Multifaceted Control of GR Signaling and Its Impact on Hepatic Transcriptional Networks and Metabolism

Total Page:16

File Type:pdf, Size:1020Kb

Multifaceted Control of GR Signaling and Its Impact on Hepatic Transcriptional Networks and Metabolism University of Southern Denmark Multifaceted Control of GR Signaling and Its Impact on Hepatic Transcriptional Networks and Metabolism Præstholm, Stine M.; Correia, Catarina M.; Grøntved, Lars Published in: Frontiers in Endocrinology DOI: 10.3389/fendo.2020.572981 Publication date: 2020 Document version: Final published version Document license: CC BY Citation for pulished version (APA): Præstholm, S. M., Correia, C. M., & Grøntved, L. (2020). Multifaceted Control of GR Signaling and Its Impact on Hepatic Transcriptional Networks and Metabolism. Frontiers in Endocrinology, 11, [572981]. https://doi.org/10.3389/fendo.2020.572981 Go to publication entry in University of Southern Denmark's Research Portal Terms of use This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply: • You may download this work for personal use only. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying this open access version If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to [email protected] Download date: 29. Sep. 2021 REVIEW published: 08 October 2020 doi: 10.3389/fendo.2020.572981 Multifaceted Control of GR Signaling and Its Impact on Hepatic Transcriptional Networks and Metabolism Stine M. Præstholm †, Catarina M. Correia † and Lars Grøntved* Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark Glucocorticoids (GCs) and the glucocorticoid receptor (GR) are important regulators of development, inflammation, stress response and metabolism, demonstrated in various diseases including Addison’s disease, Cushing’s syndrome and by the many side effects of prolonged clinical administration of GCs. These conditions include severe metabolic Edited by: challenges in key metabolic organs like the liver. In the liver, GR is known to regulate Nicolas Venteclef, Sorbonne Universités, France the transcription of key enzymes in glucose and lipid metabolism and contribute to the Reviewed by: regulation of circadian-expressed genes. Insights to the modes of GR regulation and Andrew C. B. Cato, the underlying functional mechanisms are key for understanding diseases and for the Karlsruhe Institute of Technology (KIT), Germany development of improved clinical uses of GCs. The activity and function of GR is regulated Dino Moras, at numerous levels including ligand availability, interaction with heat shock protein (HSP) INSERM U964 Institut de Génétique et complexes, expression of GR isoforms and posttranslational modifications. Moreover, de Biologie Moléculaire et Cellulaire (IGBMC), France recent genomics studies show functional interaction with multiple transcription factors *Correspondence: (TF) and coregulators in complex transcriptional networks controlling cell type-specific Lars Grøntved gene expression by GCs. In this review we describe the different regulatory steps [email protected] important for GR activity and discuss how different TF interaction partners of GR †These authors have contributed selectively control hepatic gene transcription and metabolism. equally to this work Keywords: Glucocorticoid receptor, chromatin, transcription, metabolism, liver Specialty section: This article was submitted to Molecular and Structural INTRODUCTION Endocrinology, a section of the journal Any living organism must adapt and respond to the surrounding environment to maintain Frontiers in Endocrinology its existence. For multicellular organisms such as mammals, this includes daily transitions Received: 15 June 2020 between different physiological conditions including sleep/awake, fasted/fed, and physical Accepted: 03 September 2020 inactivity/activity. Moreover, occasional response to environmental changes such as confinement, Published: 08 October 2020 predator stress, extreme temperatures, inflammation and prolonged lack of food is critical for Citation: survival. Glucocorticoids (GCs) serve as important endocrine signaling molecules controlling Præstholm SM, Correia CM and many molecular signaling pathways that enable cells in the organism to respond to different Grøntved L (2020) Multifaceted extrinsic cues. This is particularly evident for cellular responses in the arousal state including the Control of GR Signaling and Its Impact on Hepatic Transcriptional Networks transitions mentioned above. Importantly, pathophysiological conditions leading to dysfunctional and Metabolism. GC signaling have dramatic effects on many important biological functions including development, Front. Endocrinol. 11:572981. inflammatory response, reproduction, cognitive function, anxiety, circadian entrainment, doi: 10.3389/fendo.2020.572981 cardiovascular regulation and cellular metabolism in a tissue-specific manner (1). For example, Frontiers in Endocrinology | www.frontiersin.org 1 October 2020 | Volume 11 | Article 572981 Præstholm et al. GR Regulatory Networks uncontrolled GC secretion observed in Cushing’s syndrome in the genome in synergy with cell-specific TFs, coregulators leads to metabolic complications such as type 2 diabetes and regulatory RNAs. In this review we will discuss all three and osteoporosis, which are also observed in situations of regulatory aspects of GR signaling with a specific focus on GR prolonged treatment with GCs. In contrast, conditions of low GC interaction with the genome. We will primarily refer to studies production, seen in Addison’s disease, are associated with muscle from mouse liver tissue to discuss recent insights to hepatic gene weakness, low blood pressure and weight loss (2). regulatory networks and metabolism controlled by GCs. This will Glucocorticoids exert their actions primarily by binding to specifically be related to the hepatic transcriptional response to the glucocorticoid receptor (GR or Nr3c1), which is expressed the circadian rhythm, feeding and fasting. in most cells in mammals. Yet, GCs have highly tissue/cell- specific effects regulated by multiple mechanisms. As a DNA- binding transcription factor (TF), GR is primarily involved in REGULATION OF GLUCOCORTICOID the control of gene expression, with transcription of GR target SECRETION AND AVAILABILITY IN THE genes in a given cell being controlled by three overall mechanisms CELL (Figure 1). First, activity of GR is directly correlated with the amount of GC molecules available in the cell. This is controlled Glucocorticoids (cortisol in humans; corticosterone in rodents) by adrenal GC synthesis and local availability of GCs in the are steroid hormones secreted circadianly by the adrenal cortex. cell. Second, expression of active GR in the nucleus determines Their daily levels peak immediately before the active phase (early the molecular response to GCs. This is regulated by GR morning for humans; early evening for rodents) in anticipation of turnover (synthesis and breakdown), expression of different GR a waking state, but also in quick response to external stimuli such isoforms, posttranslational modifications (PTMs) and nuclear as stress, hypoglycemia and exercise (3, 4). The hypothalamic- translocation. Third, genomic action of GR is controlled by pituitary-adrenal (HPA) axis controls and maintains GC cell type-specific accessibility of GR response elements (GRE) secretion into the bloodstream (Figure 1A). The hypothalamus FIGURE 1 | Overview of the regulatory levels affecting GR activity in the control of hepatic transcription. (A) Circadian and ultradian synthesis of GCs is controlled by the HPA axis in response to external stimuli including feeding, stress, light and circadian timekeepers. Availability of active GCs is further influenced by binding to the serum protein CBG and by intracellular conversion catalyzed by the enzyme 11β-HSD1/2. (B) Once in the cell, GCs are bound by the GR with an affinity that is conditioned by association with chaperone complexes containing HSPs, expression of specific GR isoforms and GR protein turnover. (C) GR exerts its action after translocation to the nucleus, where it binds GRE sequences in the DNA to regulate transcription of target genes as a result of dynamic interaction with different TFs and coregulators. Frontiers in Endocrinology | www.frontiersin.org 2 October 2020 | Volume 11 | Article 572981 Præstholm et al. GR Regulatory Networks produces corticosteroid-releasing hormone (CRH), stimulating can act as SCN-gated mediators of the light stimuli to entrain the pituitary gland to secrete adrenocorticotropic hormone metabolic-responsive peripheral clocks (5). The ubiquity of GR (ACTH), which in turn promotes GC secretion by the adrenal expression and the marked circadian secretion of GCs imply that gland (5). As many other hormones, including growth hormone these are efficient SCN-driven synchronizers of peripheral clocks and insulin (6, 7), GCs are secreted in an ultradian pattern with and, specifically in the liver, are fundamental for the circadian pulsatile secretion once every 60 to 90 min, as a result of feedback expression of metabolic genes, even with contribution from other and feedforward mechanisms between ACTH, CRH and GC hormonal signals and entrainment factors (3, 4, 23). However, secretion keeping GC levels in a physiological range (4, 8, 9). GCs do not affect the central clock, since GR is not expressed in The circadian secretion of GCs results
Recommended publications
  • Cloud-Clone 16-17
    Cloud-Clone - 2016-17 Catalog Description Pack Size Supplier Rupee(RS) ACB028Hu CLIA Kit for Anti-Albumin Antibody (AAA) 96T Cloud-Clone 74750 AEA044Hu ELISA Kit for Anti-Growth Hormone Antibody (Anti-GHAb) 96T Cloud-Clone 74750 AEA255Hu ELISA Kit for Anti-Apolipoprotein Antibodies (AAHA) 96T Cloud-Clone 74750 AEA417Hu ELISA Kit for Anti-Proteolipid Protein 1, Myelin Antibody (Anti-PLP1) 96T Cloud-Clone 74750 AEA421Hu ELISA Kit for Anti-Myelin Oligodendrocyte Glycoprotein Antibody (Anti- 96T Cloud-Clone 74750 MOG) AEA465Hu ELISA Kit for Anti-Sperm Antibody (AsAb) 96T Cloud-Clone 74750 AEA539Hu ELISA Kit for Anti-Myelin Basic Protein Antibody (Anti-MBP) 96T Cloud-Clone 71250 AEA546Hu ELISA Kit for Anti-IgA Antibody 96T Cloud-Clone 71250 AEA601Hu ELISA Kit for Anti-Myeloperoxidase Antibody (Anti-MPO) 96T Cloud-Clone 71250 AEA747Hu ELISA Kit for Anti-Complement 1q Antibody (Anti-C1q) 96T Cloud-Clone 74750 AEA821Hu ELISA Kit for Anti-C Reactive Protein Antibody (Anti-CRP) 96T Cloud-Clone 74750 AEA895Hu ELISA Kit for Anti-Insulin Receptor Antibody (AIRA) 96T Cloud-Clone 74750 AEB028Hu ELISA Kit for Anti-Albumin Antibody (AAA) 96T Cloud-Clone 71250 AEB264Hu ELISA Kit for Insulin Autoantibody (IAA) 96T Cloud-Clone 74750 AEB480Hu ELISA Kit for Anti-Mannose Binding Lectin Antibody (Anti-MBL) 96T Cloud-Clone 88575 AED245Hu ELISA Kit for Anti-Glutamic Acid Decarboxylase Antibodies (Anti-GAD) 96T Cloud-Clone 71250 AEK505Hu ELISA Kit for Anti-Heparin/Platelet Factor 4 Antibodies (Anti-HPF4) 96T Cloud-Clone 71250 CCA005Hu CLIA Kit for Angiotensin II
    [Show full text]
  • (LXR/NR1H3) Regulates Differentiation of Hepatocyte-Like Cells Via
    Liver X receptor α (LXRα/NR1H3) regulates differentiation of hepatocyte-like cells via reciprocal regulation of HNF4α Kai-Ting Chen, Kelig Pernelle, Yuan-Hau Tsai, Yu-Hsuan Wu, Jui-Yu Hsieh, Ko-Hsun Liao, Christiane Guguen-Guillouzo, Hsei-Wei Wang To cite this version: Kai-Ting Chen, Kelig Pernelle, Yuan-Hau Tsai, Yu-Hsuan Wu, Jui-Yu Hsieh, et al.. Liver X recep- tor α (LXRα/NR1H3) regulates differentiation of hepatocyte-like cells via reciprocal regulation of HNF4α. Journal of Hepatology, Elsevier, 2014, 61 (6), pp.1276-1286. 10.1016/j.jhep.2014.07.025. hal-01072495 HAL Id: hal-01072495 https://hal.archives-ouvertes.fr/hal-01072495 Submitted on 8 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. This is the author’s final draft post-refeering (post-print) Find more peer-reviewed articles on our open access repository: http://hal-univ-rennes1.archives-ouvertes.fr/ MANUSCRIPT ACCEPTED Liver X receptor a (LXRa/NR1H3) regulates differentiation of hepatocyte-like cells via reciprocal regulation of HNF4a Kai-Ting Chen1,2,3, Kelig Pernelle4, Yuan-Hau
    [Show full text]
  • Liver X-Receptors Alpha, Beta (Lxrs Α , Β) Level in Psoriasis
    Liver X-receptors alpha, beta (LXRs α , β) level in psoriasis Thesis Submitted for the fulfillment of Master Degree in Dermatology and Venereology BY Mohammad AbdAllah Ibrahim Awad (M.B., B.Ch., Faculty of Medicine, Cairo University) Supervisors Prof. Randa Mohammad Ahmad Youssef Professor of Dermatology, Faculty of Medicine Cairo University Prof. Laila Ahmed Rashed Professor of Biochemistry, Faculty of Medicine Cairo University Dr. Ghada Mohamed EL-hanafi Lecturer of Dermatology, Faculty of Medicine Cairo University Faculty of Medicine Cairo University 2011 ﺑﺴﻢ اﷲ اﻟﺮﺣﻤﻦ اﻟﺮﺣﻴﻢ "وﻣﺎ ﺗﻮﻓﻴﻘﻲ إﻻ ﺑﺎﷲ ﻋﻠﻴﻪ ﺗﻮآﻠﺖ وإﻟﻴﻪ أﻧﻴﺐ" (هﻮد، ٨٨) Acknowledgement Acknowledgement First and foremost, I am thankful to God, for without his grace, this work would never have been accomplished. I am honored to have Prof.Dr. Randa Mohammad Ahmad Youssef, Professor of Dermatology, Faculty of Medicine, Cairo University, as a supervisor of this work. I am so grateful and most appreciative to her efforts. No words can express what I owe her for hers endless patience and continuous advice and support. My sincere appreciation goes to Dr. Ghada Mohamed EL-hanafi, Lecturer of Dermatology, Faculty of Medicine, Cairo University, for her advice, support and supervision during the course of this study. I am deeply thankful to Dr. Laila Ahmed Rashed, Assistant professor of biochemistry, Faculty of Medicine, Cairo University, for her immense help, continuous support and encouragement. Furthermore, I wish to express my thanks to all my professors, my senior staff members, my wonderful friends and colleagues for their guidance and cooperation throughout the conduction of this work. Finally, I would like to thank my father who was very supportive and encouraging.
    [Show full text]
  • Chain Hydroxycholesterols in Triple Negative Breast Cancer
    Oncogene (2021) 40:2872–2883 https://doi.org/10.1038/s41388-021-01720-w ARTICLE Liver x receptor alpha drives chemoresistance in response to side- chain hydroxycholesterols in triple negative breast cancer 1,2 1 1 3 1 Samantha A. Hutchinson ● Alex Websdale ● Giorgia Cioccoloni ● Hanne Røberg-Larsen ● Priscilia Lianto ● 4 5 1 5 4 4 Baek Kim ● Ailsa Rose ● Chrysa Soteriou ● Arindam Pramanik ● Laura M. Wastall ● Bethany J. Williams ● 6 6 6 1 6,7,8,9,10 Madeline A. Henn ● Joy J. Chen ● Liqian Ma ● J. Bernadette Moore ● Erik Nelson ● 5,11 1,11 Thomas A. Hughes ● James L. Thorne Received: 6 August 2020 / Revised: 15 February 2021 / Accepted: 18 February 2021 / Published online: 19 March 2021 © The Author(s) 2021. This article is published with open access Abstract Triple negative breast cancer (TNBC) is challenging to treat successfully because targeted therapies do not exist. Instead, systemic therapy is typically restricted to cytotoxic chemotherapy, which fails more often in patients with elevated circulating cholesterol. Liver x receptors are ligand-dependent transcription factors that are homeostatic regulators of cholesterol, and are linked to regulation of broad-affinity xenobiotic transporter activity in non-tumor tissues. We show that 1234567890();,: 1234567890();,: LXR ligands confer chemotherapy resistance in TNBC cell lines and xenografts, and that LXRalpha is necessary and sufficient to mediate this resistance. Furthermore, in TNBC patients who had cancer recurrences, LXRalpha and ligands were independent markers of poor prognosis and correlated with P-glycoprotein expression. However, in patients who survived their disease, LXRalpha signaling and P-glycoprotein were decoupled. These data reveal a novel chemotherapy resistance mechanism in this poor prognosis subtype of breast cancer.
    [Show full text]
  • Liver X Receptors: a Possible Link Between Lipid Disorders and Female Infertility
    International Journal of Molecular Sciences Review Liver X Receptors: A Possible Link between Lipid Disorders and Female Infertility Sarah Dallel 1,2,3, Igor Tauveron 1,3, Florence Brugnon 4,5, Silvère Baron 1,2,*, Jean Marc A. Lobaccaro 1,2,* ID and Salwan Maqdasy 1,2,3 1 Université Clermont Auvergne, GReD, CNRS UMR 6293, INSERM U1103, 28, Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; [email protected] (S.D.); [email protected] (I.T.); [email protected] (S.M.) 2 Centre de Recherche en Nutrition Humaine d’Auvergne, 58 Boulevard Montalembert, F-63009 Clermont-Ferrand, France 3 Service d’Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003 Clermont-Ferrand, France 4 Université Clermont Auvergne, ImoST, INSERM U1240, 58, rue Montalembert, BP184, F63005 Clermont-Ferrand, France; [email protected] 5 CHU Clermont Ferrand, Assistance Médicale à la Procréation-CECOS, Hôpital Estaing, Place Lucie et Raymond Aubrac, F-63003 Clermont-Ferrand CEDEX 1, France * Correspondence: [email protected] (S.B.); [email protected] (J.M.A.L.); Tel.: +33-473-407-412 (S.B.); +33-473-407-416 (J.M.A.L.) Received: 6 July 2018; Accepted: 19 July 2018; Published: 25 July 2018 Abstract: A close relationship exists between cholesterol and female reproductive physiology. Indeed, cholesterol is crucial for steroid synthesis by ovary and placenta, and primordial for cell structure during folliculogenesis. Furthermore, oxysterols, cholesterol-derived ligands, play a potential role in oocyte maturation. Anomalies of cholesterol metabolism are frequently linked to infertility. However, little is known about the molecular mechanisms.
    [Show full text]
  • (LXRα/NR1H3) Regulates Differentiation of Hepatocyte-Like
    Research Article Liver X receptor a (LXRa/NR1H3) regulates differentiation of hepatocyte-like cells via reciprocal regulation of HNF4a Kai-Ting Chen1,2,3, Kelig Pernelle4, Yuan-Hau Tsai2, Yu-Hsuan Wu2, Jui-Yu Hsieh2, Ko-Hsun Liao2, ⇑ Christiane Guguen-Guillouzo4,5, Hsei-Wei Wang1,2,6,7, 1Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan; 2Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan; 3Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan; 4Inserm UMR 991, Université de Rennes 1, Faculté de médecine, F-35043 Rennes cedex, France; 5Biopredic international, Parc d’activité Bretèche batA4, 35760 Saint-Grégoire, France; 6YM-VGH Genome Research Center, National Yang-Ming University, Taipei, Taiwan; 7Department of Education and Research, Taipei City Hospital, Taipei, Taiwan Background & Aims: Hepatocyte-like cells, differentiated from Introduction different stem cell sources, are considered to have a range of pos- sible therapeutic applications, including drug discovery, meta- Liver development depends on a complex network, requiring sev- bolic disease modelling, and cell transplantation. However, little eral growth factors, genetic homeostasis and cell-extracellular is known about how stem cells differentiate into mature and matrix interactions [1]. Identifying the hepatogenesis-promoting functional hepatocytes. factors, favouring liver development, is thought to be essential for Methods: Using transcriptomic screening, a transcription factor, liver regeneration and could improve hepatocyte transplantation liver X receptor a (NR1H3), was identified as increased during for end-stage liver disease [2]. Different sources of progenitor HepaRG cell hepatogenesis; this protein was also upregulated cells have been investigated as potential sources for hepatic dif- during embryonic stem cell and induced pluripotent stem cell ferentiation, including human mesenchymal stem cells (MSCs) differentiation.
    [Show full text]
  • CREB Activation Induced by Mitochondrial Dysfunction Triggers Triglyceride Accumulation in 3T3-L1 Preadipocytes
    1266 Research Article CREB activation induced by mitochondrial dysfunction triggers triglyceride accumulation in 3T3-L1 preadipocytes Sébastien Vankoningsloo1, Aurélia De Pauw1, Andrée Houbion1, Silvia Tejerina1, Catherine Demazy1, Françoise de Longueville2, Vincent Bertholet2, Patricia Renard1, José Remacle1,2, Paul Holvoet3, Martine Raes1 and Thierry Arnould1,* 1Laboratory of Biochemistry and Cellular Biology, University of Namur (F.U.N.D.P.), Rue de Bruxelles, 61, 5000 Namur, Belgium 2Eppendorf Array Technologies, Rue du Séminaire, 12, 5000 Namur, Belgium 3Cardiovascular Research Unit of the Center for Experimental Surgery and Anesthesiology, Katholieke Universiteit Leuven (KUL), Belgium *Author for correspondence (e-mail: [email protected]) Accepted 12 December 2005 Journal of Cell Science 119, 1266-1282 Published by The Company of Biologists 2006 doi:10.1242/jcs.02848 Summary Several mitochondrial pathologies are characterized by protein ␣ (C/EBP␣), C/EBP homologous protein-10 lipid redistribution and microvesicular cell phenotypes (CHOP-10), mitochondrial glycerol-3-phosphate resulting from triglyceride accumulation in lipid- dehydrogenase (GPDmit), and stearoyl-CoA desaturase 1 metabolizing tissues. However, the molecular mechanisms (SCD1). We also demonstrate that overexpression of two underlying abnormal fat distribution induced by dominant negative mutants of the cAMP-response element- mitochondrial dysfunction remain poorly understood. In binding protein CREB (K-CREB and M1-CREB) and this study, we show that inhibition of respiratory complex siRNA transfection, which disrupt the factor activity and III by antimycin A as well as inhibition of mitochondrial expression, respectively, inhibit antimycin-A-induced protein synthesis trigger the accumulation of triglyceride triglyceride accumulation. Furthermore, CREB knock- vesicles in 3T3-L1 fibroblasts. We also show that treatment down with siRNA also downregulates the expression of with antimycin A triggers CREB activation in these cells.
    [Show full text]
  • Tissue Liver X-Receptor Alpha (Lxrα) Level in Acne Vulgaris
    TISSUE LIVER X-RECEPTOR ALPHA (LXRα) LEVEL IN ACNE VULGARIS Thesis Submitted for the fulfillment of Master Degree in Dermatology and Venereology BY Eman Abdelhamed Aly Nada (M.B.B.Ch) Supervisors Dr. Shereen Osama Tawfic Assistant prof.of Dermatology Faculty of Medicine Cairo University Dr. Marwa Ahmed Ezzat Lecturer of Dermatology Faculty of Medicine Cairo University Dr. Olfat Gamil Shaker Professor of Medical Biochemistry Faculty of Medicine Cairo University Faculty of Medicine Cairo University 2012 1 Acknowledgment First and foremost, I am thankful to God, for without his help I could not finish this work. I would like to express my sincere gratitude and appreciation to Dr. Shereen Osama Tawfic, Assistant Professor of Dermatology, Faculty of Medicine, Cairo University, for giving me the honor for working under her supervision and for her great support and stimulating views. Special thanks and deepest gratitude to Dr. Marwa Ahmed Ezzat, Lecturer of Dermatology, Faculty of Medicine, Cairo University, for her advice, support and encouragement all the time for a better performance. I am deeply thankful to Prof. Dr. Olfat Gamil Shaker, Professor of Medical Biochemistry, Faculty of Medicine, Cairo University for her sincere scientific and moral help in accomplishing the practical part of this study. I would like to extend my warmest gratitude to Prof. Dr. Manal Abdelwahed Bosseila, Professor of Dermatology, Faculty of Medicine, Cairo University, whose hard and faithful efforts have helped me to do this work. Furthermore, I would like to thank my family who stood behind me to finish this work and for their great support to me.
    [Show full text]
  • In Vivo Screen Identifies LXR Agonism Potentiates Sorafenib
    bioRxiv preprint doi: https://doi.org/10.1101/668350; this version posted June 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. In vivo screen identifies LXR agonism potentiates sorafenib killing of hepatocellular carcinoma Short Title: Combination therapy for HCC Morgan E. Preziosi,1 Adam M. Zahm,2 Alexandra M. Vázquez-Salgado1, Daniel Ackerman3, Terence P. Gade3, Klaus H. Kaestner,2 and Kirk J. Wangensteen1,2 1Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA 2Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA 3Penn Image-Guided Interventions Laboratory, Department of Radiology, University of Pennsylvania, PA, USA Grant support: R01-DK102667 to KHK, K08-DK106478 to KJW, K01-DK102868 to AMZ. Molecular Pathology and Imaging Core of the Penn Center for Molecular Studies in Digestive and Liver Disease (P30-DK50306). We thank Noam Erez, M.Med.Sc., for technical support and Anil Rustgi, MD, for help with editing the manuscript. Abbreviations: ANOVA (analysis of variance), B2M (beta-2-microglobulin), BCLC (Barcelona clinic liver cancer), DMSO (dimethyl sulfide), ERK (extracellular signal- related kinase), FAH (fumarylacetoacetate hydrolase), FASN (fatty acid synthase), GADD45B (growth arrest and DNA damage inducible beta), GAPDH (glyceraldehyde-3- phosphate dehydrogenase), GFP (green fluorescent protein), GO (gene ontology), HCC 1 bioRxiv preprint doi: https://doi.org/10.1101/668350; this version posted June 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
    [Show full text]
  • 14-3-3 Sigma Interacts with Liver X Receptor Beta Emily Ann Jackson Louisiana State University and Agricultural and Mechanical College, [email protected]
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2010 14-3-3 sigma interacts with liver X receptor beta Emily Ann Jackson Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Recommended Citation Jackson, Emily Ann, "14-3-3 sigma interacts with liver X receptor beta" (2010). LSU Master's Theses. 4251. https://digitalcommons.lsu.edu/gradschool_theses/4251 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. 14-3-3 SIGMA INTERACTS WITH LIVER X RECEPTOR BETA A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Biological Sciences by Emily Ann Jackson B.S., Louisiana State University, 2004 May 2010 ACKNOWLEDGEMENTS I would like to thank God for blessing me with the strength, knowledge, and patience to get me through this journey. I would like to acknowledge my family, Brenda W. Jackson, for praying for me and instilling the morals and values necessary for me to succeed in life, my sister and niece, Earmer M. Jackson and Jeanette E. Jackson, for being very supportive throughout my life. Also, I would like to acknowledge my family and friends for their constant support and encouraging words.
    [Show full text]
  • Identification of Novel Ligands and Structural Requirements for Heterodimerization of the Liver X Receptor Alpha
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2017 Identification of Novel Ligands and Structural Requirements for Heterodimerization of the Liver X Receptor Alpha Shimpi Bedi Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Biomedical Engineering and Bioengineering Commons Repository Citation Bedi, Shimpi, "Identification of Novel Ligands and Structural Requirements for Heterodimerization of the Liver X Receptor Alpha" (2017). Browse all Theses and Dissertations. 1743. https://corescholar.libraries.wright.edu/etd_all/1743 This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. IDENTIFICATION OF NOVEL LIGANDS AND STRUCTURAL REQUIREMENTS FOR HETERODIMERIZATION OF THE LIVER X RECEPTOR ALPHA A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy By SHIMPI BEDI M.S., Wright State University, 2009 B.S., Panjab University, 1988 2017 Wright State University COPYRIGHT BY SHIMPI BEDI 2017 WRIGHT STATE UNIVERSITY GRADUATE SCHOOL April 25, 2017 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SUPERVISION BY Shimpi Bedi ENTITLED Identification of Novel Ligands and Requirements for Heterodimerization of the Liver X Receptor Alpha BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy. _____________________________ Stanley Dean Rider, Jr., Ph.D. Dissertation Director _____________________________ Mill W. Miller, Ph.D. Director, Biomedical Sciences Ph.D. Program _____________________________ Robert E.
    [Show full text]
  • Association of Liver X Receptor Alpha and Beta Genes with Carcass Lean and Fat Content in Pigs
    Animal Industry Report Animal Industry Report AS 652 ASL R2150 2006 Association of Liver X Receptor Alpha and Beta Genes with Carcass Lean and Fat Content in Pigs Mei Yu Huazhong Agricultural University Becky Geiger Sygen International Nader Deeb Sygen International Max F. Rothschild Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/ans_air Part of the Agriculture Commons, and the Animal Sciences Commons Recommended Citation Yu, Mei; Geiger, Becky; Deeb, Nader; and Rothschild, Max F. (2006) "Association of Liver X Receptor Alpha and Beta Genes with Carcass Lean and Fat Content in Pigs," Animal Industry Report: AS 652, ASL R2150. DOI: https://doi.org/10.31274/ans_air-180814-812 Available at: https://lib.dr.iastate.edu/ans_air/vol652/iss1/56 This Swine is brought to you for free and open access by the Animal Science Research Reports at Iowa State University Digital Repository. It has been accepted for inclusion in Animal Industry Report by an authorized editor of Iowa State University Digital Repository. For more information, please contact [email protected]. Iowa State University Animal Industry Report 2006 Association of Liver X Receptor Alpha and Beta Genes with Carcass Lean and Fat Content in Pigs A.S. Leaflet R2150 and LXRB genes was performed in the BY resource family. Associations between the individual gene markers and Mei Yu, Visiting Professor, Huazhong (Central China) carcass composition traits in the BY F2 family were detected Agricultural University; using a mixed statistical model that included litter as a Becky Geiger, Sygen International, Franklin, KY, USA; random effect, sex, year season and marker genotype as Nader Deeb, Sygen International, Franklin, KY, USA; fixed effects, in addition, live weight was included as a Max Rothschild, distinguished professor of animal covariate.
    [Show full text]