<<

ESE211 Lecture 3

Phasor Diagram of an RC Circuit

V(t)=Vm sin(ωt)

R

Vi(t) C Vo(t)

• Current is a reference in series circuit

KVL: Vm = VR + VC

VR

ϕ Im

VC

V m ESE211 Lecture 3

Phasor Diagram of an RL Circuit

V(t)=Vmsin(ωt) VR (t)

R

Vi(t) L Vo(t)

KVL: Vm = VR + VL

Vm

VL ϕ

VR Im

ESE211 Lecture 3

Phasor Diagram of a Series RLC Circuit

VC VL

C L

Vi R VR

KVL: Vm = VC + VL + VR

VL

Vm

VL-C

VR Im

VC

across and compensate each other ESE211 Lecture 4

Integrating Circuit

VR

Vi(t) R Vo(t) C

22 VViR=+VC or VViR=+VC

• Assume high frequency 1/ωC << R then VR >> VC

VVRi≈ 11t t V =≈Idt Vdt Oi∫∫i C 00RC

Vi VV∝ dt Oi∫

• Accurate integrating can be obtained at high frequency that leads to a low output signal ESE211 Lecture 4

Differentiating Circuit

VC

Vi(t) C Vo(t) R

22 VViR=+VC or VViR=+VC

• Assume low frequency 1/ωC >> R then VR << VC VR 1 t d Vii≈⇒Idt Iii=C V Vi VVCi≈ ∫ C 0 dt d VV==IR≈RCV ORi dt i d VOi∝ V dt

• An accurate result can be achived at low frequency. ESE211 Lecture 4

Transient Processes

in Passive Circuits

RC Circuit without a Source

• The circuit response is due only to the energy stored in the capacitor

t=0

C R

• The capacitor C is precharged to the V0 Applying KCL:

C dV/dt +V/R = 0

• This is the 1st order differential equation ESE211 Lecture 4

Solution of the Differential Equation

dV/dt + V/RC = 0

dV/V = -dt/RC

ln V = -t/RC +a

V = A e -t/RC , A=e+a

• e is the base of the natural logarithms, e = 2.718… • Continuity requires the initial condition:

At t = 0 V(0) = V0

-t/RC V(t) = V0 e

• The response governed by the elements themselves without external force is called a natural response ESE211 Lecture 4

The

V(t)

V0

0.368 V0

0.05 V0

τ time 3τ

• The time constant τ = RC is the rate at which the natural response decays to zero • Time τ is required to decay by a factor of 1/e=0.368 • After the time period of 3τ the transient process is considered to be completed

ESE211 Lecture 4

Determination of the Time Constant

V0 V

V1

V/e

τ t

1) From the solution of the equation By definition: as the time when the signal decreases by 1/e

V(t+τ)/V(t) = 1/e

The time t can be chosen arbitrarily

2) From the slope of the line at t=0 Differentiating the solution

–t/τ dV/dt = -{V0/τ } e

V1(t) = -{V0/τ }t +V0 V1(τ) = 0 ESE211 Lecture 4

Transient Response of an Integrating RC Circuits

VR

Vi VC

KVL: Vi = VR + VC

Vi

t

VO =VC

VR t

t ESE211 Lecture 4

Transient Response of a Differentiating RC Circuits

VC

Vi VR

KVL: Vi = VC + VR

Vi

t

VO = VR

t

VC

ESE211 Lecture 5

Transfer Function

Vi(t) Vo(t)

Vi(t) = Vimcos(ωt) Vo(t) = Vomcos(ωt+ϕ)

Vom(ω) ϕ(ω)

jωt jϕ Vo(t) =Re { Vo e }, Vo = Vome

V (ω) T (ω) = o Vi

Amplitude response |T(ω)| = Vom(ω)/Vim

Phase response ∠T(ω) = ϕ(ω) ESE211 Lecture 5

The of

an Integrating RC Circuit

R

Vi(t) C Vo(t)

1

V o (ω) jωC 1 T(ω) = = = V 1 1+ jωRC i R + jωC

1 T (ω) = 1+ jωτ τ=RC

ESE211 Lecture 5

Amplitude Response of

the Integrating RC Circuit

• The magnitude of the transfer function is

1 T (ω) = 1+ ω 2τ 2

• The Integrating RC circuit is a LOW-PASS filter

1.0

0.707 | in /V

o 0.5 |V

0.0 -3 -2 -1 0 1 2 3 0.001ω 0.01ω 0.1ω ω 10ω 100ω 1000ω ο ο ο ο ο ο ο Frequency (ω) 0 100 slope -20 dB/dec -1 -3 dB -20 | 10 ] in /V [dB o 0

|V -2 -40 10 V

10-3 -3 -2 -1 0 1 2 3 -60

0.001ω 0.01ω 0.1ω ω 10ω 100ω 1000ω ο ο ο ο ο ο ο Frequency (ω) ESE211 Lecture 5

Phase Response of

the Integrating RC Circuit

The angle of the transfer function is

Im[]T(ω) ∠T (ω) = arctan Re[]T(ω)

1− jωτ ∠T(ω) = ∠ = −arctan(ωτ ) (1+ jωτ )(1− jωτ )

0

o

V -45

-90

-3 -2 -1 0 1 2 3

0.001 ωο 0.01ω ο 0.1ω ο ωο 10 ωο 100 ωο 1000 ωο Frequency ( ω) ESE211 Lecture 5

The Transfer Function of

a Differentiating RC Circuit

C

Vi(t) R Vo(t)

V (ω) I(ω) ⋅ R T(ω) = o =

Vi I(ω) ⋅ X RC (ω)

R R jωRC T (ω) = = = X (ω) 1 1+ jωRC RC R + jωC

jωτ (1− jωτ ) ωτ (ωτ + j) T (ω) = 2 2 = 2 2 1+ω τ 1+ω τ

τ = RC ESE211 Lecture 5

Amplitude response of the Differentiating RC Circuit

• Amplitude response of the RC circuit is the magnitude of T(ω)

ωτ (ωτ + j) ωτ T(ω) = 2 2 = 1+ ω τ 1+ ω 2τ 2

• The Differentiating RC circuit is a HIGH-PASS filter

1.0

| V =0.707 V

in 0 in V o/ 0.5 |V

0.0 -3 -2 -1 0 1 2 3 0.001 0.01 0.1 ω 10 100ω 1000ω ωο ωο ωο ο ωο ο ο Frequency ( ω) 0 100 slope

-1 -20 dB/dec -20 ] | 10 -3 dB point at ω

in or 0 /V -6 dB/oct [dB o 0 V |V 10-2 -40

10-3 -3 -2 -1 0 1 2 3 -60

0.001ω 0.01ω 0.1ω ω 10 100 1000 ο ο ο ο ωο ωο ω Frequency ( ω) ο ESE211 Lecture 5

Phase response of the Differentiating RC Circuit

• Phase response of the RC circuit is the phase angle of T(ω)

ωτ (ωτ + j) ∠T (ω) = ∠   1+ ω 2τ 2 

1 ∠T(ω) = arctan ωτ

90 0 V 45

0

-3 -2 -1 0 1 2 3 0.001 0.01 0.1 ω 10 100ω 1000ω ωο ωο ωο ο ωο ο ο Frequency ( ω) ESE211 Lecture 5

Frequency Response of a Series RLC Circuit

VC VL

C L

Vi R VR

KVL: Vi = VC + VL + VR

VL

VL-C Vi

VR Im

VC

• Voltages across capacitor and inductor compensate each other ESE211 Lecture 5

Amplitude Response of a Series RLC Circuit

R R |V 0 /V IN |= = 2 1  1  jωL + + R R 2 + ωL −  jωC  ωC 

1.0

V =0.707 V

| 0 in in

/V 0.5 o |V

0.0-3 -2 -1 0 1 2 3 100 1000 0.001ωο 0.01ωο 0.1ωο ωο 10ωο ωο ωο Frequency ( ω) 1.5 | in /V L 1.0 |V

|, |VC/Vin| |VL/Vin| in /V

C 0.5 |V

0.0 -3 -2 -1 0 1 2 3

0.001 0.01 0.1 ω ωο ωο ωο ο 10ωο 100ωο 1000ω Frequency (ω) ο ESE211 Lecture 5

Amplitude and Phase Response of

the Ladder RC Circuit

R R

Vin C C Vo

0

o

V -90

-180

-3 -2 -1 0 1 2 3 0.001ωο 0.01ωο 0.1ωο ωο 10ωο 100 ωο 1000 ωο Frequency ( ) ω 0 0 10

-2 -40 | 10 ]

in

/V [dB o slope 0 |V -4 -80 10 V -40 dB/dec

10-6 -3 -2 -1 0 1 2 3 -120

0.001ω 0.01ω 0.1ω ω 10ω 100ω 1000ω ο ο ο ο ο ο ο Frequency (ω) ESE211 Lecture 5

Amplitude and Phase Response of a Wien-Bridge Circuit

R C

−1  1   + jωC  ZOUT  R  T(ω) = = −1 Vin R C Vo ZTOTAL  1  1  + jωC  + R +  R  jωC

100

50

0 o V -50

-100 -3 -2 -1 0 1 2 3 0.001 0.01 0.1 ω 10 100ω 1000ω ωο ωο ωο ο ωο ο ο Frequency (ω )

0.33

0.24 V =0.707 V

| 0 max n i 5 BandWidth /V o

|V

0.0-3 -2 -1 0 1 2 3

100 1000 0.001ωο 0.01ωο 0.1ωο ωο 10ωο ωο ωο Frequency ( ω)