Pierre Auger Observatory and KASCADE-Grande

Total Page:16

File Type:pdf, Size:1020Kb

Pierre Auger Observatory and KASCADE-Grande Pierre Auger Observatory and KASCADE-Grande Dr. Frank Morherr Pierre Victor Auger (1899-1993) • He was the discoverer of giant airshowers generated by the interaction of very high-energy cosmic rays with the earth's atmosphere . • His Fields of experimental physics were – Atomic physics (photoelectric effect); – Nuclear physics (slow neutrons); – Cosmic ray physics (atmospheric air -showers). – Made cosmic ray experiments on the Jungfraujoch • Discovery of extensive air showers (1938) • He estimated the energy to 10 15 eV • After the war, he became Director of the Department of Sciences for UNESCO. Auger Observatory Location of the auger experiment Involved 15 countries Cosmic Rays • Cosmic rays are energetic charged subatomic particles, originating from outer space. • Produce secondary particles that penetrate the Earth's atmosphere and surface. 89% of cosmic rays are protons or hydrogen nuclei 10% are helium nuclei or alpha particles 1% are heavier elements • Cosmic rays can have energies of over 10 20 eV, far higher than the 10 12 to 10 13 eV that terrestrial particle accelerators can produce • From where do they come unknown superpowerful cosmic explosion? huge black hole sucking stars to their violent deaths? From colliding galaxies? Aim of the experiment • Pierre-Auger-Observatorium worldwide greatest installation for Measurement of cosmic Rays • Surface detectors mesure the secondary particles. They detects high energy particles through their interaction with water placed in surface detector tanks • Telescope tracks the development of air showers by observing ultraviolet light emitted high in the Earth's atmosphere. • Determine the direction of these cosmic rays • Determine the element composition of cosmic rays • Study of extensive air showers The experiment • Detector field: 3000 km 2 • 30 Times the size of Paris • 24 Fluorescence cameras on 4 observations points • 1600 Surface detectors (1.5 km spacing) • Each 3000-gallon (12000 liter) tank, separated from each of its neighbors by 1.5 kilometers, is completely dark inside - except when particles from a cosmic ray air shower pass through it. Fluorescence detector • Charged particles in an air shower also interact with atmospheric nitrogen (excitation) • Emitted ultraviolet light via a process called fluorescence • Direction and energy of the cosmic particle can be determined • The fluorescence detectors much more sensitive than the human eye can "see" distant air showers develop • Using a grid of focusing mirrors to collect the light, cameras can view the air shower up to 15 kilometers away. Fluorescence detector Mirrorreflector 12m² (left) and Camera with 440 Photomultipliers (right) of a Fluorescence detector Surface detector • Energetic Particles of a shower Produce short light flashes in the Water, so called cherenkov-light • Three sensitive photomultiplier register emissions in each tank. • Air showers are detected at the spatially and temporally coincident measurement of particles in several tanks. Surface detector • Base of detector = 10m 2 • 12 tons of very pure water as detection material • 3 Photomultipliers detect cerenkov signals • With GPS antenna high time correlation to different detectors • Energy given in VEM (Vertical Equivalent Muon) • Autonomic Stations with solar energy • Communication with Microwaves Cherenkov radiation • Speed of the particle must be higher than the speed of light in the medium • Speed of light in water = 0.75c • The charged particles polarize the molecules of that medium, which then turn back rapidly to their ground state, emitting radiation in the process • The characteristic blue glow of nuclear reactors is due to Cherenkov radiation. Combination of FD and SD Proof of the particles is very complex because they are very rare: At these energies, one expects roughly one particle per square kilometer per century. Therefore, huge detector surfaces are needed to find a sufficient number of these particles. This is done indirectly, by them in the atmosphere triggered cascade of secondary particles, the air showers. Results Results Results • The observation of showers with several telescopes and the simultaneous measurement of the particles in the water tanks impressively demonstrate the efficiency of the Auger Observatory. • First scientific results include an energy spectrum of observed events, the survey of the southern sky for point sources and an upper limit for the proportion of photons in the ultra-high energy cosmic rays • A in various models predicted point source near the galactic center could not be confirmed. • In November 2007, it was announced that the observatory had found a correlation between the 27 highest energy events and nearby active galactic nuclei (AGN). • Would suggest that these events are triggered by protons that were emitted by objects correlated with the AGN distribution of matter. Acceleration by the large magnetic fields associated with the massive central black holes that form the AGNs is one possibility. Results Correlation between the calorimetric energy measurement by the fluorescence measurement and the energy estimator S 38 ° of the detector field. Results The preliminary energy spectrum of the Auger Observatory as it is presented at conferences since mid-2007. Energy spectrum shows a precipitous decline, as would be expected from the GZK effect. This conclusion is only permitted if the energy spectrum, the elemental composition and anisotropy measurements thus provide a coherent picture as an early waning of the accelerator can be GZK-Cutoff: Named by Greisen, Zatspin and Kuzmin, predict that cosmic rays with excluded. Energies of 5* 10 19 would interact with the cosmic microwave backround, so it decreases Correlation Red stars : Quasars or active galactic nuclei Circles: High energy cosmic rays more than 57EeV (57*10^18eV) Arrival direction of the 27 highestenergetic cosmic ray particles detected by the Pierre Auger Observatory Aitoff shown in a projection of the celestial sphere in galactic coordinates. The energies of the cosmic primary particles are larger than 57 x 10 ^ 18 eV (57 EeV). They are shown as circles with a radius of 3.1 degrees. The position of 472 AGNs with a maximum distance of 75 megaparsecs are marked as * red. The blue bands denote the field of view of the Pierre Auger Observatory: the darker the blue the greater the exposure of the experiment. The solid line marks the edge of the field of view and corresponds to a maximum zenith angle of 60 degrees. Centaurus A, the Earth is closest to the AGN with a white * marked. Two of 27 cosmic particles are less than 3.1 degrees from it. The super-galactic plane is shown as a dashed line. She refers to a region with a large number of nearby galaxies, including some with an active nucleus. Correlation • Rejected the hypothesis of isotropic distribution of cosmic rays above 6 x 10 19 eV • Very high cosmic particles have extragalactic origin • Higher flux of cosmic particles from the galactic centers and Quasars Elemental composition Light particles such as protons (left) produce showers that usually develop deeper in the atmosphere triggered by heavy primary particles (iron cores, right) as a longshoreman. The comparison of showers observed with the fluorescence detectors of the Pierre Auger Observatory, enables these theoretical predictions, draw conclusions about the elemental composition of cosmic rays. Mean measured atmospheric depth of shower maximum with the Pierre Auger fluorescence telescopes (red dots) are compared with theoretical predictions for iron nuclei (blue lines) and protons (red lines) Status and planned upgrades • Increase the density of the surface detectors to get a better study of low energy cosmic rays (10 15 eV) • Detection of extended air showers with radio antennas • Realization of the Auger detector at the northern hemisphere (Colorado) • By the end of 2005, about 1050 water tanks and 18 telescopes of the southern Auger Observatory was set up. Since the beginning of 2008 it is completed. It has an approximately 30 - times larger detector area than the largest AGASA air shower experiment in Japan. • Next, the structure of the northern observatory was planned. A complete and uniform coverage of all possible directions is crucial to the interpretation of the data. Place for the Northern experiment was selected by the Auger Collaboration, in Lamar • Today, nearly 500 physicists from more than 90 institutions in 19 countries around the world are collaborating to operate the southern site. KASCADE-Grande Research Center Karlsruhe (Germany) Field array (200m x 200m) consists of 252 detector stations arranged on a rectangular grid with a distance of 13 meters to each other. 16 (resp. 15) of the stations form a so-called cluster with an electronics container in the center and which act as an independ shower experiment. In the middle of the array one can see the building with the KASCADE central detector. What is KASCADEKASCADE--GrandeGrande ? • KASCADE-Grande is the extension of the Extensive Air Shower detector array KASCADE, realized to expand the energy range for cosmic ray studies from 10 14 -10 17 eV primary energy range up to 10 18 eV. • This is performed by extending the area covered by the KASCADE electromagnetic array from 200×200m 2 to 700 ×700m 2 by means of 37 scintillator detector stations of 10 m2 active area each. • This new array is named Grande and provides measurements of the all-charged particle component of extensive air showers, while the original KASCADE array particularly provides
Recommended publications
  • Radio Detection of Cosmic Rays with LOPES
    Radio Detection of Cosmic Rays with LOPES Claus Grupen University of Siegen & the LOPES Collaboration 1 Particle Astronomy at High Energies main problem: low intensity φ (> 1020 eV) = 1/(km2 ⋅ century) photons? γ γ → e+e- on infrared, optical, blackbody photons λ ≈ 10 kpc protons? γ p → ∆+ → n + π + (p + π 0) λ ≈ 10 Mpc only the „local universe“ is visible way out: neutrinos 2 Radio emission ♦ geo-synchrotron process in the atmosphere (dominant in air) ♦ Askaryan-effect: coherent radio Cherenkov emission (dominant in ice) ♦ charge separation in the Earth‘s magnetic field: dipole radiation ♦ molecular field bremsstrahlung ♦ optimisation of antennas ? 3 Detection of energetic cosmic rays (> 1015 eV) ♦ no direct measurements possible because of low intensity ♦ classical sampling technique using standard particle detectors ⇒ expensive ⇒ only information from the end of the cascade ♦ air fluorescence à la Fly’s Eye ⇒ requires clear moonless nights ⇒ 10 % duty time only ♦ air Cherenkov imaging telescopes ⇒ clear, moonless nights, low duty time ⇒ detection of geosynchrotron emission in the radio band ! 4 5 Advantages of Radio Emission from Extensive Air Showers ♦ simple, robust, cheap detectors ♦ 24 hours/day operation (- thunderstorms) ♦ low attenuation ♦ integration over the whole air shower ♦ wide field of view Potential Problems ♦ radio frequency interference ⇒ digital filtering techniques ♦ only practical at high energies (≥ 1016 eV) 6 7 8 History discovery of radio emission: Jelley et al. (1965), Jodrell Bank theory: Kahn & Lerche (1968) and Colgate (1967) many activities in the late 60‘s and early 70‘s (Haverah Park) problem with radio interference poor time resolution (∼ 1µ s) limited angular acceptance low statistics Now: Monte Carlo code for geosynchrotron emission available (Huege & Falcke 2004/05) Jelley et al.
    [Show full text]
  • KASCADE-Grande
    Forschungszentrum Karlsruhe in der Helmholtzgemeinschaft Investigating the 2nd Knee: KASCADE-Grande April, 30 2005 – Aspen, Colorado AndreasAndreas Haungs – KASCADE-Grande Haungs Collaboration `[email protected] theAnkle´ Cosmic Rays around the knee: What is the origin of the knee(s)? energy ? mass ? arrival directions ? interaction mechanism ? Î large number of observables Î multi-detector system April, 30 2005 – Aspen, Colorado Andreas Haungs – KASCADE-Grande Collaboration `PhysicsfromtheKneeto theAnkle´ KASCADE-Grande = KArlsruhe Shower Core and Array DEtector + Grande Measurements of air showers in the energy range E0 = 100 TeV - 1 EeV April, 30 2005 – Aspen, Colorado Andreas Haungs – KASCADE-Grande Collaboration `PhysicsfromtheKneeto theAnkle´ KASCADE : multi-parameter measurements - energy range 100 TeV – 80 PeV - up to 2003: 4⋅107 EAS triggers - large number of observables: Î electrons Î muons (@ 4 threshold energies) Î hadrons April, 30 2005 – Aspen, Colorado Andreas Haungs – KASCADE-Grande Collaboration `PhysicsfromtheKneeto theAnkle´ KASCADE: energy spectra of single mass groups Measurement: KASCADE array data 900 days; 0-18o zenith angle 0-91 m core distance tr lg Ne > 4.8; lg Nµ > 3.6 Î 685868 events u n f o ld in Searched: g E and A of the Cosmic Ray Particles Given: Ne and Nµ for each single event Î solve the inverse problem tr with y=(Ne,Nµ ) and x=(E,A) April, 30 2005 – Aspen, Colorado Andreas Haungs – KASCADE-Grande Collaboration `PhysicsfromtheKneeto theAnkle´ KASCADE result: influence on hadronic
    [Show full text]
  • Sterns Lebensdaten Und Chronologie Seines Wirkens
    Sterns Lebensdaten und Chronologie seines Wirkens Diese Chronologie von Otto Sterns Wirken basiert auf folgenden Quellen: 1. Otto Sterns selbst verfassten Lebensläufen, 2. Sterns Briefen und Sterns Publikationen, 3. Sterns Reisepässen 4. Sterns Züricher Interview 1961 5. Dokumenten der Hochschularchive (17.2.1888 bis 17.8.1969) 1888 Geb. 17.2.1888 als Otto Stern in Sohrau/Oberschlesien In allen Lebensläufen und Dokumenten findet man immer nur den VornamenOt- to. Im polizeilichen Führungszeugnis ausgestellt am 12.7.1912 vom königlichen Polizeipräsidium Abt. IV in Breslau wird bei Stern ebenfalls nur der Vorname Otto erwähnt. Nur im Emeritierungsdokument des Carnegie Institutes of Tech- nology wird ein zweiter Vorname Otto M. Stern erwähnt. Vater: Mühlenbesitzer Oskar Stern (*1850–1919) und Mutter Eugenie Stern geb. Rosenthal (*1863–1907) Nach Angabe von Diana Templeton-Killan, der Enkeltochter von Berta Kamm und somit Großnichte von Otto Stern (E-Mail vom 3.12.2015 an Horst Schmidt- Böcking) war Ottos Großvater Abraham Stern. Abraham hatte 5 Kinder mit seiner ersten Frau Nanni Freund. Nanni starb kurz nach der Geburt des fünften Kindes. Bald danach heiratete Abraham Berta Ben- der, mit der er 6 weitere Kinder hatte. Ottos Vater Oskar war das dritte Kind von Berta. Abraham und Nannis erstes Kind war Heinrich Stern (1833–1908). Heinrich hatte 4 Kinder. Das erste Kind war Richard Stern (1865–1911), der Toni Asch © Springer-Verlag GmbH Deutschland 2018 325 H. Schmidt-Böcking, A. Templeton, W. Trageser (Hrsg.), Otto Sterns gesammelte Briefe – Band 1, https://doi.org/10.1007/978-3-662-55735-8 326 Sterns Lebensdaten und Chronologie seines Wirkens heiratete.
    [Show full text]
  • Cosmic-Ray Studies with Experimental Apparatus at LHC
    S S symmetry Article Cosmic-Ray Studies with Experimental Apparatus at LHC Emma González Hernández 1, Juan Carlos Arteaga 2, Arturo Fernández Tellez 1 and Mario Rodríguez-Cahuantzi 1,* 1 Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Edif. EMA3-231, Ciudad Universitaria, 72570 Puebla, Mexico; [email protected] (E.G.H.); [email protected] (A.F.T.) 2 Instituto de Física y Matemáticas, Universidad Michoacana, 58040 Morelia, Mexico; [email protected] * Correspondence: [email protected] Received: 11 September 2020; Accepted: 2 October 2020; Published: 15 October 2020 Abstract: The study of cosmic rays with underground accelerator experiments started with the LEP detectors at CERN. ALEPH, DELPHI and L3 studied some properties of atmospheric muons such as their multiplicity and momentum. In recent years, an extension and improvement of such studies has been carried out by ALICE and CMS experiments. Along with the LHC high luminosity program some experimental setups have been proposed to increase the potential discovery of LHC. An example is the MAssive Timing Hodoscope for Ultra-Stable neutraL pArticles detector (MATHUSLA) designed for searching of Ultra Stable Neutral Particles, predicted by extensions of the Standard Model such as supersymmetric models, which is planned to be a surface detector placed 100 meters above ATLAS or CMS experiments. Hence, MATHUSLA can be suitable as a cosmic ray detector. In this manuscript the main results regarding cosmic ray studies with LHC experimental underground apparatus are summarized. The potential of future MATHUSLA proposal is also discussed. Keywords: cosmic ray physics at CERN; atmospheric muons; trigger detectors; muon bundles 1.
    [Show full text]
  • Extensive Air Showers and Ultra High-Energy Cosmic Rays: a Historical Review
    EPJ manuscript No. (will be inserted by the editor) Extensive Air Showers and Ultra High-Energy Cosmic Rays: A Historical Review Karl-Heinz Kampert1;a and Alan A Watson2;b 1 Department of Physics, University Wuppertal, Germany 2 School of Physics and Astronomy, University of Leeds, UK Abstract. The discovery of extensive air showers by Rossi, Schmeiser, Bothe, Kolh¨orsterand Auger at the end of the 1930s, facilitated by the coincidence technique of Bothe and Rossi, led to fundamental con- tributions in the field of cosmic ray physics and laid the foundation for high-energy particle physics. Soon after World War II a cosmic ray group at MIT in the USA pioneered detailed investigations of air shower phenomena and their experimental skill laid the foundation for many of the methods and much of the instrumentation used today. Soon in- terests focussed on the highest energies requiring much larger detectors to be operated. The first detection of air fluorescence light by Japanese and US groups in the early 1970s marked an important experimental breakthrough towards this end as it allowed huge volumes of atmo- sphere to be monitored by optical telescopes. Radio observations of air showers, pioneered in the 1960s, are presently experiencing a renais- sance and may revolutionise the field again. In the last 7 decades the research has seen many ups but also a few downs. However, the exam- ple of the Cygnus X-3 story demonstrated that even non-confirmable observations can have a huge impact by boosting new instrumentation to make discoveries and shape an entire scientific community.
    [Show full text]
  • KCDC User Manual
    KCDC User Manual KCDC - the KASCADE Cosmic Ray Data Centre Open Access Solution for the KArlsruhe Shower Core and Array Detector (KASCADE) KIT - University of the State of Baden-Wuerttemberg and National Research Centre of the Helmholtz Association Authors: Jürgen Wochele, Donghwa Kang, Doris Wochele, Andreas Haungs, Sven Schoo Address: Karlsruhe Institute of Technology (KIT) Institute for Astroparticle Physics (IAP) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Internet: kcdc.iap.kit.edu www.kit.edu DOI: https://doi.org/10.17616/R3TS4P Version: V.2.20 Last update: 2021-06-07 2 TABLE OF CONTENTS 1 INTRODUCTION ............................................................................................................................................ 9 1.1 KCDC - The KASCADE Cosmic Ray Data Centre ..................................................................................... 9 1.2 KCDC Motivation ................................................................................................................................. 11 1.3 KCDC Data Overview ............................................................................................................................ 13 1.4 The KCDC Team ................................................................................................................................... 14 2 THE KASCADE-DETECTORS ......................................................................................................................... 15 2.1 The KASCADE-Grande Experiment .....................................................................................................
    [Show full text]
  • The KASCADE-Grande Observatory and the Composition of Very High-Energy Cosmic Rays
    Journal of Physics: Conference Series PAPER • OPEN ACCESS Related content - Results from the KASCADE, KASCADE- The KASCADE-Grande observatory and the Grande, and LOPES experiments J R Hörandel, W D Apel, F Badea et al. composition of very high-energy cosmic rays - The KASCADE-grande experiment J Blümer, W D Apel, J C Arteaga et al. To cite this article: J C Arteaga-Velázquez et al 2015 J. Phys.: Conf. Ser. 651 012001 - Radio Emission in Atmospheric Air Showers: Results of LOPES-10 A Haungs, W D Apel, T Asch et al. View the article online for updates and enhancements. Recent citations - Cascade Photons as Test of Protons in UHECR V. Berezinsky et al - Full Monte-Carlo description of the Moscow State University Extensive Air Shower experiment Yu.A. Fomin et al This content was downloaded from IP address 129.13.72.197 on 23/10/2018 at 09:22 XIV Mexican Workshop on Particles and Fields IOP Publishing Journal of Physics: Conference Series 651 (2015) 012001 doi:10.1088/1742-6596/651/1/012001 The KASCADE-Grande observatory and the composition of very high-energy cosmic rays J.C. Arteaga-Vel´azquez1,∗, W.D. Apel2, K. Bekk2, M. Bertaina3, J. Bl¨umer2,4, H. Bozdog2, I.M. Brancus5, E. Cantoni3,6,a, A. Chiavassa3, F. Cossavella4,b, K. Daumiller2, V. de Souza7, F. Di Pierro3, P. Doll2, R. Engel2, J. Engler2, B. Fuchs4, D. Fuhrmann8,c, H.J. Gils2, R. Glasstetter8, C. Grupen9, A. Haungs2, D. Heck2, J.R. H¨orandel10, D. Huber4, T. Huege2, K.-H. Kampert8, D.
    [Show full text]
  • Arxiv:1907.02335V1 [Astro-Ph.IM] 4 Jul 2019 Keywords: Big Data · Data Engineering · Astroparticle Physics · KAS- CADE · TAIGA · GRADLC
    Development of a Data Infrastructure for a Global Data and Analysis Center in Astroparticle Physics ? Victoria Tokareva1[0000−0001−6699−830X]??, Andreas Haungs1[0000−0002−9638−7574], Donghwa Kang1[0000−0002−5149−9767], Dmitriy Kostunin2[0000−0002−0487−0076], Frank Polgart1[0000−0002−9324−7146], Doris Wochele1[0000−0001−6121−0632], J¨urgenWochele1[0000−0003−3854−4890] 1 Karlsruhe Institute of Technology, Institute for Nuclear Physics, 76021 Karlsruhe, Germany 2 Deutsches Elektronen-Synchrotron, 15738 Zeuthen, Germany [email protected] Abstract. Nowadays astroparticle physics faces a rapid data volume increase. Meanwhile, there are still challenges of testing the theoreti- cal models for clarifying the origin of cosmic rays by applying a multi- messenger approach, machine learning and investigation of the phenom- ena related to the rare statistics in detecting incoming particles. The problems are related to the accurate data mapping and data manage- ment as well as to the distributed storage and high-performance data processing. In particular, one could be interested in employing such so- lutions in study of air-showers induced by ultra-high energy cosmic and gamma rays, testing new hypotheses of hadronic interaction or cross- calibration of different experiments. KASCADE (Karlsruhe, Germany) and TAIGA (Tunka valley, Russia) are experiments in the field of as- troparticle physics, aiming at the detection of cosmic-ray air-showers, induced by the primaries in the energy range of about hundreds TeVs to hundreds PeVs. They are located at the same latitude and have an over- lap in operation runs. These factors determine the interest in performing a joint analysis of these data.
    [Show full text]
  • Cosmic Ray Measurements with the KASCADE-Grande Experiment
    June 2009 Cosmic Ray Measurements with the KASCADE-Grande Experiment Presentations for the 31st International Cosmic Ray Conference, Łódź, Poland, July 2009 1. Results on the cosmic ray energy spectrum measured with KASCADE-Grande KASCADE-Grande Collaboration, presented by Andreas Haungs 2. Cosmic ray energy spectrum based on shower size measurements of KASCADE-Grande KASCADE-Grande Collaboration, presented by Donghwa Kang 3. The Energy Spectrum of Primary Cosmic Rays Reconstructed with the KASCADE-Grande Muon Data. KASCADE-Grande Collaboration, presented by Juan Carlos Arteaga-Velazquez 4. The all particle energy spectrum of KASCADE-Grande in the energy region 1016 - 1018 eV by means of the Nch - Nμ technique KASCADE-Grande Collaboration, presented by Mario Bertaina 5. Primary energy reconstruction from the S(500) observable recorded with the KASCADE-Grande detector array KASCADE-Grande Collaboration, presented by Gabriel Toma 6. Performance of the KASCADE-Grande array KASCADE-Grande Collaboration, presented by Federico Di Pierro 7. Muonic Component of Air Showers Measured by the KASCADE-Grande Experiment KASCADE-Grande Collaboration, presented by Daniel Fuhrmann 8. The sensitivity of KASCADE-Grande to the cosmic ray primary composition between 1016 and 1018 eV KASCADE-Grande Collaboration, presented by Elena Cantoni 9. A direct measurement of the muon component of air showers by the KASCADE-Grande Experiment KASCADE-Grande Collaboration, presented by Vitor de Souza 10. Study of EAS development with the Muon Tracking Detector in KASCADE-Grande KASCADE-Grande Collaboration, presented by Janusz Zabierowski 11. Lateral distribution of EAS muons measured with the KASCADE-Grande Muon Tracking Detector KASCADE-Grande Collaboration, presented by Pawel Łuczak 12.
    [Show full text]
  • Physiker-Entdeckungen Und Erdzeiten Hans Ulrich Stalder 31.1.2019
    Physiker-Entdeckungen und Erdzeiten Hans Ulrich Stalder 31.1.2019 Haftungsausschluss / Disclaimer / Hyperlinks Für fehlerhafte Angaben und deren Folgen kann weder eine juristische Verantwortung noch irgendeine Haftung übernommen werden. Änderungen vorbehalten. Ich distanziere mich hiermit ausdrücklich von allen Inhalten aller verlinkten Seiten und mache mir diese Inhalte nicht zu eigen. Erdzeiten Erdzeit beginnt vor x-Millionen Jahren Quartär 2,588 Neogen 23,03 (erste Menschen vor zirka 4 Millionen Jahren) Paläogen 66 Kreide 145 (Dinosaurier) Jura 201,3 Trias 252,2 Perm 298,9 Karbon 358,9 Devon 419,2 Silur 443,4 Ordovizium 485,4 Kambrium 541 Ediacarium 635 Cryogenium 850 Tonium 1000 Stenium 1200 Ectasium 1400 Calymmium 1600 Statherium 1800 Orosirium 2050 Rhyacium 2300 Siderium 2500 Physiker Entdeckungen Jahr 0800 v. Chr.: Den Babyloniern sind Sonnenfinsterniszyklen mit der Sarosperiode (rund 18 Jahre) bekannt. Jahr 0580 v. Chr.: Die Erde wird nach einer Theorie von Anaximander als Kugel beschrieben. Jahr 0550 v. Chr.: Die Entdeckung von ganzzahligen Frequenzverhältnissen bei konsonanten Klängen (Pythagoras in der Schmiede) führt zur ersten überlieferten und zutreffenden quantitativen Beschreibung eines physikalischen Sachverhalts. © Hans Ulrich Stalder, Switzerland Jahr 0500 v. Chr.: Demokrit postuliert, dass die Natur aus Atomen zusammengesetzt sei. Jahr 0450 v. Chr.: Vier-Elemente-Lehre von Empedokles. Jahr 0300 v. Chr.: Euklid begründet anhand der Reflexion die geometrische Optik. Jahr 0265 v. Chr.: Zum ersten Mal wird die Theorie des Heliozentrischen Weltbildes mit geometrischen Berechnungen von Aristarchos von Samos belegt. Jahr 0250 v. Chr.: Archimedes entdeckt das Hebelgesetz und die statische Auftriebskraft in Flüssigkeiten, Archimedisches Prinzip. Jahr 0240 v. Chr.: Eratosthenes bestimmt den Erdumfang mit einer Gradmessung zwischen Alexandria und Syene.
    [Show full text]
  • The Extensive Air Shower Experiment Kascade-Grande
    July 13, 2011 12:18 WSPC/INSTRUCTION FILE S2010194511000183 Cosmology and Particle Astrophysics (CosPA 2008) International Journal of Modern Physics: Conference Series Vol. 1 (2011) 132–139 c World Scientific Publishing Company ! DOI: 10.1142/S2010194511000183 THE EXTENSIVE AIR SHOWER EXPERIMENT KASCADE-GRANDE a b a b b DONGHWA KANG ∗,W.D.APEL,J.C.ARTEAGA ,F.BADEA,K.BEKK, M. BERTAINAc,J.BLUMER¨ a,b,H.BOZDOGb,I.M.BRANCUSd,M.BRUGGEMANN¨ e, P. BUCHHOLZe,E.CANTONIc,A.CHIAVASSAc,F.COSSAVELLAa,K.DAUMILLERb, V. DE SOUZAa,F.DIPIERROc,P.DOLLb,R.ENGELb,J.ENGLERb,M.FINGERa, D. FUHRMANNf ,P.L.GHIAg ,H.J.GILSb,R.GLASSTETTERf ,C.GRUPENe, A. HAUNGSb,D.HECKb,J.R.HORANDEL¨ a,T.HUEGEb,P.G.ISARb,K.-H.KAMPERTf , D. KICKELBICKe,H.O.KLAGESb,Y.KOLOTAEVe,P.LUCZAK! h,H.J.MATHESb, H. J. MAYERb,J.MILKEb,B.MITRICAd,C.MORELLOg,G.NAVARRAc,S.NEHLSb, J. OEHLSCHLAGER¨ b,S.OSTAPCHENKOb,S.OVERe,M.PETCUd,T.PIEROGb, H. REBELb,M.ROTHb,G.SCHATZb,H.SCHIELERb,F.SCHRODER¨ b,O.SIMAi, M. STUMPERT¨ a,G.TOMAd,G.C.TRINCHEROg ,H.ULRICHb,J.VANBURENb, W. WALKOWIAKe,A.WEINDLb,J.WOCHELEb,M.WOMMERb,J.ZABIEROWSKIh aInstitut f¨ur Experimentelle Kernphysik, Universit¨at Karlsruhe, 76021 Karlsruhe, Germany bInstitut f¨ur Kernphysik, Forschungszentrum Karlsruhe, 76021 Karlsruhe, Germany cDiparimento di Fisica Generale dell’Universit`a, 10125 Torino, Italy dNational Institute of Physics and Nuclear Engineering, 7690 Bucharest, Romania eFachbereich Physik, Universit¨at Siegen, 57068 Siegen, Germany f Fachbereich Physik, Universit¨at Wuppertal, 42097 Wuppertal, Germany gIstituto di Fisica dello Spazio Interplanetario, INAF, 10133 Torino, Italy hSoltan Institute for Nuclear Studies, 90950 Lodz, Poland iDepartment of Physics, University Bucharest, 76900 Bucharest, Romania ∗e-mail: [email protected] The extensive air shower experiment KASCADE-Grande (KArlsruhe Shower Core and Array DEtector and Grande array) is located on site of the Forschungszentrum Karlsruhe in Germany.
    [Show full text]
  • LOFAR CRKSP Contributions 35Th ICRC 2017
    Contributions of the LOFAR Cosmic Ray Key Science Project to the 35th International Cosmic Ray Conference (ICRC 2017) A. Bonardi1, S. Buitink2, A. Corstanje1, H. Falcke1;3;4, B. M. Hare5, J. R. H¨orandel1;3, P. Mitra2, K. Mulrey2, A. Nelles1;6, J. P. Rachen1, L. Rossetto1, P. Schellart1;7, O. Scholten5;8, S. ter Veen1;4, S. Thoudam1;9, T. N. G. Trinh5, T. Winchen2 1 Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands, 2 Astrophysical Institute, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium, 3 NIKHEF, Science Park Amsterdam, 1098 XG Amsterdam, The Netherlands, 4 Netherlands Institute of Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo, The Netherlands, 5 KVI-CART, University Groningen, P.O. Box 72, 9700 AB Groningen, 6 Department of Physics and Astronomy, University of California Irvine, Irvine, CA 92697- 4575, USA, 7 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA, 8 Interuniversity Institute for High-Energy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium, 9 Department of Physics and Electrical Engineering, Linn´euniversitetet, 35195 V¨axj¨o, Sweden arXiv:1711.07749v1 [astro-ph.HE] 21 Nov 2017 Contents Cosmic ray mass composition with LOFAR .................... 3 Characterisation of the radio frequency spectrum emitted by high energy air showers with LOFAR ..................... 11 The effect of the atmospheric refractive index on the radio signal of ex- tensive air showers using Global Data Assimilation System (GDAS) .. 19 Circular polarization in radio emission from extensive air showers ..... 27 Circular polarization of radio emission from extensive air showers probes atmospheric electric fields in thunderclouds.
    [Show full text]