Energy Systematics and Long Term Performance of the Pierre Auger Observatory’S Fluorescence Telescopes

Total Page:16

File Type:pdf, Size:1020Kb

Energy Systematics and Long Term Performance of the Pierre Auger Observatory’S Fluorescence Telescopes Energy Systematics and Long Term Performance of the Pierre Auger Observatory’s Fluorescence Telescopes Phong Huy Nguyen A thesis submitted to the University of Adelaide in fulfilment of the requirements for the degree of Doctor of Philosophy. School of Physical Sciences Department of Physics 2018 2 Abstract Since the discovery of cosmic rays in the early 20th century, physi- cists have strived to gain a deeper understanding of the properties be- hind the universe’s most energetic particles. Aiding in this effort has been the development and operation of very large cosmic ray detec- tors, which have successfully contributed to numerous advancements in the field of cosmic ray astrophysics. The most notable of such detec- tors is the Pierre Auger Observatory, situated in the Mendoza province of western Argentina, and is the result of an international effort to study cosmic rays of the highest of energies. The Pierre Auger Ob- servatory utilises two well established methods to study enormous particle showers initiated by the interaction of incoming cosmic rays at the top of the Earth’s atmosphere. One such method is the detection of faint fluorescence light emitted during the longitudinal evolution of a cosmic ray initiated particle shower, achieved through the specially designed fluorescence detector. This thesis will investigate the long term performance and stability of the Pierre Auger Observatory’s energy scale, with a particular focus on the Observatory’s fluorescence detector. A brief history of the discovery of cosmic rays is presented in Chapter 1, followed by a discussion of the current knowledge of the properties of the cosmic ray flux and possible production mechanisms. Chapter 2 begins with a review of the physics of extensive air showers and shower detection methods, as well as a discussion of several notable cosmic ray experiments, both past and present. This is followed by an extensive discussion of the Pierre Auger Observatory in Chapter 3. Recent notable results and discoveries are highlighted in Chapter 4. Chapter 5 begins with a discussion of the calibration methods used to monitor the performance of the Observatory’s fluorescence detector. This will be followed by an extensive analysis of the long term stability of the Observatory’s energy scale. This includes a discussion of notable analyses improvements developed in recent years, and the effect of these improvements on the Observatory’s energy scale. Chapter 6 begins with a discussion of how the night sky background signal is monitored by the Observatory’s fluorescence detector. A cross check method is developed to use the night sky background observed between neighbouring fluorescence telescopes to monitor the stability of their inter-calibration. In Chapter 7 a cross check method is developed to monitor the long term stability of the fluorescence detector’s absolute calibration using stellar photometry. The results are compared with the long term sta- bility of the Observatory’s energy scale from Chapter 5. The results from these studies are summarised in Chapter 8. ii Declaration of Originality I, Phong Huy Nguyen, certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously pub- lished or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution with- out the prior approval of the University of Adelaide and where ap- plicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis, when deposited in the Univer- sity Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless per- mission has been granted by the University to restrict access for a pe- riod of time I acknowledge the support I have received for my research through the provision of an Australian Government Research Training Program Scholarship. Signed: ..... .. Date: ..................................22 - 02 - 2018 Acknowledgements Firstly I would like to thank my supervisors Bruce Dawson and Jose Bellido. Their eternal patience, wisdom and support have been immea- surable and this would not have been possible without their guidance. I would like to thank all members, past and present, of the High En- ergy Astrophysics Group in Adelaide. It has been a pleasure to work with you all and my time as a student has been enjoyable because of your company. In particular I would like to thank Simon, Patrick, James and Alex for providing valuable companionship and banter for the past 8 years. I would like to thank all members of the Pierre Auger Collaboration for providing me the opportunity to work on such an incredible exper- iment. Lastly, I would like to thank my friends and family in particular my parents, Quang and Lan, and my brother, Huy, for their love and con- tinual support of my studies. You taught me the value of hard work and for that I am forever grateful. Contents Abstract i Declaration iii Acknowledgements iv 1 Cosmic Rays 1 1.1 The Cosmic Ray Energy Spectrum . 2 1.2 Cosmic Ray Acceleration Mechanisms . 5 1.2.1 Fermi’s Original Theory . 5 1.2.2 Diffusive Shock Acceleration . 8 1.3 Cosmic Ray Sources . 10 2 Extensive Air Showers and Cosmic Ray Detection Methods 12 2.1 Extensive Air Showers . 12 2.2 Heitler’s Model for Electromagnetic Showers . 13 2.3 Hadronic Air Showers . 15 2.4 Detection Methods . 17 2.4.1 Ground Arrays . 17 2.4.2 Fluorescence Detectors . 18 2.5 Past and Current Experiments . 19 2.5.1 Volcano Ranch . 19 2.5.2 Haverah Park . 20 2.5.3 Sydney University Giant Air-shower Recorder (SUGAR) . 20 2.5.4 Yakutsk . 20 2.5.5 Fly’s Eye . 21 2.5.6 Akeno Giant Air Shower Array (AGASA) . 21 2.5.7 HiRes . 22 2.5.8 The Telescope Array Experiment (TA) . 23 v 3 The Pierre Auger Observatory 27 3.1 Surface Detector . 27 3.1.1 Station Design . 28 3.1.2 Station Calibration . 29 3.1.3 Energy Reconstruction . 30 3.2 Fluorescence Detector . 32 3.2.1 Telescope Design . 33 3.2.2 Telescope Calibration . 33 3.2.2.1 Absolute Calibration . 33 3.2.2.2 Relative Calibration . 34 3.2.3 Event Reconstruction . 36 3.3 Atmospheric Monitoring . 38 3.4 Hybrid Energy Calibration . 39 3.5 Auger Enhancements . 40 3.5.1 HEAT . 40 3.5.2 AMIGA . 42 3.5.3 AERA . 42 3.5.4 AugerPrime . 44 4 Recent Results From Cosmic Ray Experiments 46 4.1 Energy Spectrum Studies . 46 4.2 Mass Composition Studies . 49 4.3 Anisotropy Studies . 52 5 Monitoring the Energy Scale of the Pierre Auger Observatory 59 5.1 Calibration Constants . 59 5.1.1 Monitor for Camera Performance . 62 5.2 Running Cal A Measurements . 64 5.3 Calibration Constant Temperature Dependence . 66 5.4 Calibration Constant Background Light Dependence . 67 5.5 Long Term Stability of the Observatory’s Energy Scale . 71 5.5.1 Functional Fit to the Long Term Energy Scale . 71 5.5.2 Broken Fits to the Energy Scale Ratio . 73 5.5.3 Estimating Uncertainties . 78 5.6 Improvements to the Aerosol Database . 79 5.7 Surface Detector Weather Correction . 82 5.7.1 Surface Detector Event Rate . 85 5.7.2 Application to the Energy Scale Ratio . 88 5.8 Combining Corrections . 88 5.8.1 Discussion of Residual Features . 90 5.9 Conclusions . 92 vi 6 A Cross Check of the Fluorescence Detector Relative Calibration Using the Night Sky Background 94 6.1 The Night Sky Background . 94 6.2 Calculating the Night Sky Background Photon Flux . 98 6.2.1 Identical Pixel Method . 98 6.2.2 Kv Method . 100 6.3 Cross Check Method . 101 6.4 Results and Discussion . 103 6.5 Conclusions . 109 7 A Cross Check of the Fluorescence Detector Absolute Calibration Using Stellar Photometry 111 7.1 Choosing a Constant Light Source . 112 7.1.1 Identifying Star Signals from FD Night Sky Background Files 114 7.1.2 Functional Form of Star Tracks . 117 7.1.3 Characteristics of Star Tracks . 119 7.2 Analysis Method . 121 7.2.1 Correcting the Rayleigh Atmosphere . 121 7.2.2 Correcting Track Modulations . 125 7.2.2.1 Simulated Template . 125 7.2.2.2 Empirical Template . 127 7.2.2.3 Guided Template . 127 7.2.3 Fitting Algorithm . 129 7.2.4 Spread in the Fitted Absolute Calibration . 131 7.3 Analysis of Systematic Errors . 134 7.3.1 Broadening of the Point Spread Function . 134 7.3.1.1 Direct Measurement of the Point Spread Function . 135 7.3.1.2 Verification of Previously Measured PSF . 137 7.3.2 Rayleigh Model Systematic Uncertainties . 140 7.3.2.1 Spectrum . 141 7.3.2.2 Fluorescence Detector Efficiency . 144 7.3.3 Fitting Algorithm . 144 7.3.3.1 Angstrom Coefficient . 147 7.3.3.2 Choice of Template . 148 7.3.4 Systematics Summary . 149 7.4 Results and Discussion . 150 7.4.1 Sirius . 150 7.4.2 Rigel . 152 7.4.3 Canopus .
Recommended publications
  • Sterns Lebensdaten Und Chronologie Seines Wirkens
    Sterns Lebensdaten und Chronologie seines Wirkens Diese Chronologie von Otto Sterns Wirken basiert auf folgenden Quellen: 1. Otto Sterns selbst verfassten Lebensläufen, 2. Sterns Briefen und Sterns Publikationen, 3. Sterns Reisepässen 4. Sterns Züricher Interview 1961 5. Dokumenten der Hochschularchive (17.2.1888 bis 17.8.1969) 1888 Geb. 17.2.1888 als Otto Stern in Sohrau/Oberschlesien In allen Lebensläufen und Dokumenten findet man immer nur den VornamenOt- to. Im polizeilichen Führungszeugnis ausgestellt am 12.7.1912 vom königlichen Polizeipräsidium Abt. IV in Breslau wird bei Stern ebenfalls nur der Vorname Otto erwähnt. Nur im Emeritierungsdokument des Carnegie Institutes of Tech- nology wird ein zweiter Vorname Otto M. Stern erwähnt. Vater: Mühlenbesitzer Oskar Stern (*1850–1919) und Mutter Eugenie Stern geb. Rosenthal (*1863–1907) Nach Angabe von Diana Templeton-Killan, der Enkeltochter von Berta Kamm und somit Großnichte von Otto Stern (E-Mail vom 3.12.2015 an Horst Schmidt- Böcking) war Ottos Großvater Abraham Stern. Abraham hatte 5 Kinder mit seiner ersten Frau Nanni Freund. Nanni starb kurz nach der Geburt des fünften Kindes. Bald danach heiratete Abraham Berta Ben- der, mit der er 6 weitere Kinder hatte. Ottos Vater Oskar war das dritte Kind von Berta. Abraham und Nannis erstes Kind war Heinrich Stern (1833–1908). Heinrich hatte 4 Kinder. Das erste Kind war Richard Stern (1865–1911), der Toni Asch © Springer-Verlag GmbH Deutschland 2018 325 H. Schmidt-Böcking, A. Templeton, W. Trageser (Hrsg.), Otto Sterns gesammelte Briefe – Band 1, https://doi.org/10.1007/978-3-662-55735-8 326 Sterns Lebensdaten und Chronologie seines Wirkens heiratete.
    [Show full text]
  • Physiker-Entdeckungen Und Erdzeiten Hans Ulrich Stalder 31.1.2019
    Physiker-Entdeckungen und Erdzeiten Hans Ulrich Stalder 31.1.2019 Haftungsausschluss / Disclaimer / Hyperlinks Für fehlerhafte Angaben und deren Folgen kann weder eine juristische Verantwortung noch irgendeine Haftung übernommen werden. Änderungen vorbehalten. Ich distanziere mich hiermit ausdrücklich von allen Inhalten aller verlinkten Seiten und mache mir diese Inhalte nicht zu eigen. Erdzeiten Erdzeit beginnt vor x-Millionen Jahren Quartär 2,588 Neogen 23,03 (erste Menschen vor zirka 4 Millionen Jahren) Paläogen 66 Kreide 145 (Dinosaurier) Jura 201,3 Trias 252,2 Perm 298,9 Karbon 358,9 Devon 419,2 Silur 443,4 Ordovizium 485,4 Kambrium 541 Ediacarium 635 Cryogenium 850 Tonium 1000 Stenium 1200 Ectasium 1400 Calymmium 1600 Statherium 1800 Orosirium 2050 Rhyacium 2300 Siderium 2500 Physiker Entdeckungen Jahr 0800 v. Chr.: Den Babyloniern sind Sonnenfinsterniszyklen mit der Sarosperiode (rund 18 Jahre) bekannt. Jahr 0580 v. Chr.: Die Erde wird nach einer Theorie von Anaximander als Kugel beschrieben. Jahr 0550 v. Chr.: Die Entdeckung von ganzzahligen Frequenzverhältnissen bei konsonanten Klängen (Pythagoras in der Schmiede) führt zur ersten überlieferten und zutreffenden quantitativen Beschreibung eines physikalischen Sachverhalts. © Hans Ulrich Stalder, Switzerland Jahr 0500 v. Chr.: Demokrit postuliert, dass die Natur aus Atomen zusammengesetzt sei. Jahr 0450 v. Chr.: Vier-Elemente-Lehre von Empedokles. Jahr 0300 v. Chr.: Euklid begründet anhand der Reflexion die geometrische Optik. Jahr 0265 v. Chr.: Zum ersten Mal wird die Theorie des Heliozentrischen Weltbildes mit geometrischen Berechnungen von Aristarchos von Samos belegt. Jahr 0250 v. Chr.: Archimedes entdeckt das Hebelgesetz und die statische Auftriebskraft in Flüssigkeiten, Archimedisches Prinzip. Jahr 0240 v. Chr.: Eratosthenes bestimmt den Erdumfang mit einer Gradmessung zwischen Alexandria und Syene.
    [Show full text]
  • UNESCO – Kalinga Prize Winner – 1971 Pierre Victor Auger a Life in the Service of Science
    Glossary on Kalinga Prize Laureates UNESCO – Kalinga Prize Winner – 1971 Pierre Victor Auger A Life in the Service of Science French Physicist, Discoverer of the Atomic Auger Electronic Effect. [Born : Paris 14th May, 1899 Died : Paris 25th December 1993] Professor Auger’s outstanding professional career covered Physics, Nuclear Power & Space Research, Organization and Administration of Research, Diplomatic Services & Pedagogics but also extended in to Modern Biology, Humanistic Sciences, Poetry & Arts. He was awarded with the most Prestigious Gaede – Langmuir Award “For establishing the Fundamental Principle of Auger Spectroscopy which has led to the most widely used surface analysis technique of importance to all aspects of Vacuum Science & Technology”. Energy with the Earth Atmosphere can be considered like discoverer of gigantic particle rains generated by the interaction of cosmic rays of Extreme Discharge ...Pierre Auger 1 Glossary on Kalinga Prize Laureates Pierre Victor Auger Pierre Victor Auger (May 14, 1899 – December 25, 1993) was a French Physicist, born in Paris. He worked in the fields of atomic physics, nuclear physics and cosmic ray physics. The Auger process where Auger electrons are emitted from atoms was named after him, despite the fact that Lise Meitner discovered the process a few years before in 1923. In his work with cosmic rays, he found that the cosmic radiation events were coincident in time meaning that they were associated with a single event, an air shower. He estimated that the energy of the incoming particle that creates large air showers must be at least 1015eV (electron-volts) = 106 particles of 108eV (critical energy in air) and a factor of ten for energy loss from traversing the atmosphere (Auger et al., 1939).
    [Show full text]
  • Measurements of the Maximum Depth of Air Shower Profiles at LHC Energies with the High-Elevation Auger Telescopes
    Measurements of the maximum depth of air shower profiles at LHC energies with the High-Elevation Auger Telescopes Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften an der Fakultät für Physik des Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation von Dipl.-Phys. Alaa Metwaly Kuotb Awad aus El Fayoum/Egypt Tag der mündlichen Prüfung: 21.12.2018 Referent: Prof. Dr. Dr. h.c. Johannes Blümer Korreferent: Prof. Dr. Ralph Engel Betreuer: Dr. Ralf Ulrich ii Abstract More than 100 years after their discovery, the nature of cosmic rays is still a mystery in many aspects. The subject of this thesis is to measure the mass composition of the cosmic rays at an energy range from 1015.8eV to 1017eV. This relies on the Cherenkov light emitted in the forward direction of the shower, directly pointing towards the telescopes. A new technique was proposed for the reconstruction named Profile Constrained Geometry Fit (PCGF). The benefit of this special technique is a high accuracy geometry reconstruction, which is pos- sible using only the telescope signals. A full PCGF dataset is produced for the Cherenkov dominated showers observed by the High Elevation Auger Telescopes (HEAT). The mass composition is deduced from the distribution of the maximum depth of those showers, Xmax. The first two moments of the distribution, hXmaxi, and s(Xmax), are compared to their counterparts of proton and iron simulations. The performance of the reconstruction and the analysis is studied using a complete time-dependent Monte Carlo simulation. It is a novel technique that is used for the first time in Pierre Auger, and by which the mass composition is measured in the energy region where there are signatures of cosmic ray transition from galactic to an extragalactic origin.
    [Show full text]
  • Investigating UV Nightglow Within the Framework of the JEM-EUSO Experiments
    Investigating UV nightglow within the framework of the JEM-EUSO Experiments Frej-Eric Salomon Emmoth Space Engineering, master's level 2020 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Investigating UV nightglow within the framework of the JEM-EUSO Experiments Master Thesis Space Engineering, Instrumentation and Spacecraft Author: Frej-Eric Salomon Emmoth Supervisors: Dr. Toshikazu Ebisuzaki Chief Scientist at Computational Astrophysics Laboratory, RIKEN & Dr. Marco Casolino Team Leader, EUSO Team, Research Scientist at RIKEN Examiner: Dr. Johnny Ejemalm Senior Lecturer, Lule˚aUniversity of Technology Acknowledgements I would like to first extend my most sincere gratitude to Dr. Ebisuzaki and Dr. Casolino for giving me the opportunity to do my thesis at RIKEN within the JEM-EUSO Collaboration and their invaluable help during my time there. I am also very grateful for the people at the laboratory, many of whom I today consider my friends, who made my stay in Japan so much better. I look forward to once again see the mountains of Nagano. I next want to give thanks to my family and friends for their constant support and encourage- ment. And especially to my brothers and my girlfriend who were always there to give me a push in the right direction. I am lucky to be surrounded by such great people. Lastly, I want to express my gratitude to everyone for their patience with me, with special thanks to my supervisors and my examinator in this regard. Thank you. Abstract The main mission of the JEM-EUSO (Extreme Universe Space Observatory) Collaboration is to observe Cosmic Rays.
    [Show full text]
  • Pierre Auger Et Lise Meitner
    Pierre Auger et Lise Meitner Comparaison de leurs contributions à l’effet Auger Science et société Olivier Hardouin Duparc ([email protected]) Unité mixte de Physique CNRS/CEA/X LSI, École Polytechnique, 91128 Palaiseau 4 Lorsqu’une particule incidente de forte Pour les atomes plus légers que le Lise Meitner a observé et énergie (photon X ou γ ou électron très gadolinium, il est en faveur du proces- décrit l’effet Auger quelques rapide) éjecte du cortège électronique d’un sus Auger. L’énergie du deuxième atome un électron d’une couche profonde, électron est fonction de la seule nature mois sans doute avant un électron plus externe descendra sur ce de l’atome (l’énergie de la particule Pierre Auger, en explicitant niveau ; la différence d’énergie pourra soit incidente n’intervient plus), et sa être émise en tant que rayon X, c’est de la mesure peut donc servir de moyen une suggestion des fluorescence X, soit provoquer l’éjection d’investigation spectroscopique. Britanniques Ellis d’un autre électron orbital que l’on appelle La spectroscopie Auger est utilisée électron Auger (fig. 1) [1-3]. Le rapport aussi bien à des fins de recherche fon- et Rutherford. de fréquences entre ces deux possibilités damentale que de caractérisation dans Mais sa préoccupation dépend du numéro atomique de l’atome. l’industrie. >>> était tout autre que celle de Pierre Auger et c’est donc naturellement que l’appellation ÉTAT FONDAMENTAL ÉTAT IONISÉ ÉTAT AUGER ÉTAT FINAL « effet Auger » est apparue, n = ∞ n = ∞ n = ∞ n = ∞ n = 4 n = 4 n = 4 n = 4 d’abord en Allemagne.
    [Show full text]
  • Effects of Lorentz Invariance Violation on the Ultra-High Energy Cosmic
    UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA DE SÃO CARLOS Rodrigo Guedes Lang Effects of Lorentz invariance violation on the ultra-high energy cosmic rays spectrum São Carlos 2017 Rodrigo Guedes Lang Effects of Lorentz invariance violation on the ultra-high energy cosmic rays spectrum Dissertation presented to the Graduate Pro- gram in Physics at the Instituto de Física de São Carlos, Universidade de São Paulo, to obtain the degree of Master in Science. Concentration area: Basic Physics Supervisor: Prof. Dr. Luiz Vitor de Souza Filho Corrected version (Original version available on the Program Unit) São Carlos 2017 AUTHORIZE THE REPRODUCTION AND DISSEMINATION OF TOTAL OR PARTIAL COPIES OF THIS THESIS, BY CONVENCIONAL OR ELECTRONIC MEDIA FOR STUDY OR RESEARCH PURPOSE, SINCE IT IS REFERENCED. Cataloguing data reviewed by the Library and Information Service of the IFSC, with information provided by the author Lang, Rodrigo Guedes Effects of Lorentz invariance violation on the ultra-high energy cosmic rays spectrum / Rodrigo Guedes Lang; advisor Luiz Vitor Souza Filho - reviewed version -- São Carlos 2017. 104 p. Dissertation (Master's degree - Graduate Program in Basic Physics) -- Instituto de Física de São Carlos, Universidade de São Paulo - Brasil , 2017. 1. Lorentz invariance violation. 2. Ultra-high energy cosmic rays. 3. Propagation. 4. UHECR spectrum. 5. Pierre Auger Observatory. I. Souza Filho, Luiz Vitor, advisor. II. Title. ACKNOWLEDGEMENTS Even though this work takes my name as an author, it was only possible, as everything in my life, due to several people who always supported me and, without noticing, gave me the strength to do my best.
    [Show full text]
  • Cosmic Raysrays Willwill Hithit Eacheach Ofof Youyou Duringduring Thisthis Lecturelecture What Are Cosmic Rays?
    SestoSesto Fiorentino,Fiorentino, SpringSpring--20052005 WARNINGWARNING MoreMore thanthan 100,000100,000 cosmiccosmic raysrays willwill hithit eacheach ofof youyou duringduring thisthis lecturelecture What are Cosmic Rays? Cosmic Rays (CR) are high-energy The astrophysical field of activity particles of extraterrestrial origin for particle and nuclear physics “Classical” CR are nuclei or ionized atoms ranging from a single proton up to an iron nucleus and beyond, but being mostly protons (~90%) and α particles (~9%). However the above definition is much wider and includes in fact all stable and quasistable particles: • neutrons, Secondary CR (produced by the primaries in the • antiprotons & (maybe) antinuclei, Earth’s atmosphere) consist of essentially all −12 elementary particles and nuclei (both stable and • hard gamma rays (λ < 10 cm), unstable). The most important are • electrons & positrons, • nucleons, nuclei & nucleides, • neutrinos & antineutrinos, • (hard) gammas, • esoteric particles (WIMPs, • mesons (π±,π0,K±, …, D±,…), magnetic monopoles, mini black • charged leptons (e±, µ±, τ±), holes,...). • neutrinos & antineutrinos (νe, νµ, ντ). HonorableHonorable MentionMention toto CosmicCosmic RaysRays •• OurOur planetplanet isis builtbuilt fromfrom CosmicCosmic Rays.Rays. •• CosmicCosmic RaysRays affectedaffected (and(and maybemaybe stillstill affect)affect) thethe evolutionevolution ofof thethe lifelife onon thethe EarthEarth beingbeing duringduring billionsbillions ofof yearsyears aa catalyzercatalyzer ofof mutations.mutations. ••
    [Show full text]
  • Carbon Nanomaterials in Clean Energy Hydrogen Systems - II NATO Science for Peace and Security Series
    Carbon Nanomaterials in Clean Energy Hydrogen Systems - II NATO Science for Peace and Security Series This Series presents the results of scientific meetings supported under the NATO Programme: Science for Peace and Security (SPS). The NATO SPS Programme supports meetings in the following Key Priority areas: (1) Defence Against Terrorism; (2) Countering other Threats to Security and (3) NATO, Partner and Mediterranean Dialogue Country Priorities. The types of meeting supported are generally "Advanced Study Institutes" and "Advanced Research Workshops". The NATO SPS Series collects together the results of these meetings. The meetings are co-organized by scientists from NATO countries and scientists from NATO's "Partner" or "Mediterranean Dialogue" countries. The observations and recommendations made at the meetings, as well as the contents of the volumes in the Series, reflect those of participants and contributors only; they should not necessarily be regarded as reflecting NATO views or policy. Advanced Study Institutes (ASI) are high-level tutorial courses intended to convey the latest developments in a subject to an advanced-level audience Advanced Research Workshops (ARW) are expert meetings where an intense but informal exchange of views at the frontiers of a subject aims at identifying directions for future action Following a transformation of the programme in 2006 the Series has been re-named and re-organised. Recent volumes on topics not related to security, which result from meetings supported under the programme earlier, may be found in the NATO Science Series. The Series is published by IOS Press, Amsterdam, and Springer, Dordrecht, in conjunction with the NATO Emerging Security Challenges Division.
    [Show full text]
  • Pierre Auger Observatory and KASCADE-Grande
    Pierre Auger Observatory and KASCADE-Grande Dr. Frank Morherr Pierre Victor Auger (1899-1993) • He was the discoverer of giant airshowers generated by the interaction of very high-energy cosmic rays with the earth's atmosphere . • His Fields of experimental physics were – Atomic physics (photoelectric effect); – Nuclear physics (slow neutrons); – Cosmic ray physics (atmospheric air -showers). – Made cosmic ray experiments on the Jungfraujoch • Discovery of extensive air showers (1938) • He estimated the energy to 10 15 eV • After the war, he became Director of the Department of Sciences for UNESCO. Auger Observatory Location of the auger experiment Involved 15 countries Cosmic Rays • Cosmic rays are energetic charged subatomic particles, originating from outer space. • Produce secondary particles that penetrate the Earth's atmosphere and surface. 89% of cosmic rays are protons or hydrogen nuclei 10% are helium nuclei or alpha particles 1% are heavier elements • Cosmic rays can have energies of over 10 20 eV, far higher than the 10 12 to 10 13 eV that terrestrial particle accelerators can produce • From where do they come unknown superpowerful cosmic explosion? huge black hole sucking stars to their violent deaths? From colliding galaxies? Aim of the experiment • Pierre-Auger-Observatorium worldwide greatest installation for Measurement of cosmic Rays • Surface detectors mesure the secondary particles. They detects high energy particles through their interaction with water placed in surface detector tanks • Telescope tracks the development
    [Show full text]
  • Auger: World Scientists Seek to Solve the Enigma of the Origin of Ultra High Energy Cosmic Rays
    ALICE2 Case Study Auger: World scientists seek to solve the enigma of the origin of ultra high energy cosmic rays The Auger project is an international effort to what the Cosmos’ most energetic astrophysical study the arrival on Earth of particles of the sources are and what the acceleration highest energy through measurements that mechanisms of these particles are, something determine their load and direction of arrival. that could provide information on the Universe’s According to the experts, to learn about their evolution and origin. origin would make it possible to understand With a 3,000 square kilometres covered available for international collaboration. by the Organisation of Hispanic-American area, the Pierre Auger observatory Thanks to the connectivity provided by States on 17th November 2008 (http://www. (Argentina) is the world’s largest cosmic RedCLARA for data transfer and storage, in oei.es/noticias/spip.php?article3877). rays detector. Located in the Malargüe area, 2007 the research done in the observatory in the Mendoza Province, its facilities consist determined that galaxies with active nuclei Contributing to education, the observatory of a network of 1600 detectors integrated are the most probable source of the ultra- offers guided tours around its facilities for with a set of high sensitivity telescopes; with high energy cosmic rays that get to the students and general public, and publishes them the faint ultraviolet light produced Earth; the fact was catalogued as one of 1% of the surface detector data through its by cosmic rays showers as they cross the the major achievements of that year by the website’s Events Viewer.
    [Show full text]
  • Lise Meitner (1878 – 1968)
    Lise Meitner (1878 – 1968) Lise Meitner, UNESCO lecture, March 30, 1953, Vienna www.azquotes.com/quote/573182 The master physicist and her struggle against prejudice Lars Bergström The Oskar Klein Centre, Department of Physics Stockholm University 2019-02-08 Contents: • The early years, collaboration between Lise Meitner and Otto Hahn • Physics in the early 20th century • Early achievements of Lise Meitner • The experimental discovery of nuclear fission - the surprising measurements by Otto Hahn and Fritz Strassmann, Nov. 1938 • The correct explanation – the theory of nuclear fission, Lise Meitner and Otto Frisch, Jan. 1939 • Lise Meitner in Sweden, 1938 – 1960 • Oskar Klein • Some modern knowledge about nuclei • The Nobel Prize • Summary Lars Bergström, The Oskar Klein Centre, Department of physics, 2019-02-08 2 Stockholm University The early years – being a woman in Austria-Hungary and then moving to Berlin, Germany Short biography of Lise Meitner (mostly based on ”Lise Meitner, A Life in Physics”, Univ. of California Press, 1996): • Born on November 7, 1878 (as Elise) in Vienna, to a Jewish upper-class family in Austria-Hungary, as third out of 8 children • As women were not allowed to make higher studies at public institutions, she was put in a The house in Vienna where Lise Meitner ”Bürgerschule” to study to become a teacher in French. However, as she was very talented in math was born. Photo: John Benzol and physics, she then made private studies in physics which allowed her to enroll at Vienna University. • After basic university studies with among others Ludwig Boltzmann as a very enthusiastic teacher, she worked on her PhD.
    [Show full text]