Radioactivity Introduction and History, from the Quantum to Quarks

Total Page:16

File Type:pdf, Size:1020Kb

Radioactivity Introduction and History, from the Quantum to Quarks Radioactivity Introduction and History, From the Quantum to Quarks Second Edition Michael F. L'Annunziata ELSEVIER • • AMSTERDAM BOSTON HEIDELBERG • LONDON • NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Contents About the Author xiii 1.7 Nuclear Power 58 Foreword xv 1 7.1 Nuclear Fission 58 Preface to the First Edition xvn 1.7.2 Desalination 59 Preface to the Second Edition xix 1.7.3 Nuclear Fusion 60 Acronyms, Abbreviations and Symbols xxi 1.8 Summary 66 Introduction xxix 2. Basic Concepts and Definitions 67 2.1 Properties of Atomic Constituents 67 2.2 Nuclide Nomenclature 68 1. Radioactivity and Our 1 Well-Being 2.3 Mass and Energy 70 1.1 Human Health 2 2.4 Q Value 71 1.1.1 X-Ray Diagnostic Radiography 2 2.5 Naturally Occurring Radionuclides 72 1.1.2 X-Ray Computed Tomography 3 2.5.1 Radionuclides of Cosmogenic Origin 73 1.1.3 Single Photon Emission Computed 2.5.2 Long-Lived Radionuclides 73 Tomography 6 2.5 3 Natural Radioactive Decay Chains 74 1.1.4 Positron Emission Tomography 7 2.6 Artificially Produced Radionuclides 74 1.1.5 Radiation Therapy 10 1.1.6 Radioactive Nanoparticles in Cancer 3. Hall of Fame: Part I 79 Imaging and Therapy 18 Democritus (c.460—370 BC) 79 1.2 Biological Research 20 Wilhelm C. Rontgen (1845—1923) 80 1.3 Food and Agriculture 23 Ivan Pavlovich Puluj (a.k.a. Johann Puluj 1.3.1 Insect Pest Control 24 1845-1918) 83 1.3.2 Fertilizer and Water Use Efficiency 26 Henri Becquerel (1852—1908) 89 1.3.3 Animal Health and Production 30 Pierre Curie (1859—1906) and Marie Curie 1.3.4 Plant Breeding 33 (1867-1934) 90 1.4 Water Resources 37 Paul Villard (1860-1934) 93 1.5 Marine Resources 41 Ernest Rutherford (1871—1937) 96 1.5.1 Climate Change and Marine Johannes "Hans" Geiger (1881—1945) 103 Acidification 41 Hendrick A. Lorentz (1853—1928) 109 1.5.2 Ocean Water Transport and James Clerk Maxwell (1831-1879) 110 Circulation 43 Pieter Zeeman (1865—1943) 113 1.5.3 Harmful Algal Blooms in Marine Jean B. Perrin (1870—1942) 114 Coastal Waters 43 Joseph John Thomson (1856—1940) 116 1.5.4 Other Isotope Applications in Marine Hantaro Nagaoka (1865—1950) 118 Science 45 Philipp Lenard (1862—1947) 120 1.6 Radiation Technology 46 1.6.1 Research Reactors and 4. Radiation 123 Accelerators 46 Alpha 1.6.2 Neutron Diffraction and Scattering 46 4.1 Introduction 123 1.6.3 Neutron Radiography 48 4.2 Decay Energy 123 1.6.4 Neutron Activation Analysis 49 4.3 Alpha Decay-Energy and Half-Life 1.6.5 X-Ray Diffraction, Emission, Relationship 126 and Fluorescence Analysis 50 4.4 Alpha Particle Interactions With Matter 128 1.6.6 Radiation Processing 54 4.5 Alpha Particle Ranges 130 Contents 216 5. Hall of Fame: Part II 135 Time Dilation in Relativity Evidence for Relativity Provided by Muons Frederick 135 Soddy (1877—1956) in the Showers of Cosmic Radiation 217 137 C.T.R. Wilson (1869-1959) Evidence for Relativity From Particle Frederic and Joliet (1900—1958) Accelerator Experiments 219 143 Irene Joliet-Curie (1897-1956) Equivalence of Mass and Energy Enrico Fermi 147 (1901—1954) (£= mc2) 220 Pauli (1900—1958) 153 Wolfgang Energy and Mass in Relativity 221 Frederick Reines and (1918—1998) Relati vistic Mass Calculations 222 L. r. 157 Clyde Cowan, J (1919-1974) Interaction of Gravitational Mass 163 Otto Stern (1888-1969) and Photons 223 Professorships in Switzerland, Czech Radiation and Beta 167 6. Beta Decay Republic, Germany, and USA 224 Einstein's Letter to President Franklin 6.1 Introduction 167 D Roosevelt 225 6.2 Negatron (/3~) Emission 167 Einstein the Pacifist 225 62 1 Basic Principles 168 Arthur H. (1892—1962) 226 6 2 2 Inverse Beta Decay 169 Compton Wu Youxun 230 6 2 3 Neutrino Mass 170 (1897-1977) Yoshio Nishina (1890—1950) 232 62 4 Negatron Decay Energy 171 Formation into Pioneer of Modern 6.3 Positron ((3+) Emission 174 Japan's 232 6 3 1 Basic Principles 174 Physics Pioneer of Modern 233 6 3 2 N/Z Ratios and Beta Decay 176 Physics Work on Atomic Bomb 233 6 3 3 Positron Decay Energy 176 Project Loss and 234 6.4 Electron Capture 179 Heartbreaking Recovery Max von Laue (1879—1960) 235 64 1 Basic Principles 179 Sir William (1862—1942) and 6 4 2 EC Decay Energy 180 Henry Bragg Sir William Lawrence 238 6 4 3 Chemical and Pressure Effects Bragg (1890—1971) Rosalind Franklin (1920-1958) 243 on EC Decay Rates 182 (1887-1915) 248 6.5 Branching (3+, and EC Decay 183 Henry G.J. Moseley Charles Glover Barkla 251 6.6 Double-Beta (|3j8) Decay 184 (1877-1944) Manne 253 6 6 1 Discovery and Current Research 185 Siegbahn (1886—1978) Robert A. Millikan and 6 6 2/3/? Decay Energy 186 (1868—1953) Harvey Fletcher 255 6 6 3 Neutrinoless Decay 188 (1884-1981) Homi Bhabha 264 6.7 Beta Particle Interactions With Matter 190 J. (1909-1966) 6.8 Beta Particle Absorption and Transmission 192 8. Electromagnetic Radiation: Photons 269 6.9 Power and Linear Stopping Energy 8.1 Introduction 269 Transfer 195 8.2 Dual Nature: Wave and Particle 269 69 1 Power 195 Stopping 8.3 Gamma Radiation 271 6 9 2 Linear Transfer 199 Energy 8.4 Annihilation Radiation 274 8.5 Cherenkov Radiation 275 7. Hall of Fame: Part III 203 8.6 X-Radiation 275 8 6 1 Characterized Discrete Max Planck (1858-1947) 203 X-Rays by Louis de Broglie (1892-1987) 207 Spectral Lines 276 Albert Einstein (1879—1955) 210 8 62 Bremsstrahlung 278 8 6 3 From Beta-Particle Early Years 211 X-Rays Emissions Discovery of the Photon Particle 211 283 8.7 Radiation Discovery of Molecular Dimensions Synchrotron 284 8 7 1 Radiation From in Brownian Motion 213 Synchrotron Natural Sources 284 Relativity 213 Relativistic Length Contraction and Time 8 7 2 Discovery of Synchrotron Radiation 284 Dilation 213 8 7 3 Synchrotron Radiation and Accelerated Electron 286 Length Contraction in Relativity 214 Properties Contents ix 8.7.4 Synchrotron Radiation Production The Franck Report, June 11, 1945, James and Applications 287 Franck (Chairman) 403 8.8 Interaction of Electromagnetic Radiation I. Preamble 403 With Matter 291 II. Prospectives of Armaments Race 403 8.8.1 Introduction 291 III. Prospectives of Agreement 403 8.8.2 Photoelectric Effect 291 IV. Methods of International Control 404 8.8.3 Compton Effect 292 The Franck—Hertz Experiment 404 8.8.4 Pair Production 293 Werner Heisenberg (1901—1976), Erwin 8.8.5 Combined Photon Interactions 296 Schrodinger (1887—1961), Max Born (1882-1970), and Paul A.M. Dirac 9. Hall of Fame: Part IV 303 (1902-1984) 407 Clinton Davisson (1881—1958) and James Chadwick (1891—1974) 303 George Paget Thomson (1892—1975) 424 Lise Meitner (1878—1968) and Otto Hahn Pierre Victor Auger (1899—1993) 433 (1879-1968) 309 Leo Szilard (1898—1964) 318 12. Atomic Electron Radiation Joseph Rotblat (1908-2005) 345 435 The Russell—Einstein Manifesto, London, 12.1 Introduction 435 1955 349 July 9, 12.2 Internal Conversion Electrons 435 Edward Teller (1908—2003) 353 12.3 Auger Electrons 438 10. Neutron Radiation 361 13. Hall of Fame: Part VI 443 10.1 Introduction 361 Victor F. Hess (1883—1964) 443 10.2 Neutron Classification 361 Carl D. Anderson (1905—1991) 446 10.3 Neutron Sources 366 Patrick M.S. Blackett (1897-1974) 453 10.3.1 Nuclear Alpha—Particle-Induced Hideki Yukawa (1907—1981) 460 Reactions 367 Cecil F. Powell (1903-1969) 463 10.3.2 Fission Spontaneous 368 Emilio Segre (1905—1989) and Owen 10.3.3 Neutron-Induced Fission 369 Chamberlain (1920—2006) 474 10.3.4 Photoneutron (y,n) Donald A. Glaser (1926-2013) 485 Sources 372 Manuel Sandoval Vallarta (1899—1977) 492 10.3.5 Accelerator Sources 374 10.3.6 Nuclear Fusion 375 14. Cosmic Radiation 495 10.3.7 Inertial Electrostatic Confinement Fusion (IECF) 377 14.1 Introduction 495 10.4 Interactions of Neutrons With 14.2 Classification and Properties 496 Matter 379 14.3 Showers of Cosmic Radiation 501 10.4.1 Elastic Scattering 379 14.4 Cosmic Rays Underground 505 10.4.2 Inelastic Scattering 380 14.5 Origins of Cosmic Radiation 506 10.4.3 Neutron Capture 381 14.6 Cosmic Microwave Background 10.4.4 Nonelastic Reactions 381 Radiation and the Big-Bang Theory 506 10.4.5 Nuclear Fission 382 14.7 Radiation Dose from Cosmic 10.5 Neutron Attenuation and Radiation and Other Sources 514 Cross-Sections 383 10.6 Neutron 388 Decay 15. Hall of Fame: Part VII 519 Ivanovich Vavilov (1891—1951) 519 11. Hall of Fame: Part V 391 Sergei Pavel Alekseyevich Cherenkov Niels Bohr (1885-1962) 391 (1904-1990) 527 Gustav Hertz (1887—1975) and James ITJa Mikhailovich Frank (1908—1990) and Franck (1882-1964) 400 Igor Yevgenyevich Tamm (1895—1971) 541 Contents 16. Cherenkov Radiation 547 19. Hall of Fame: Part IX 639 16.1 Introduction 547 Maria Goeppert-Mayer (1906—1972) 16.2 Theory and Properties 550 and J. Hans D. Jensen (1907—1973) 639 16.2.1 Threshold Condition 550 Eugene P. Wigner (1902—1995) 645 16.2.2 Threshold Energies 550 Chen-Ning Yang (1922—), Tsung-Dao 16.2.3 Photon Spatial Asymmetry 552 Lee (1926-), and Chien-Shiung Wu 16.2.4 Photon Spectrum and Radiation (1912-1997) 649 Intensity 555 Parity Violation in Beta Decay 652 16.2.5 Duration of Cherenkov Light Isidor Isaac Rabi (1898—1988) 657 Flash 559 Important Developments from Rabi's Work 16.3 Cherenkov Photons from Gamma-Ray on Nuclear Magnetic Resonance 662 Interactions 560 Richard P.
Recommended publications
  • Sterns Lebensdaten Und Chronologie Seines Wirkens
    Sterns Lebensdaten und Chronologie seines Wirkens Diese Chronologie von Otto Sterns Wirken basiert auf folgenden Quellen: 1. Otto Sterns selbst verfassten Lebensläufen, 2. Sterns Briefen und Sterns Publikationen, 3. Sterns Reisepässen 4. Sterns Züricher Interview 1961 5. Dokumenten der Hochschularchive (17.2.1888 bis 17.8.1969) 1888 Geb. 17.2.1888 als Otto Stern in Sohrau/Oberschlesien In allen Lebensläufen und Dokumenten findet man immer nur den VornamenOt- to. Im polizeilichen Führungszeugnis ausgestellt am 12.7.1912 vom königlichen Polizeipräsidium Abt. IV in Breslau wird bei Stern ebenfalls nur der Vorname Otto erwähnt. Nur im Emeritierungsdokument des Carnegie Institutes of Tech- nology wird ein zweiter Vorname Otto M. Stern erwähnt. Vater: Mühlenbesitzer Oskar Stern (*1850–1919) und Mutter Eugenie Stern geb. Rosenthal (*1863–1907) Nach Angabe von Diana Templeton-Killan, der Enkeltochter von Berta Kamm und somit Großnichte von Otto Stern (E-Mail vom 3.12.2015 an Horst Schmidt- Böcking) war Ottos Großvater Abraham Stern. Abraham hatte 5 Kinder mit seiner ersten Frau Nanni Freund. Nanni starb kurz nach der Geburt des fünften Kindes. Bald danach heiratete Abraham Berta Ben- der, mit der er 6 weitere Kinder hatte. Ottos Vater Oskar war das dritte Kind von Berta. Abraham und Nannis erstes Kind war Heinrich Stern (1833–1908). Heinrich hatte 4 Kinder. Das erste Kind war Richard Stern (1865–1911), der Toni Asch © Springer-Verlag GmbH Deutschland 2018 325 H. Schmidt-Böcking, A. Templeton, W. Trageser (Hrsg.), Otto Sterns gesammelte Briefe – Band 1, https://doi.org/10.1007/978-3-662-55735-8 326 Sterns Lebensdaten und Chronologie seines Wirkens heiratete.
    [Show full text]
  • Physiker-Entdeckungen Und Erdzeiten Hans Ulrich Stalder 31.1.2019
    Physiker-Entdeckungen und Erdzeiten Hans Ulrich Stalder 31.1.2019 Haftungsausschluss / Disclaimer / Hyperlinks Für fehlerhafte Angaben und deren Folgen kann weder eine juristische Verantwortung noch irgendeine Haftung übernommen werden. Änderungen vorbehalten. Ich distanziere mich hiermit ausdrücklich von allen Inhalten aller verlinkten Seiten und mache mir diese Inhalte nicht zu eigen. Erdzeiten Erdzeit beginnt vor x-Millionen Jahren Quartär 2,588 Neogen 23,03 (erste Menschen vor zirka 4 Millionen Jahren) Paläogen 66 Kreide 145 (Dinosaurier) Jura 201,3 Trias 252,2 Perm 298,9 Karbon 358,9 Devon 419,2 Silur 443,4 Ordovizium 485,4 Kambrium 541 Ediacarium 635 Cryogenium 850 Tonium 1000 Stenium 1200 Ectasium 1400 Calymmium 1600 Statherium 1800 Orosirium 2050 Rhyacium 2300 Siderium 2500 Physiker Entdeckungen Jahr 0800 v. Chr.: Den Babyloniern sind Sonnenfinsterniszyklen mit der Sarosperiode (rund 18 Jahre) bekannt. Jahr 0580 v. Chr.: Die Erde wird nach einer Theorie von Anaximander als Kugel beschrieben. Jahr 0550 v. Chr.: Die Entdeckung von ganzzahligen Frequenzverhältnissen bei konsonanten Klängen (Pythagoras in der Schmiede) führt zur ersten überlieferten und zutreffenden quantitativen Beschreibung eines physikalischen Sachverhalts. © Hans Ulrich Stalder, Switzerland Jahr 0500 v. Chr.: Demokrit postuliert, dass die Natur aus Atomen zusammengesetzt sei. Jahr 0450 v. Chr.: Vier-Elemente-Lehre von Empedokles. Jahr 0300 v. Chr.: Euklid begründet anhand der Reflexion die geometrische Optik. Jahr 0265 v. Chr.: Zum ersten Mal wird die Theorie des Heliozentrischen Weltbildes mit geometrischen Berechnungen von Aristarchos von Samos belegt. Jahr 0250 v. Chr.: Archimedes entdeckt das Hebelgesetz und die statische Auftriebskraft in Flüssigkeiten, Archimedisches Prinzip. Jahr 0240 v. Chr.: Eratosthenes bestimmt den Erdumfang mit einer Gradmessung zwischen Alexandria und Syene.
    [Show full text]
  • UNESCO – Kalinga Prize Winner – 1971 Pierre Victor Auger a Life in the Service of Science
    Glossary on Kalinga Prize Laureates UNESCO – Kalinga Prize Winner – 1971 Pierre Victor Auger A Life in the Service of Science French Physicist, Discoverer of the Atomic Auger Electronic Effect. [Born : Paris 14th May, 1899 Died : Paris 25th December 1993] Professor Auger’s outstanding professional career covered Physics, Nuclear Power & Space Research, Organization and Administration of Research, Diplomatic Services & Pedagogics but also extended in to Modern Biology, Humanistic Sciences, Poetry & Arts. He was awarded with the most Prestigious Gaede – Langmuir Award “For establishing the Fundamental Principle of Auger Spectroscopy which has led to the most widely used surface analysis technique of importance to all aspects of Vacuum Science & Technology”. Energy with the Earth Atmosphere can be considered like discoverer of gigantic particle rains generated by the interaction of cosmic rays of Extreme Discharge ...Pierre Auger 1 Glossary on Kalinga Prize Laureates Pierre Victor Auger Pierre Victor Auger (May 14, 1899 – December 25, 1993) was a French Physicist, born in Paris. He worked in the fields of atomic physics, nuclear physics and cosmic ray physics. The Auger process where Auger electrons are emitted from atoms was named after him, despite the fact that Lise Meitner discovered the process a few years before in 1923. In his work with cosmic rays, he found that the cosmic radiation events were coincident in time meaning that they were associated with a single event, an air shower. He estimated that the energy of the incoming particle that creates large air showers must be at least 1015eV (electron-volts) = 106 particles of 108eV (critical energy in air) and a factor of ten for energy loss from traversing the atmosphere (Auger et al., 1939).
    [Show full text]
  • Measurements of the Maximum Depth of Air Shower Profiles at LHC Energies with the High-Elevation Auger Telescopes
    Measurements of the maximum depth of air shower profiles at LHC energies with the High-Elevation Auger Telescopes Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften an der Fakultät für Physik des Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation von Dipl.-Phys. Alaa Metwaly Kuotb Awad aus El Fayoum/Egypt Tag der mündlichen Prüfung: 21.12.2018 Referent: Prof. Dr. Dr. h.c. Johannes Blümer Korreferent: Prof. Dr. Ralph Engel Betreuer: Dr. Ralf Ulrich ii Abstract More than 100 years after their discovery, the nature of cosmic rays is still a mystery in many aspects. The subject of this thesis is to measure the mass composition of the cosmic rays at an energy range from 1015.8eV to 1017eV. This relies on the Cherenkov light emitted in the forward direction of the shower, directly pointing towards the telescopes. A new technique was proposed for the reconstruction named Profile Constrained Geometry Fit (PCGF). The benefit of this special technique is a high accuracy geometry reconstruction, which is pos- sible using only the telescope signals. A full PCGF dataset is produced for the Cherenkov dominated showers observed by the High Elevation Auger Telescopes (HEAT). The mass composition is deduced from the distribution of the maximum depth of those showers, Xmax. The first two moments of the distribution, hXmaxi, and s(Xmax), are compared to their counterparts of proton and iron simulations. The performance of the reconstruction and the analysis is studied using a complete time-dependent Monte Carlo simulation. It is a novel technique that is used for the first time in Pierre Auger, and by which the mass composition is measured in the energy region where there are signatures of cosmic ray transition from galactic to an extragalactic origin.
    [Show full text]
  • Investigating UV Nightglow Within the Framework of the JEM-EUSO Experiments
    Investigating UV nightglow within the framework of the JEM-EUSO Experiments Frej-Eric Salomon Emmoth Space Engineering, master's level 2020 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Investigating UV nightglow within the framework of the JEM-EUSO Experiments Master Thesis Space Engineering, Instrumentation and Spacecraft Author: Frej-Eric Salomon Emmoth Supervisors: Dr. Toshikazu Ebisuzaki Chief Scientist at Computational Astrophysics Laboratory, RIKEN & Dr. Marco Casolino Team Leader, EUSO Team, Research Scientist at RIKEN Examiner: Dr. Johnny Ejemalm Senior Lecturer, Lule˚aUniversity of Technology Acknowledgements I would like to first extend my most sincere gratitude to Dr. Ebisuzaki and Dr. Casolino for giving me the opportunity to do my thesis at RIKEN within the JEM-EUSO Collaboration and their invaluable help during my time there. I am also very grateful for the people at the laboratory, many of whom I today consider my friends, who made my stay in Japan so much better. I look forward to once again see the mountains of Nagano. I next want to give thanks to my family and friends for their constant support and encourage- ment. And especially to my brothers and my girlfriend who were always there to give me a push in the right direction. I am lucky to be surrounded by such great people. Lastly, I want to express my gratitude to everyone for their patience with me, with special thanks to my supervisors and my examinator in this regard. Thank you. Abstract The main mission of the JEM-EUSO (Extreme Universe Space Observatory) Collaboration is to observe Cosmic Rays.
    [Show full text]
  • Pierre Auger Et Lise Meitner
    Pierre Auger et Lise Meitner Comparaison de leurs contributions à l’effet Auger Science et société Olivier Hardouin Duparc ([email protected]) Unité mixte de Physique CNRS/CEA/X LSI, École Polytechnique, 91128 Palaiseau 4 Lorsqu’une particule incidente de forte Pour les atomes plus légers que le Lise Meitner a observé et énergie (photon X ou γ ou électron très gadolinium, il est en faveur du proces- décrit l’effet Auger quelques rapide) éjecte du cortège électronique d’un sus Auger. L’énergie du deuxième atome un électron d’une couche profonde, électron est fonction de la seule nature mois sans doute avant un électron plus externe descendra sur ce de l’atome (l’énergie de la particule Pierre Auger, en explicitant niveau ; la différence d’énergie pourra soit incidente n’intervient plus), et sa être émise en tant que rayon X, c’est de la mesure peut donc servir de moyen une suggestion des fluorescence X, soit provoquer l’éjection d’investigation spectroscopique. Britanniques Ellis d’un autre électron orbital que l’on appelle La spectroscopie Auger est utilisée électron Auger (fig. 1) [1-3]. Le rapport aussi bien à des fins de recherche fon- et Rutherford. de fréquences entre ces deux possibilités damentale que de caractérisation dans Mais sa préoccupation dépend du numéro atomique de l’atome. l’industrie. >>> était tout autre que celle de Pierre Auger et c’est donc naturellement que l’appellation ÉTAT FONDAMENTAL ÉTAT IONISÉ ÉTAT AUGER ÉTAT FINAL « effet Auger » est apparue, n = ∞ n = ∞ n = ∞ n = ∞ n = 4 n = 4 n = 4 n = 4 d’abord en Allemagne.
    [Show full text]
  • Effects of Lorentz Invariance Violation on the Ultra-High Energy Cosmic
    UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA DE SÃO CARLOS Rodrigo Guedes Lang Effects of Lorentz invariance violation on the ultra-high energy cosmic rays spectrum São Carlos 2017 Rodrigo Guedes Lang Effects of Lorentz invariance violation on the ultra-high energy cosmic rays spectrum Dissertation presented to the Graduate Pro- gram in Physics at the Instituto de Física de São Carlos, Universidade de São Paulo, to obtain the degree of Master in Science. Concentration area: Basic Physics Supervisor: Prof. Dr. Luiz Vitor de Souza Filho Corrected version (Original version available on the Program Unit) São Carlos 2017 AUTHORIZE THE REPRODUCTION AND DISSEMINATION OF TOTAL OR PARTIAL COPIES OF THIS THESIS, BY CONVENCIONAL OR ELECTRONIC MEDIA FOR STUDY OR RESEARCH PURPOSE, SINCE IT IS REFERENCED. Cataloguing data reviewed by the Library and Information Service of the IFSC, with information provided by the author Lang, Rodrigo Guedes Effects of Lorentz invariance violation on the ultra-high energy cosmic rays spectrum / Rodrigo Guedes Lang; advisor Luiz Vitor Souza Filho - reviewed version -- São Carlos 2017. 104 p. Dissertation (Master's degree - Graduate Program in Basic Physics) -- Instituto de Física de São Carlos, Universidade de São Paulo - Brasil , 2017. 1. Lorentz invariance violation. 2. Ultra-high energy cosmic rays. 3. Propagation. 4. UHECR spectrum. 5. Pierre Auger Observatory. I. Souza Filho, Luiz Vitor, advisor. II. Title. ACKNOWLEDGEMENTS Even though this work takes my name as an author, it was only possible, as everything in my life, due to several people who always supported me and, without noticing, gave me the strength to do my best.
    [Show full text]
  • Cosmic Raysrays Willwill Hithit Eacheach Ofof Youyou Duringduring Thisthis Lecturelecture What Are Cosmic Rays?
    SestoSesto Fiorentino,Fiorentino, SpringSpring--20052005 WARNINGWARNING MoreMore thanthan 100,000100,000 cosmiccosmic raysrays willwill hithit eacheach ofof youyou duringduring thisthis lecturelecture What are Cosmic Rays? Cosmic Rays (CR) are high-energy The astrophysical field of activity particles of extraterrestrial origin for particle and nuclear physics “Classical” CR are nuclei or ionized atoms ranging from a single proton up to an iron nucleus and beyond, but being mostly protons (~90%) and α particles (~9%). However the above definition is much wider and includes in fact all stable and quasistable particles: • neutrons, Secondary CR (produced by the primaries in the • antiprotons & (maybe) antinuclei, Earth’s atmosphere) consist of essentially all −12 elementary particles and nuclei (both stable and • hard gamma rays (λ < 10 cm), unstable). The most important are • electrons & positrons, • nucleons, nuclei & nucleides, • neutrinos & antineutrinos, • (hard) gammas, • esoteric particles (WIMPs, • mesons (π±,π0,K±, …, D±,…), magnetic monopoles, mini black • charged leptons (e±, µ±, τ±), holes,...). • neutrinos & antineutrinos (νe, νµ, ντ). HonorableHonorable MentionMention toto CosmicCosmic RaysRays •• OurOur planetplanet isis builtbuilt fromfrom CosmicCosmic Rays.Rays. •• CosmicCosmic RaysRays affectedaffected (and(and maybemaybe stillstill affect)affect) thethe evolutionevolution ofof thethe lifelife onon thethe EarthEarth beingbeing duringduring billionsbillions ofof yearsyears aa catalyzercatalyzer ofof mutations.mutations. ••
    [Show full text]
  • Carbon Nanomaterials in Clean Energy Hydrogen Systems - II NATO Science for Peace and Security Series
    Carbon Nanomaterials in Clean Energy Hydrogen Systems - II NATO Science for Peace and Security Series This Series presents the results of scientific meetings supported under the NATO Programme: Science for Peace and Security (SPS). The NATO SPS Programme supports meetings in the following Key Priority areas: (1) Defence Against Terrorism; (2) Countering other Threats to Security and (3) NATO, Partner and Mediterranean Dialogue Country Priorities. The types of meeting supported are generally "Advanced Study Institutes" and "Advanced Research Workshops". The NATO SPS Series collects together the results of these meetings. The meetings are co-organized by scientists from NATO countries and scientists from NATO's "Partner" or "Mediterranean Dialogue" countries. The observations and recommendations made at the meetings, as well as the contents of the volumes in the Series, reflect those of participants and contributors only; they should not necessarily be regarded as reflecting NATO views or policy. Advanced Study Institutes (ASI) are high-level tutorial courses intended to convey the latest developments in a subject to an advanced-level audience Advanced Research Workshops (ARW) are expert meetings where an intense but informal exchange of views at the frontiers of a subject aims at identifying directions for future action Following a transformation of the programme in 2006 the Series has been re-named and re-organised. Recent volumes on topics not related to security, which result from meetings supported under the programme earlier, may be found in the NATO Science Series. The Series is published by IOS Press, Amsterdam, and Springer, Dordrecht, in conjunction with the NATO Emerging Security Challenges Division.
    [Show full text]
  • Pierre Auger Observatory and KASCADE-Grande
    Pierre Auger Observatory and KASCADE-Grande Dr. Frank Morherr Pierre Victor Auger (1899-1993) • He was the discoverer of giant airshowers generated by the interaction of very high-energy cosmic rays with the earth's atmosphere . • His Fields of experimental physics were – Atomic physics (photoelectric effect); – Nuclear physics (slow neutrons); – Cosmic ray physics (atmospheric air -showers). – Made cosmic ray experiments on the Jungfraujoch • Discovery of extensive air showers (1938) • He estimated the energy to 10 15 eV • After the war, he became Director of the Department of Sciences for UNESCO. Auger Observatory Location of the auger experiment Involved 15 countries Cosmic Rays • Cosmic rays are energetic charged subatomic particles, originating from outer space. • Produce secondary particles that penetrate the Earth's atmosphere and surface. 89% of cosmic rays are protons or hydrogen nuclei 10% are helium nuclei or alpha particles 1% are heavier elements • Cosmic rays can have energies of over 10 20 eV, far higher than the 10 12 to 10 13 eV that terrestrial particle accelerators can produce • From where do they come unknown superpowerful cosmic explosion? huge black hole sucking stars to their violent deaths? From colliding galaxies? Aim of the experiment • Pierre-Auger-Observatorium worldwide greatest installation for Measurement of cosmic Rays • Surface detectors mesure the secondary particles. They detects high energy particles through their interaction with water placed in surface detector tanks • Telescope tracks the development
    [Show full text]
  • Auger: World Scientists Seek to Solve the Enigma of the Origin of Ultra High Energy Cosmic Rays
    ALICE2 Case Study Auger: World scientists seek to solve the enigma of the origin of ultra high energy cosmic rays The Auger project is an international effort to what the Cosmos’ most energetic astrophysical study the arrival on Earth of particles of the sources are and what the acceleration highest energy through measurements that mechanisms of these particles are, something determine their load and direction of arrival. that could provide information on the Universe’s According to the experts, to learn about their evolution and origin. origin would make it possible to understand With a 3,000 square kilometres covered available for international collaboration. by the Organisation of Hispanic-American area, the Pierre Auger observatory Thanks to the connectivity provided by States on 17th November 2008 (http://www. (Argentina) is the world’s largest cosmic RedCLARA for data transfer and storage, in oei.es/noticias/spip.php?article3877). rays detector. Located in the Malargüe area, 2007 the research done in the observatory in the Mendoza Province, its facilities consist determined that galaxies with active nuclei Contributing to education, the observatory of a network of 1600 detectors integrated are the most probable source of the ultra- offers guided tours around its facilities for with a set of high sensitivity telescopes; with high energy cosmic rays that get to the students and general public, and publishes them the faint ultraviolet light produced Earth; the fact was catalogued as one of 1% of the surface detector data through its by cosmic rays showers as they cross the the major achievements of that year by the website’s Events Viewer.
    [Show full text]
  • Lise Meitner (1878 – 1968)
    Lise Meitner (1878 – 1968) Lise Meitner, UNESCO lecture, March 30, 1953, Vienna www.azquotes.com/quote/573182 The master physicist and her struggle against prejudice Lars Bergström The Oskar Klein Centre, Department of Physics Stockholm University 2019-02-08 Contents: • The early years, collaboration between Lise Meitner and Otto Hahn • Physics in the early 20th century • Early achievements of Lise Meitner • The experimental discovery of nuclear fission - the surprising measurements by Otto Hahn and Fritz Strassmann, Nov. 1938 • The correct explanation – the theory of nuclear fission, Lise Meitner and Otto Frisch, Jan. 1939 • Lise Meitner in Sweden, 1938 – 1960 • Oskar Klein • Some modern knowledge about nuclei • The Nobel Prize • Summary Lars Bergström, The Oskar Klein Centre, Department of physics, 2019-02-08 2 Stockholm University The early years – being a woman in Austria-Hungary and then moving to Berlin, Germany Short biography of Lise Meitner (mostly based on ”Lise Meitner, A Life in Physics”, Univ. of California Press, 1996): • Born on November 7, 1878 (as Elise) in Vienna, to a Jewish upper-class family in Austria-Hungary, as third out of 8 children • As women were not allowed to make higher studies at public institutions, she was put in a The house in Vienna where Lise Meitner ”Bürgerschule” to study to become a teacher in French. However, as she was very talented in math was born. Photo: John Benzol and physics, she then made private studies in physics which allowed her to enroll at Vienna University. • After basic university studies with among others Ludwig Boltzmann as a very enthusiastic teacher, she worked on her PhD.
    [Show full text]