First Record of Temnopleurus Toreumaticus (Leske, 1778) from Mumbai (Echinodermata; Echinoidea)

Total Page:16

File Type:pdf, Size:1020Kb

First Record of Temnopleurus Toreumaticus (Leske, 1778) from Mumbai (Echinodermata; Echinoidea) Indian Journal of Geo-Marine Sciences Vol. 44(10), October 2015, pp. 1637-1639 First record of Temnopleurus toreumaticus (Leske, 1778) from Mumbai (Echinodermata; Echinoidea) Sagar Gavas*& Bhupendra Shirke D.G.Ruparel College, Senapati Bapat Marg, Mahim, Mumbai- 400 016, India [Email ID: [email protected]] Received 21 April 2014; revised 14 October 2014 Sea urchins are marine spiny animal belonging to phylum Echinodermata. Till date there is no report on occurrence of sea urchins from Mumbai coast. This paper reports the first record of Temnopleurus toreumaticus (Leske, 1778) from Mumbai coast. The specimen was collected from Mumbai beach and identified using standard available literature. This study is a preliminary data for further investigations, monitoring and conservation. [Key words: Sea urchin, first record, Temnopleurus, Mumbai] Introduction record their native colouration and pattern. Live About 6000 living species of echinoderms have specimens were brought to the laboratory and been described in the world, of which more than were subjected to detailed observations to reveal 1000 have been listed for the Indo-West their morphological, anatomical and biometric Pacific1. Sea urchin is one of the most common characteristics. The specimen were preserved, components of near shore marine ecosystem, labeled and deposited in the museum. often playing an important ecological role in Identification was carried out based on the shallow subtidal environments2. Sea urchin morphological characteristics and available inhabits sea grass beds, coral reef3, intertidal standard literatures8-10. region4, and feed on benthic invertebrates and Results and Discussions algae5. Among the various families of echinoids Sea Urchin Temnopleurus toreumaticus is that inhabit Indo-West Pacific, the family classified under the class Echinoidea as follows Temnopleuridae (Agassiz, 1872) comprises 14 9: genera and 25 species 6, 7. Earlier work in the Subclass: Regularia west coast on Temnopleurus sp.has been done Key to the Sub-class of class: Test by Hegde et al 8. The intertidal region of globular, or spherical; anus inside the Mumbai is least studied. There are no official apical system of plates. records of echinoderms in recent years. The Order: Camarodonta rocky shore of Mumbai has good diversity of Key to the orders of the sub-class: algae and other invertebrates which serve as Epiphyses of the Aristotle's lantern good feeding grounds for Sea urchin. The fused across the top of each pyramid present paper describes a new record of teeth keeled. Temnopleurus toreumaticus from Mumbai. Family: Temnopleuridae Key to the family of the order: Test Materials and Methods sculptured by pits and depressions. For the current study, intertidal areas of rocky Genus : Temnopleurus (L. Agassiz, shore along Mumbai coast were selected. 1841) Mumbai is located on the west cost of India Key to the genus of the family: Test 0 0 (between Lat. 18 54’ to 19 09’ N and Long. profile hemispherical to subconical, 0 0 72 47’ to 72 56’ E). Sampling was carried out rather thick shelled with conspicuous on rocky patches of Mumbai. Survey was crenulations carried out during low tide on rocky shores of Species : toreumaticus (Leske, 1778) Mumbai from January to March 2014. Digital Key to species of the genus: Primary images were taken on site during survey to spines long, equal to half of horizontal test 1638 INDIAN J MAR SCI VOL 44, NO.10 OCTOBER 2015 diameter, banded with reddish or brown colour bands, pore-pairs arranged in arcs8. Habitat and Distribution Temnopleurus toreumaticus is a fairly wide spread species occupying rocky and sandy Madreporite beaches. It is known to occur in East Africa, Genital Madagscar, the Persian Gulf, Red sea and on the Periproct Plate east coast of Australia 10. In Japan, this species is found from northern Honshu to southern Kyushu11, 12 and Shirikiwa Bay 13 Morphological Characters Test: Dome-shaped, rigid, well Fig 2- Aboral surface of Temnopleurus toreumaticus (Leske, 1778) sculptured with a convex aboral surface. Test comprises of five pairs of Periproct: Roughly circular8 (Fig 2) alternately placed ambulacral and interambulacral plates placed at about the level of the ambulacral plates. Sutural Ambulacral plates compound Pit trigeminate, their pore-pairs bearing numerous tube feet (in living specimens) (Fig. 1 and 3)8 Test Colour: Olive green to dark grey colour (Fig. 1) Green and grey Tube feet band spines Fig3- Fig 3- Banding pattern on spine, sutural pit and tube feet Of Temnopleurus toreumaticus (Leske, 1778) Spines: Spines are thick, their surface covered with line longitudinal ridges. Spine colouration grey with alternating greenish or brownish bands8 (Fig.3) Fig 1- Live specimen of Temnopleurus toreumaticus (Leske, 1778) Peristome: The peristome is large roughly circular in outline with very feeble buccal notches. It is covered with soft skin and comprises of five pairs of buccal plates8.(Fig 4) Apical system: It is dicyclic and smaller than the peristome, with four equal- sized genital plates and one larger 8 genital plate with madreporite .(Fig 2) Fig 4- Oral view of Temnopleurus toreumaticus (Leske, 1778) GAVAS et al. FIRST RECORD OF TEMNOPLEURUS TOREUMATICUS (LESKE, 1778) FROM MUMBAI 1639 (ECHINODERMATA; ECHINOIDEA) : Toxopneustidae. C. A. Reitzel, Copenhagen, Conclusion (1943) pp553 12. Schultz H.Sea Urchins, a Guide to Worldwide Echinodermata is one of the best characterized 14 shallow Water species. (Heinke & Peter Schultz and most distinct phyla of animal kingdom . Partner Scientiic Publications, Hemdingen) 2006, Present study reports the first record of Sea pp495 urchin Temnopleurus toreumaticus 13. Kitazawa C., Kawasaki S., Nishimura H., (Leske, 1778) from Mumbai. The concern is Nakano M., Yamaguchi T. & Yamanaka A. Distribution and habitat preferences of sea urchin that we may lose many species without being in Shirikawa Bay, Yamaguchi, during the period aware of their existence in Mumbai beaches. from 2005 to 2007. Biological Bulletin(2007) Further study on echinoderms of shallow water 217: 215-221. are necessary should be done in terms of 14. Bather, F.A. Part III The Echinoderma. In: Lankester, E.R. (Ed.) A Treatise on Zoology. monographic works and marine scientists should (Adam & Charles Black, London) 1900 pp 1- be encouraged to study the other aspects on this 344. animal. It is important to have conservation based systematic and comprehensive studies on these animals so that base line information may be generated on these animals and their habitat. References: 1. Guille A, Laboute P, Menou JL. Guide des étoiles de mer, oursins et autres échinoderms du lagon de Nouvelle-Calédonie. (Paris: Edition de l’ORSTOM) 1986 2. Harrold, C. and J.S. Pearse. The ecological role of echinoderms in kelp forests. Echinoderm Studies 1987, pp137-233. 3. Nybakken J. W. & Bertness M. D.Marine Biology: an Ecological Approach. (Pearson Benjamin- Cummings, San Francisco) 2005, pp 579 4. Lawrence J. M.Edible sea Urchins – Biology and Ecology. (Elsevier Science, Amsterdam) 2006, pp 380 5. Norderhaug K. M. & Christie H. C.Sea urchin grazing and kelp re-vegetation in the NE Atlantic. Marine Biology research 5 (2009): 515- 528 6. Kroh A. & Mooi R.World Echinoid Database (2011) http://www.marinespecies.org/echinoidea (accessed on 15 April, 2014) 7. Kroh A.Temnopleurus L. Agassiz, 1841, in KROH A. & MOOI R. (eds), World Echinoidea Database. (2012) http://www.marinespecies.org/echinoidea/aphia.p hp?p=taxdetails&id=179691 (accessed on 15 April, 2014) 8. Hegde M.R., Rivonker C U. A new record of Temnopleurus decipiens (de Meijere, 1904) (Echinoidea, Temnopleuroida, Temnopleuridae) from Indian waters Zoosystema (2013) 35 (1) 9. James P. S. B. R., Suseelan C. Marine living resources of the union territory of Lakshadweepan indicative survey with suggestions for development CMFRI publication pp (1989) 113-117 10. Clark A. M. & Rowe F. E. W.Monograph of shallow-Water Indo-West paciic Echinoderms. Trustees of the British Museum of Natural History, London, (1971) pp 238 11. Mortensen T.A Monograph of the Echinoidea part III, no. 2 Camarodonta 1. orthopsidae, Glyphocyphidae, Temnopleuridae and .
Recommended publications
  • Regular Echinoids, Other Than Hemicidaroida, from Upper Cretaceous Deposits in the Wadi Qena-Area (Eastern Desert, Egypt)
    BULLETIN DE L'INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE, SCIENCES DE LA TERRE, 62: 139-154, 1992 BULLETIN VAN HET KONINKLIJK BELGISCH INSTITUT VOOR NATUURWETENSCHAPPEN^ AARDWETENSCHAPPEN, 62: 139-154, 1992 Regular Echinoids, other than Hemicidaroida, from Upper Cretaceous deposits in the Wadi Qena-area (Eastern Desert, Egypt) Joris F. GEYS Abstract been described by GREGORY (1906), by FOURTAU (1900, 1901, 1905, 1909, 1912, 1913 and 1914) and by Numerous regular echinoids have been collected by a German expedi• STEFANINI (1918). GREGORY (1906) mentioned five tion in the Upper Cretaceous of Wadi Qena, Egypt. In this paper, the species: presence of six non-Hemicidaroid species in these deposits is discus• "Micropedina bipatellis sed. Two genera (Desoricidaris and Bandelicyphus) and one species Cyphosoma beadnelli, n. sp. (Bandelicyphus qenaensis) are new. Thylechinus quincuncialis, n. sp. Keywords: Echinoids, Cretaceous, Egypt, Taxonomy. Coptosoma abbatei (Gauthier), 1899 Coptosoma gunnehensis, n. sp." A compilation of his earlier papers, published by Résumé FOURTAU (1914), yields the following list of 38 species and subspecies: De nombreux échinides réguliers ont été récoltés par une expédition "Cidaris Thomasi, Gauthier 1901 allemande dans le Crétacé Supérieur du Wadi Qena, en Egypte. La Dorocidaris Schweinfurthi, Gauthier 1901 présence, dans ces dépôts, de six espèces non-hémicidarides est discu• Typocidaris cenomanensis, Cotteau 1885 tée. Deux genres (Desoricidaris et Bandelicyphus) et une espèce (Ban• Typocidaris chercherensis,
    [Show full text]
  • SI Appendix for Hopkins, Melanie J, and Smith, Andrew B
    Hopkins and Smith, SI Appendix SI Appendix for Hopkins, Melanie J, and Smith, Andrew B. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution. Corrections to character matrix Before running any analyses, we corrected a few errors in the published character matrix of Kroh and Smith (1). Specifically, we removed the three duplicate records of Oligopygus, Haimea, and Conoclypus, and removed characters C51 and C59, which had been excluded from the phylogenetic analysis but mistakenly remain in the matrix that was published in Appendix 2 of (1). We also excluded Anisocidaris, Paurocidaris, Pseudocidaris, Glyphopneustes, Enichaster, and Tiarechinus from the character matrix because these taxa were excluded from the strict consensus tree (1). This left 164 taxa and 303 characters for calculations of rates of evolution and for the principal coordinates analysis. Other tree scaling methods The most basic method for scaling a tree using first appearances of taxa is to make each internal node the age of its oldest descendent ("stand") (2), but this often results in many zero-length branches which are both theoretically questionable and in some cases methodologically problematic (3). Several methods exist for modifying zero-length branches. In the case of the results shown in Figure 1, we assigned a positive length to each zero-length branch by having it share time equally with a preceding, non-zero-length branch (“equal”) (4). However, we compared the results from this method of scaling to several other methods. First, we compared this with rates estimated from trees scaled such that zero-length branches share time proportionally to the amount of character change along the branches (“prop”) (5), a variation which gave almost identical results as the method used for the “equal” method (Fig.
    [Show full text]
  • Upper Eocene Echinoidea from Buda Hills, Hungary
    UPPER EOCENE ECHINOIDEA FROM BUDA HILLS, HUNGARY by A. BARTHA Department of Palaeontotogy, Eötvös University, H-1083 Budapest, Ludovika tér 2, Hungary. Present address: Hungarian Geoiogica) Survey. H-Í442 Budapest, P. O Box )06, Hungary ^gcefvcJ.' 6i/t MarcA, 79^97 Abstract Five tocatities in Buda Hiits, Budapest, yietded t820 specimens of echinoids: 43 species of 22 genera were recognized. Six types of host rocks are interpreted as six environments; tim estone, sandy tim estone, A'MmmMftfeí-ÜMCOcyc/MM iim estone, m ariy MrmmM/;- res-Dtscw^'c/trtd timestone, Bryozoa mari and Buda Mart indicate a graduat change from nears­ hore to deep water, quiet environment. The fauna is characteristic for the Upper Eocene; Middte Eocene and Lower Otigocene species are subordinate. Comparisons with described faunas indicate Southern Atpine affinity. Introduction Upper Eocene formations of the Buda Hiiis are rich in echinoids. Collection and publication of the fauna started in the 19th century. A pioneer worker was ELEK PÁVAY (1874), who studied the echinoid fauna of the Bryozoa and Buda Marls, and described several new species. At the turn of the century and during the first decades of the 20th century faunal lists were published only on the echinoids of the 7VMfnmM/nes-D/scocyc7ma limestone. A list of the Martinovics-hegy locality was published by LŐRENTHEY (1897) and another by LŐWY (1928). The study of SZÖRÉNYI (1929) played an extremely important role in the investigation of the Buda Hills echinoids. Describing the fauna of the Buda Marl, a detailed discussion was provided on the material of new collections, too.
    [Show full text]
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - ---
    [Show full text]
  • Research Article Spawning and Larval Rearing of Red Sea Urchin Salmacis Bicolor (L
    Iranian Journal of Fisheries Sciences 19(6) 3098-3111 2020 DOI: 10.22092/ijfs.2020.122939 Research Article Spawning and larval rearing of red sea urchin Salmacis bicolor (L. Agassiz and Desor, 1846;Echinodermata: Echinoidea) Gobala Krishnan M.1; Radhika Rajasree S.R.2*; Karthih M.G.1; Aranganathan L.1 Received: February 2019 Accepted: May 2019 Abstract Gonads of sea urchin attract consumers due to its high nutritional value than any other seafood delicacies. Aquaculturists are also very keen on developing larval culture methods for large-scale cultivation. The present investigation systematically examined the larval rearing, development, survival and growth rate of Salmacis bicolor fed with various microalgal diets under laboratory condition. Fertilization rate was estimated as 95%. The blastula and gastrula stages attained at 8.25 h and 23.10 h post-fertilization. The 4 - armed pluteus larvae were formed with two well - developed post-oral arms at 44.20 h following post-fertilization. The 8 - armed pluteus attained at 9 days post fertilization. The competent larva with complete rudiment growth was developed on 25th days post - fertilization. Monodiet algal feed - Chaetoceros calcitrans and Dunaliella salina resulted medium (50.6 ± 2.7%) and low survival rate (36.8 ± 1.7%) of S. bicolor larvae. However, combination algal feed – Isochrysis galbana and Chaetoceros calcitrans has promoted high survival rate (68.3 ± 2.5%) which was significantly different between the mono and combination diet. From the observations of the study, combination diet could be adopted as an effective feed measure to promote the production of nutritionally valuable roes of S.
    [Show full text]
  • Equinodermos Del Caribe Colombiano II: Echinoidea Y Holothuroidea Holothuroidea
    Holothuroidea Echinoidea y Equinodermos del Caribe colombiano II: Echinoidea y Equinodermos del Caribe colombiano II: Holothuroidea Equinodermos del Caribe colombiano II: Echinoidea y Holothuroidea Autores Giomar Helena Borrero Pérez Milena Benavides Serrato Christian Michael Diaz Sanchez Revisores: Alejandra Martínez Melo Francisco Solís Marín Juan José Alvarado Figuras: Giomar Borrero, Christian Díaz y Milena Benavides. Fotografías: Andia Chaves-Fonnegra Angelica Rodriguez Rincón Francisco Armando Arias Isaza Christian Diaz Director General Erika Ortiz Gómez Giomar Borrero Javier Alarcón Jean Paul Zegarra Jesús Antonio Garay Tinoco Juan Felipe Lazarus Subdirector Coordinación de Luis Chasqui Investigaciones (SCI) Luis Mejía Milena Benavides Paul Tyler Southeastern Regional Taxonomic Center Sandra Rincón Cabal Sven Zea Subdirector Recursos y Apoyo a la Todd Haney Investigación (SRA) Valeria Pizarro Woods Hole Oceanographic Institution David A. Alonso Carvajal Fotografía de la portada: Christian Diaz. Coordinador Programa Biodiversidad y Fotografías contraportada: Christian Diaz, Luis Mejía, Juan Felipe Lazarus, Luis Chasqui. Ecosistemas Marinos (BEM) Mapas: Laboratorio de Sistemas de Información LabSIS-Invemar. Paula Cristina Sierra Correa Harold Mauricio Bejarano Coordinadora Programa Investigación para la Gestión Marina y Costera (GEZ) Cítese como: Borrero-Pérez G.H., M. Benavides-Serrato y C.M. Diaz-San- chez (2012) Equinodermos del Caribe colombiano II: Echi- noidea y Holothuroidea. Serie de Publicaciones Especiales Constanza Ricaurte Villota de Invemar No. 30. Santa Marta, 250 p. Coordinadora Programa Geociencias Marinas (GEO) ISBN 978-958-8448-52-7 Diseño y Diagramación: Franklin Restrepo Marín. Luisa Fernanda Espinosa Coordinadora Programa Calidad Ambiental Impresión: Marina (CAM) Marquillas S.A. Palabras clave: Equinodermos, Caribe, Colombia, Taxonomía, Biodiversidad, Mario Rueda Claves taxonómicas, Echinoidea, Holothuroidea.
    [Show full text]
  • Hemidiadema Rugosum AGASSIZ, 1846, Et H. Neocomiense (COTTEAU, 1869) (Euechinoidea, Camarodonta, Glyphocyphidae) Du Crétacé Inférieur Du Bassin Parisien (France)
    Carnets de Géologie [Notebooks on Geology] - Mémoire 2013/01 (CG2013_M01) Révision des espèces Hemidiadema rugosum AGASSIZ, 1846, et H. neocomiense (COTTEAU, 1869) (Euechinoidea, Camarodonta, Glyphocyphidae) du Crétacé inférieur du Bassin parisien (France) 1 Arnaud CLÉMENT Résumé : Les espèces Hemidiadema rugosum AGASSIZ, 1846, et H. neocomiense (COTTEAU, 1869), pe- tits échinides réguliers mal connus et sources de nombreuses confusions – de part leur rareté et l'insuf- fisance de leur description originale par leur auteur respectif –, sont révisées afin de clarifier leurs diffé- rences et leur statut taxonomique. Cette révision s'appuie sur l'examen de six exemplaires d'H. rugo- sum (dont l'holotype, non figuré par son auteur à l'origine) tous provenant du locus typicus et du stra- tum typicum ("Grès ferrugineux" du Clansayésien [Aptien supérieur sensu gallico] de Grandpré, Arden- nes) et sur un unique spécimen d'H. neocomiense provenant du stratum typicum ("Calcaire à Spatan- gues" de l'Hauterivien inférieur (? Zone à Lyticoceras nodosoplicatum)) de Ville-sur-Saulx (Meuse), ré- gion proche du locus typicus (Auxerre, Yonne)). Pour cette dernière espèce, un néotype est désigné en remplacement de l'holotype non retrouvé. Des remarques sur la paléoécologie et les répartitions géo- graphique et stratigraphique de ces deux espèces sont précisées. La révision de ces deux espèces don- ne l'occasion de proposer une diagnose émendée du genre Hemidiadema AGASSIZ, 1846, Glyphocyphi- dae peu connu. Mots-Clefs : Echinoids; Glyphocyphidae; Hemidiadema; Lower Cretaceous; Hauterivian; Aptian; Paris Basin; France. Citation : CLÉMENT A. (2013).- Hemidiadema rugosum AGASSIZ, 1846, et H. neocomiense (COTTEAU, 1869) (Euechinoidea, Camarodonta, Glyphocyphidae) du Crétacé inférieur du Bassin parisien (France).- Carnets de Géologie [Notebooks on Geology], Brest, Mémoire 2013/01 (CG2013_M01), p.
    [Show full text]
  • Sepkoski, J.J. 1992. Compendium of Fossil Marine Animal Families
    MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions . In BIOLOGY and GEOLOGY Number 83 March 1,1992 A Compendium of Fossil Marine Animal Families 2nd edition J. John Sepkoski, Jr. Department of the Geophysical Sciences University of Chicago Chicago, Illinois 60637 Milwaukee Public Museum Contributions in Biology and Geology Rodney Watkins, Editor (Reviewer for this paper was P.M. Sheehan) This publication is priced at $25.00 and may be obtained by writing to the Museum Gift Shop, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Orders must also include $3.00 for shipping and handling ($4.00 for foreign destinations) and must be accompanied by money order or check drawn on U.S. bank. Money orders or checks should be made payable to the Milwaukee Public Museum. Wisconsin residents please add 5% sales tax. In addition, a diskette in ASCII format (DOS) containing the data in this publication is priced at $25.00. Diskettes should be ordered from the Geology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, WI 53233. Specify 3Y. inch or 5Y. inch diskette size when ordering. Checks or money orders for diskettes should be made payable to "GeologySection, Milwaukee Public Museum," and fees for shipping and handling included as stated above. Profits support the research effort of the GeologySection. ISBN 0-89326-168-8 ©1992Milwaukee Public Museum Sponsored by Milwaukee County Contents Abstract ....... 1 Introduction.. ... 2 Stratigraphic codes. 8 The Compendium 14 Actinopoda.
    [Show full text]
  • Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
    Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico.
    [Show full text]
  • Echinoidea: Temnopleuridae) Revista De Biología Tropical, Vol
    Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Marzinelli, E.M.; Penchaszadeh, P.E.; Bigatti, G. Egg strain in the sea urchin Pseudechinus magellanicus (Echinoidea: Temnopleuridae) Revista de Biología Tropical, vol. 56, núm. 3, diciembre, 2008, pp. 335-339 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44920273020 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Egg strain in the sea urchin Pseudechinus magellanicus (Echinoidea: Temnopleuridae) E.M. Marzinelli1, P.E. Penchaszadeh1,2 & G. Bigatti3 1. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria Pabellón II, (C1428EGA) Buenos Aires, Argentina; [email protected] 2. CONICET - Museo Argentino de Ciencias Naturales Bernardino Rivadavia. Av. Ángel Gallardo 470, (1045) Buenos Aires, Argentina; [email protected] 3. Centro Nacional Patagónico CENPAT - CONICET. Bvd. Brown 3500, U9120ACV Puerto Madryn, Chubut, Argentina; [email protected] Received 16-II-2007. Corrected 02-X-2007. Accepted 17-IX-2008. Abstract: Echinoid eggs with sizes greater than the gonopore experience strain resulting from compression during spawning, which can damage them affecting fertilization. The aim of this study was to describe gamete characteristics and analyse aspects related to egg strain during spawning of Pseudechinus magellanicus from Golfo Nuevo, Patagonia, Argentina. Mean fresh egg diameter observed was 122 µm with an additional jelly coat of 49 µm.
    [Show full text]
  • Tool Use by Four Species of Indo-Pacific Sea Urchins
    Journal of Marine Science and Engineering Article Tool Use by Four Species of Indo-Pacific Sea Urchins Glyn A. Barrett 1,2,* , Dominic Revell 2, Lucy Harding 2, Ian Mills 2, Axelle Jorcin 2 and Klaus M. Stiefel 2,3,4 1 School of Biological Sciences, University of Reading, Reading RG6 6UR, UK 2 People and The Sea, Logon, Daanbantayan, Cebu 6000, Philippines; [email protected] (D.R.); lucy@peopleandthesea (L.H.); [email protected] (I.M.); [email protected] (A.J.); [email protected] (K.M.S.) 3 Neurolinx Research Institute, La Jolla, CA 92039, USA 4 Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines * Correspondence: [email protected] Received: 5 February 2019; Accepted: 14 March 2019; Published: 18 March 2019 Abstract: We compared the covering behavior of four sea urchin species, Tripneustes gratilla, Pseudoboletia maculata, Toxopneustes pileolus, and Salmacis sphaeroides found in the waters of Malapascua Island, Cebu Province and Bolinao, Panagsinan Province, Philippines. Specifically, we measured the amount and type of covering material on each sea urchin, and in several cases, the recovery of debris material after stripping the animal of its cover. We found that Tripneustes gratilla and Salmacis sphaeroides have a higher affinity for plant material, especially seagrass, compared to Pseudoboletia maculata and Toxopneustes pileolus, which prefer to cover themselves with coral rubble and other calcified material. Only in Toxopneustes pileolus did we find a significant corresponding depth-dependent decrease in total cover area, confirming previous work that covering behavior serves as a protection mechanism against UV radiation. We found no dependence of particle size on either species or size of sea urchin, but we observed that larger sea urchins generally carried more and heavier debris.
    [Show full text]
  • Rare Late Cretaceous Phymosomatoid Echinoids from the Hannover Area (Lower Saxony, Germany)*
    Zoosymposia 7: 267–278 (2012) ISSN 1178-9905 (print edition) www.mapress.com/zoosymposia/ ZOOSYMPOSIA Copyright © 2012 · Magnolia Press ISSN 1178-9913 (online edition) urn:lsid:zoobank.org:pub:DE003596-2416-4637-9FCD-085FC22BEEE0 Rare Late Cretaceous phymosomatoid echinoids from the Hannover area (Lower Saxony, Germany)* 1,4 2 3 3 NILS SCHLÜTER , FRANK WIESE , HELMUT FAUSTMANN & PETER GIROD 1 Georg-August University of Göttingen, Geoscience Centre, Museum, Collections & Geopark, Göttingen, Germany 2 Georg-August University of Göttingen, Courant Research Centre Geobiology, Göttingen, Germany 3 Berlin, Germany 4 Corresponding author, E-mail: [email protected] *In: Kroh, A. & Reich, M. (Eds.) Echinoderm Research 2010: Proceedings of the Seventh European Conference on Echinoderms, Göttingen, Germany, 2–9 October 2010. Zoosymposia, 7, xii + 316 pp. Abstract Gauthieria mosae is recorded for the first time from upper Campanian Belemnitella( minor/Nostoceras polyplocum Zone) strata at the Teutonia Nord quarry in the Hannover area (northwest Germany), with two specimens available. This spe- cies was previously known only from the lower upper Campanian (basiplana/spiniger Zone and higher) of the province of Liège, northeast Belgium. In addition, a specimen of Gauthieria aff. pseudoradiata, from the B. minor/N. polyplocum Zone as well at the Teutonia Nord quarry, is illustrated and discussed in an attempt to elucidate the confused taxonomy of this form. Key words: Echinoidea, Phymosomatidae, Cretaceous, Campanian, palaeogeography Introduction In recent decades, Upper Cretaceous rocks in the environs of Hannover, Lower Saxony (northwest Germany; Fig. 1) have yielded a wealth of regular and irregular echinoids. These species have been considered in numerous papers, both taxonomically and stratigraphically.
    [Show full text]