Phasor Diagram of an RC Circuit Vi(T) C Vo(T) VR Vm Im VC

Phasor Diagram of an RC Circuit Vi(T) C Vo(T) VR Vm Im VC

ESE211 Lecture 3 Phasor Diagram of an RC Circuit V(t)=Vm sin(ωt) R Vi(t) C Vo(t) • Current is a reference in series circuit KVL: Vm = VR + VC V R ϕ Im VC V m ESE211 Lecture 3 Phasor Diagram of an RL Circuit V(t)=Vmsin(ωt) VR (t) R Vi(t) L Vo(t) KVL: Vm = VR + VL Vm VL ϕ VR Im ESE211 Lecture 3 Phasor Diagram of a Series RLC Circuit VC VL C L Vi R VR KVL: Vm = VC + VL + VR VL Vm VL-C VR Im VC • Voltages across capacitor and inductor compensate each other ESE211 Lecture 4 Integrating Circuit VR Vi(t) R Vo(t) C 22 VViR=+VC or VViR=+VC • Assume high frequency 1/ωC << R then VR >> VC VVRi≈ 11t t VOi=≈Idt Vdi t ∫∫ C 00RC Vi VV∝ dt Oi∫ • Accurate integrating can be obtained at high frequency that leads to a low output signal ESE211 Lecture 4 Differentiating Circuit VC Vi(t) C Vo(t) R 22 VViR=+VC or VViR=+VC • Assume low frequency 1/ωC >> R then VR << VC VR 1 t d Vii≈⇒Idt Iii=C V Vi VVCi≈ ∫ C 0 dt d VV==IR≈RCV ORi dt i d VOi∝ V dt • An accurate result can be achived at low frequency. ESE211 Lecture 4 Transient Processes in Passive Circuits RC Circuit without a Source • The circuit response is due only to the energy stored in the capacitor t=0 C R • The capacitor C is precharged to the voltage V0 Applying KCL: C dV/dt +V/R = 0 • This is the 1st order differential equation ESE211 Lecture 4 Solution of the Differential Equation dV/dt + V/RC = 0 dV/V = -dt/RC ln V = -t/RC +a V = A e -t/RC , A=e+a • e is the base of the natural logarithms, e = 2.718… • Continuity requires the initial condition: At t = 0 V(0) = V0 -t/RC V(t) = V0 e • The response governed by the elements themselves without external force is called a natural response ESE211 Lecture 4 The Time Constant V(t) V0 0.368 V0 0.05 V0 τ time 3τ • The time constant τ = RC is the rate at which the natural response decays to zero • Time τ is required to decay by a factor of 1/e=0.368 • After the time period of 3τ the transient process is considered to be completed ESE211 Lecture 4 Determination of the Time Constant V0 V V1 V/e τ t 1) From the solution of the equation By definition: as the time when the signal decreases by 1/e V(t+τ)/V(t) = 1/e The time t can be chosen arbitrarily 2) From the slope of the line at t=0 Differentiating the solution –t/τ dV/dt = -{V0/τ } e V1(t) = -{V0/τ }t +V0 V1(τ) = 0 ESE211 Lecture 4 Transient Response of an Integrating RC Circuits VR Vi VC KVL: Vi = VR + VC Vi t VO =VC VR t t ESE211 Lecture 4 Transient Response of a Differentiating RC Circuits VC Vi VR KVL: Vi = VC + VR Vi t VO = VR t VC ESE211 Lecture 5 Transfer Function Vi(t) Vo(t) Vi(t) = Vimcos(ωt) Vo(t) = Vomcos(ωt+ϕ) Vom(ω) ϕ(ω) jωt jϕ Vo(t) =Re { Vo e }, Vo = Vome V (ω) T (ω) = o Vi Amplitude response |T(ω)| = Vom(ω)/Vim Phase response ∠T(ω) = ϕ(ω) ESE211 Lecture 5 The Transfer Function of an Integrating RC Circuit R Vi(t) C Vo(t) 1 V o (ω) jωC 1 T(ω) = = = V 1 1+ jωRC i R + jωC 1 T (ω) = 1+ jωτ τ=RC ESE211 Lecture 5 Amplitude Response of the Integrating RC Circuit • The magnitude of the transfer function is 1 T (ω) = 1+ ω 2τ 2 • The Integrating RC circuit is a LOW-PASS filter 1.0 0.707 | in /V o 0.5 |V 0.0 -3 -2 -1 0 1 2 3 0.001ω 0.01ω 0.1ω ω 10ω 100ω 1000ω ο ο ο ο ο ο ο Frequency (ω) 0 100 slope -20 dB/dec -1 -3 dB -20 | 10 ] in /V [dB o 0 |V -2 -40 10 V 10-3 -3 -2 -1 0 1 2 3 -60 0.001ω 0.01ω 0.1ω ω 10ω 100ω 1000ω ο ο ο ο ο ο ο Frequency (ω) ESE211 Lecture 5 Phase Response of the Integrating RC Circuit The angle of the transfer function is Im[]T(ω) ∠T (ω) = arctan Re[]T(ω) 1− jωτ ∠T(ω) = ∠ = −arctan(ωτ ) (1+ jωτ )(1− jωτ ) 0 o V -45 -90 -3 -2 -1 0 1 2 3 0.001 ωο 0.01ω ο 0.1ω ο ωο 10 ωο 100 ωο 1000 ωο Frequency ( ω) ESE211 Lecture 5 The Transfer Function of a Differentiating RC Circuit C Vi(t) R Vo(t) V (ω) I(ω) ⋅ R T(ω) = o = Vi I(ω) ⋅ X RC (ω) R R jωRC T (ω) = = = X (ω) 1 1+ jωRC RC R + jωC jωτ (1− jωτ ) ωτ (ωτ + j) T (ω) = 2 2 = 2 2 1+ω τ 1+ω τ τ = RC ESE211 Lecture 5 Amplitude response of the Differentiating RC Circuit • Amplitude response of the RC circuit is the magnitude of T(ω) ωτ (ωτ + j) ωτ T(ω) = 2 2 = 1+ ω τ 1+ ω 2τ 2 • The Differentiating RC circuit is a HIGH-PASS filter 1.0 | V =0.707 V in 0 in V o/ 0.5 |V 0.0 -3 -2 -1 0 1 2 3 0.001 0.01 0.1 ω 10 100ω 1000ω ωο ωο ωο ο ωο ο ο Frequency ( ω) 0 100 slope -1 -20 dB/dec -20 ] | 10 -3 dB point at ω in or 0 /V -6 dB/oct [dB o 0 V |V 10-2 -40 10-3 -3 -2 -1 0 1 2 3 -60 0.001ω 0.01ω 0.1ω ω 10 100 1000 ο ο ο ο ωο ωο ω Frequency ( ω) ο ESE211 Lecture 5 Phase response of the Differentiating RC Circuit • Phase response of the RC circuit is the phase angle of T(ω) ωτ (ωτ + j) ∠T (ω) = ∠ 1+ ω 2τ 2 1 ∠T(ω) = arctan ωτ 90 0 V 45 0 -3 -2 -1 0 1 2 3 0.001 0.01 0.1 ω 10 100ω 1000ω ωο ωο ωο ο ωο ο ο Frequency ( ω) ESE211 Lecture 5 Frequency Response of a Series RLC Circuit VC VL C L Vi R VR KVL: Vi = VC + VL + VR VL VL-C Vi VR Im VC • Voltages across capacitor and inductor compensate each other ESE211 Lecture 5 Amplitude Response of a Series RLC Circuit R R |V 0 /V IN |= = 2 1 1 jωL + + R R 2 + ωL − jωC ωC 1.0 V =0.707 V | 0 in in /V 0.5 o |V 0.0-3 -2 -1 0 1 2 3 100 1000 0.001ωο 0.01ωο 0.1ωο ωο 10ωο ωο ωο Frequency ( ω) 1.5 | in /V L 1.0 |V |, |VC/Vin| |VL/Vin| in /V C 0.5 |V 0.0 -3 -2 -1 0 1 2 3 0.001 0.01 0.1 ω ωο ωο ωο ο 10ωο 100ωο 1000ω Frequency (ω) ο ESE211 Lecture 5 Amplitude and Phase Response of the Ladder RC Circuit R R Vin C C Vo 0 o V -90 -180 -3 -2 -1 0 1 2 3 0.001ωο 0.01ωο 0.1ωο ωο 10ωο 100 ωο 1000 ωο Frequency ( ) ω 0 100 -2 -40 | 10 ] in /V [dB o slope 0 |V -4 -80 10 V -40 dB/dec 10-6 -3 -2 -1 0 1 2 3 -120 0.001ω 0.01ω 0.1ω ω 10ω 100ω 1000ω ο ο ο ο ο ο ο Frequency (ω) ESE211 Lecture 5 Amplitude and Phase Response of a Wien-Bridge Circuit R C −1 1 + jωC ZOUT R T(ω) = = −1 Vin R C Vo ZTOTAL 1 1 + jωC + R + R jωC 100 50 0 o V -50 -100 -3 -2 -1 0 1 2 3 0.001 0.01 0.1 ω 10 100ω 1000ω ωο ωο ωο ο ωο ο ο Frequency (ω ) 0.33 0.24 V =0.707 V | 0 max n i 5 BandWidth /V o |V 0.0-3 -2 -1 0 1 2 3 100 1000 0.001ωο 0.01ωο 0.1ωο ωο 10ωο ωο ωο Frequency ( ω) .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    22 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us