf
    a b FIG. 1-TWO LOWPASS FILTERS. Even though the filters use different components, they perform in a similiar fashion. MANNlE HOROWITZ Because almost every analog circuit contains some filters, understandinghow to work with them is important. Here we'll discuss the basics of both active and passive types. THE MAIN PURPOSE OF AN ANALOG FILTER In addition to bandpass and band- age (because inductors can be expensive circuit is to either pass or reject signals rejection filters, circuits can be designed and hard to find); they are generally easier based on their frequency. There are many to only pass frequencies that are either to tune; they can provide gain (and thus types of frequency-selective filter cir- above or below a certain cutoff frequency. they do not necessarily have any insertion cuits; their action can usually be de- If the circuit passes only frequencies that loss); they have a high input impedance, termined from their names. For example, are below the cutoff, the circuit is called a and have a low output impedance. a band-rejection filter will pass all fre- lo~~passfilter, while a circuit that passes A filter can be in a circuit with active quencies except those in a specific band. those frequencies above the cutoff is a devices and still not be an active filter. Consider what happens if a parallel re- higlzpass filter. For example, if a resonant circuit is con- sonant circuit is connected in series with a All of the different filters fall into one . nected in series with two active devices signal source.
    [Show full text]
  • The RC Circuit
    The RC Circuit The RC Circuit Pre-lab questions 1. What is the meaning of the time constant, RC? 2. Show that RC has units of time. 3. Why isn’t the time constant defined to be the time it takes the capacitor to become fully charged or discharged? 4. Explain conceptually why the time constant is larger for increased resistance. 5. What does an oscilloscope measure? 6. Why can’t we use a multimeter to measure the voltage in the second half of this lab? 7. Draw and label a graph that shows the voltage across a capacitor that is charging and discharging (as in this experiment). 8. Set up a data table for part one. (V, t (0-300s in 20s intervals, 360, and 420s)) Introduction The goal in this lab is to observe the time-varying voltages in several simple circuits involving a capacitor and resistor. In the first part, you will use very simple tools to measure the voltage as a function of time: a multimeter and a stopwatch. Your lab write-up will deal primarily with data taken in this part. In the second part of the lab, you will use an oscilloscope, a much more sophisticated and powerful laboratory instrument, to observe time behavior of an RC circuit on a much faster timescale. Your observations in this part will be mostly qualitative, although you will be asked to make several rough measurements using the oscilloscope. Part 1. Capacitor Discharging Through a Resistor You will measure the voltage across a capacitor as a function of time as the capacitor discharges through a resistor.
    [Show full text]
  • AC Power • Resonant Circuits • Phasors (2-Dim Vectors, Amplitude and Phase) What Is Reactance ? You Can Think of It As a Frequency-Dependent Resistance
    Physics-272 Lecture 20 • AC Power • Resonant Circuits • Phasors (2-dim vectors, amplitude and phase) What is reactance ? You can think of it as a frequency-dependent resistance. 1 For high ω, χ ~0 X = C C ωC - Capacitor looks like a wire (“short”) For low ω, χC∞ - Capacitor looks like a break For low ω, χL~0 - Inductor looks like a wire (“short”) XL = ω L For high ω, χL∞ - Inductor looks like a break (inductors resist change in current) ("XR "= R ) An RL circuit is driven by an AC generator as shown in the figure. For what driving frequency ω of the generator, will the current through the resistor be largest a) ω large b) ω small c) independent of driving freq. The current amplitude is inversely proportional to the frequency of the ω generator. (X L= L) Alternating Currents: LRC circuit Figure (b) has XL>X C and (c) has XL<X C . Using Phasors, we can construct the phasor diagram for an LRC Circuit. This is similar to 2-D vector addition. We add the phasors of the resistor, the inductor, and the capacitor. The inductor phasor is +90 and the capacitor phasor is -90 relative to the resistor phasor. Adding the three phasors vectorially, yields the voltage sum of the resistor, inductor, and capacitor, which must be the same as the voltage of the AC source. Kirchoff’s voltage law holds for AC circuits. Also V R and I are in phase. Phasors R ε ω Problem : Given Vdrive = m sin( t), C L find VR, VL, VC, IR, IL, IC ε ∼ Strategy : We will use Kirchhoff’s voltage law that the (phasor) sum of the voltages VR, VC, and VL must equal Vdrive .
    [Show full text]
  • Chapter 14 Frequency Response
    CHAPTER 14 FREQUENCYRESPONSE One machine can do the work of fifty ordinary men. No machine can do the work of one extraordinary man. — Elbert G. Hubbard Enhancing Your Career Career in Control Systems Control systems are another area of electrical engineering where circuit analysis is used. A control system is designed to regulate the behavior of one or more variables in some desired manner. Control systems play major roles in our everyday life. Household appliances such as heating and air-conditioning systems, switch-controlled thermostats, washers and dryers, cruise controllers in automobiles, elevators, traffic lights, manu- facturing plants, navigation systems—all utilize control sys- tems. In the aerospace field, precision guidance of space probes, the wide range of operational modes of the space shuttle, and the ability to maneuver space vehicles remotely from earth all require knowledge of control systems. In the manufacturing sector, repetitive production line opera- tions are increasingly performed by robots, which are pro- grammable control systems designed to operate for many hours without fatigue. Control engineering integrates circuit theory and communication theory. It is not limited to any specific engi- neering discipline but may involve environmental, chemical, aeronautical, mechanical, civil, and electrical engineering. For example, a typical task for a control system engineer might be to design a speed regulator for a disk drive head. A thorough understanding of control systems tech- niques is essential to the electrical engineer and is of great value for designing control systems to perform the desired task. A welding robot. (Courtesy of Shela Terry/Science Photo Library.) 583 584 PART 2 AC Circuits 14.1 INTRODUCTION In our sinusoidal circuit analysis, we have learned how to find voltages and currents in a circuit with a constant frequency source.
    [Show full text]
  • Capacitors, Inductors, and First-Order Linear Circuits Overview
    EECE251 Circuit Analysis I Set 4: Capacitors, Inductors, and First-Order Linear Circuits Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia [email protected] SM 1 EECE 251, Set 4 Overview • Passive elements that we have seen so far: resistors. We will look into two other types of passive components, namely capacitors and inductors. • We have already seen different methods to analyze circuits containing sources and resistive elements. • We will examine circuits that contain two different types of passive elements namely resistors and one (equivalent) capacitor (RC circuits) or resistors and one (equivalent) inductor (RL circuits) • Similar to circuits whose passive elements are all resistive, one can analyze RC or RL circuits by applying KVL and/or KCL. We will see whether the analysis of RC or RL circuits is any different! Note: Some of the figures in this slide set are taken from (R. Decarlo and P.-M. Lin, Linear Circuit Analysis , 2nd Edition, 2001, Oxford University Press) and (C.K. Alexander and M.N.O Sadiku, Fundamentals of Electric Circuits , 4th Edition, 2008, McGraw Hill) SM 2 EECE 251, Set 4 1 Reading Material • Chapters 6 and 7 of the textbook – Section 6.1: Capacitors – Section 6.2: Inductors – Section 6.3: Capacitor and Inductor Combinations – Section 6.5: Application Examples – Section 7.2: First-Order Circuits • Reading assignment: – Review Section 7.4: Application Examples (7.12, 7.13, and 7.14) SM 3 EECE 251, Set 4 Capacitors • A capacitor is a circuit component that consists of two conductive plate separated by an insulator (or dielectric).
    [Show full text]
  • Inductors and Capacitors in AC Circuits
    Inductors and Capacitors in AC Circuits IMPORTANT NOTE: A USB flash drive is needed for the first section of this lab. Make sure to bring one with you! Introduction The goal of this lab is to look at the behaviour of inductors and capacitors - two circuit components which may be new to you. In AC circuits currents vary in time, therefore we have to consider variations in the energy stored in electric and magnetic fields of capacitors and inductors, respectively. You are already familiar with resistors, where the voltage-current relation is given by Ohm's law: VR(t) = RI(t); (1) In an inductor, the voltage is proportional to the rate of change of the current. You may recall the example of a coil of wire, where changing the current changes the magnetic flux, creating a voltage in the opposite direction (Lenz's law). A capacitor is a component where a charge difference builds up across the component. A simple example of this is a pair of parallel plates separated by a small distance, with a charge difference between them. The potential difference between the plates depends on the charge difference Q, which can also be written as the integral over time of the current flowing into/out of the capacitor. Inductors and capacitors are characterized by their inductance L and capacitance C respectively, with the voltage difference across them given by dI(t) V (t) = L ; (2) L dt Z t Q(t) 1 0 0 VC (t) = = I(t )dt (3) C C 0 1 Transient Behaviour In this first section, we'll look at how circuits with these components behave when an applied DC voltage is switched from one value to another.
    [Show full text]