Study of Fxr in Primary Human Hepatocytes and Fxr Regulated Ba
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hypoxia and Oxygen-Sensing Signaling in Gene Regulation and Cancer Progression
International Journal of Molecular Sciences Review Hypoxia and Oxygen-Sensing Signaling in Gene Regulation and Cancer Progression Guang Yang, Rachel Shi and Qing Zhang * Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; [email protected] (G.Y.); [email protected] (R.S.) * Correspondence: [email protected]; Tel.: +1-214-645-4671 Received: 6 October 2020; Accepted: 29 October 2020; Published: 31 October 2020 Abstract: Oxygen homeostasis regulation is the most fundamental cellular process for adjusting physiological oxygen variations, and its irregularity leads to various human diseases, including cancer. Hypoxia is closely associated with cancer development, and hypoxia/oxygen-sensing signaling plays critical roles in the modulation of cancer progression. The key molecules of the hypoxia/oxygen-sensing signaling include the transcriptional regulator hypoxia-inducible factor (HIF) which widely controls oxygen responsive genes, the central members of the 2-oxoglutarate (2-OG)-dependent dioxygenases, such as prolyl hydroxylase (PHD or EglN), and an E3 ubiquitin ligase component for HIF degeneration called von Hippel–Lindau (encoding protein pVHL). In this review, we summarize the current knowledge about the canonical hypoxia signaling, HIF transcription factors, and pVHL. In addition, the role of 2-OG-dependent enzymes, such as DNA/RNA-modifying enzymes, JmjC domain-containing enzymes, and prolyl hydroxylases, in gene regulation of cancer progression, is specifically reviewed. We also discuss the therapeutic advancement of targeting hypoxia and oxygen sensing pathways in cancer. Keywords: hypoxia; PHDs; TETs; JmjCs; HIFs 1. Introduction Molecular oxygen serves as a co-factor in many biochemical processes and is fundamental for aerobic organisms to maintain intracellular ATP levels [1,2]. -
Mutant IDH, (R)-2-Hydroxyglutarate, and Cancer
Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer Julie-Aurore Losman1 and William G. Kaelin Jr.1,2,3 1Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA; 2Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA Mutations in metabolic enzymes, including isocitrate whether altered cellular metabolism is a cause of cancer dehydrogenase 1 (IDH1) and IDH2, in cancer strongly or merely an adaptive response of cancer cells in the face implicate altered metabolism in tumorigenesis. IDH1 of accelerated cell proliferation is still a topic of some and IDH2 catalyze the interconversion of isocitrate and debate. 2-oxoglutarate (2OG). 2OG is a TCA cycle intermediate The recent identification of cancer-associated muta- and an essential cofactor for many enzymes, including tions in three metabolic enzymes suggests that altered JmjC domain-containing histone demethylases, TET cellular metabolism can indeed be a cause of some 5-methylcytosine hydroxylases, and EglN prolyl-4-hydrox- cancers (Pollard et al. 2003; King et al. 2006; Raimundo ylases. Cancer-associated IDH mutations alter the enzymes et al. 2011). Two of these enzymes, fumarate hydratase such that they reduce 2OG to the structurally similar (FH) and succinate dehydrogenase (SDH), are bone fide metabolite (R)-2-hydroxyglutarate [(R)-2HG]. Here we tumor suppressors, and loss-of-function mutations in FH review what is known about the molecular mechanisms and SDH have been identified in various cancers, in- of transformation by mutant IDH and discuss their im- cluding renal cell carcinomas and paragangliomas. -
Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen, -
Egln2 Associates with the NRF1PGC1 Complex and Controls
Article EglN2 associates with the NRF1-PGC1a complex and controls mitochondrial function in breast cancer Jing Zhang1,†, Chengyang Wang2,†, Xi Chen3, Mamoru Takada1, Cheng Fan1, Xingnan Zheng1, Haitao Wen1,4, Yong Liu1, Chenguang Wang5, Richard G Pestell6, Katherine M Aird7, William G Kaelin Jr8,9, Xiaole Shirley Liu10 & Qing Zhang1,11,* Abstract Introduction The EglN2/PHD1 prolyl hydroxylase is an important oxygen sensor The presence of hypoxic cells in the tumor microenvironment was contributing to breast tumorigenesis. Emerging studies suggest proposed by Thomlinson and Gray more than 50 years ago that there is functional cross talk between oxygen sensing and (Thomlinson & Gray, 1955). These hypoxic cells confer radio- or mitochondrial function, both of which play an essential role for chemotherapeutic resistance and therefore are hypothesized to be sustained tumor growth. However, the potential link between under selection for aggressive malignancy during the course of EglN2 and mitochondrial function remains largely undefined. cancer development (Brown & Wilson, 2004). One central question Here, we show that EglN2 depletion decreases mitochondrial is how hypoxic cancer cells sense their oxygen availability, adapt to respiration in breast cancer under normoxia and hypoxia, which the stressful environment, and proliferate out of control. The key correlates with decreased mitochondrial DNA in a HIF1/2a- proteins mediating oxygen sensing in these cells mainly involve independent manner. Integrative analyses of gene expression proteins that are responsible for the hydroxylation of hypoxia- profile and genomewide binding of EglN2 under hypoxic condi- inducible factor (HIF), namely the prolyl hydroxylases EglN1-3. As a tions reveal nuclear respiratory factor 1 (NRF1) motif enrichment key EglN enzyme substrate, HIF1a is hydroxylated on prolines 402 in EglN2-activated genes, suggesting NRF1 as an EglN2 binding and 564 under normoxic conditions. -
Integrative Genomics Identifies New Genes Associated with Severe COPD and Emphysema Phuwanat Sakornsakolpat1,2, Jarrett D
Sakornsakolpat et al. Respiratory Research (2018) 19:46 https://doi.org/10.1186/s12931-018-0744-9 RESEARCH Open Access Integrative genomics identifies new genes associated with severe COPD and emphysema Phuwanat Sakornsakolpat1,2, Jarrett D. Morrow1, Peter J. Castaldi1,3, Craig P. Hersh1,4, Yohan Bossé5, Edwin K. Silverman1,4, Ani Manichaikul6 and Michael H. Cho1,4* Abstract Background: Genome-wide association studies have identified several genetic risk loci for severe chronic obstructive pulmonary disease (COPD) and emphysema. However, these studies do not fully explain disease heritability and in most cases, fail to implicate specific genes. Integrative methods that combine gene expression data with GWAS can provide more power in discovering disease-associated genes and give mechanistic insight into regulated genes. Methods: We applied a recently described method that imputes gene expression using reference transcriptome data to genome-wide association studies for two phenotypes (severe COPD and quantitative emphysema) and blood and lung tissue gene expression datasets. We further tested the potential causality of individual genes using multi-variant colocalization. Results: We identified seven genes significantly associated with severe COPD, and five genes significantly associated with quantitative emphysema in whole blood or lung. We validated results in independent transcriptome databases and confirmed colocalization signals for PSMA4, EGLN2, WNT3, DCBLD1, and LILRA3. Three of these genes were not located within previously reported GWAS loci for either phenotype. We also identified genetically driven pathways, including those related to immune regulation. Conclusions: An integrative analysis of GWAS and gene expression identified novel associations with severe COPD and quantitative emphysema, and also suggested disease-associated genes in known COPD susceptibility loci. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Cloud-Clone 16-17
Cloud-Clone - 2016-17 Catalog Description Pack Size Supplier Rupee(RS) ACB028Hu CLIA Kit for Anti-Albumin Antibody (AAA) 96T Cloud-Clone 74750 AEA044Hu ELISA Kit for Anti-Growth Hormone Antibody (Anti-GHAb) 96T Cloud-Clone 74750 AEA255Hu ELISA Kit for Anti-Apolipoprotein Antibodies (AAHA) 96T Cloud-Clone 74750 AEA417Hu ELISA Kit for Anti-Proteolipid Protein 1, Myelin Antibody (Anti-PLP1) 96T Cloud-Clone 74750 AEA421Hu ELISA Kit for Anti-Myelin Oligodendrocyte Glycoprotein Antibody (Anti- 96T Cloud-Clone 74750 MOG) AEA465Hu ELISA Kit for Anti-Sperm Antibody (AsAb) 96T Cloud-Clone 74750 AEA539Hu ELISA Kit for Anti-Myelin Basic Protein Antibody (Anti-MBP) 96T Cloud-Clone 71250 AEA546Hu ELISA Kit for Anti-IgA Antibody 96T Cloud-Clone 71250 AEA601Hu ELISA Kit for Anti-Myeloperoxidase Antibody (Anti-MPO) 96T Cloud-Clone 71250 AEA747Hu ELISA Kit for Anti-Complement 1q Antibody (Anti-C1q) 96T Cloud-Clone 74750 AEA821Hu ELISA Kit for Anti-C Reactive Protein Antibody (Anti-CRP) 96T Cloud-Clone 74750 AEA895Hu ELISA Kit for Anti-Insulin Receptor Antibody (AIRA) 96T Cloud-Clone 74750 AEB028Hu ELISA Kit for Anti-Albumin Antibody (AAA) 96T Cloud-Clone 71250 AEB264Hu ELISA Kit for Insulin Autoantibody (IAA) 96T Cloud-Clone 74750 AEB480Hu ELISA Kit for Anti-Mannose Binding Lectin Antibody (Anti-MBL) 96T Cloud-Clone 88575 AED245Hu ELISA Kit for Anti-Glutamic Acid Decarboxylase Antibodies (Anti-GAD) 96T Cloud-Clone 71250 AEK505Hu ELISA Kit for Anti-Heparin/Platelet Factor 4 Antibodies (Anti-HPF4) 96T Cloud-Clone 71250 CCA005Hu CLIA Kit for Angiotensin II -
(LXR/NR1H3) Regulates Differentiation of Hepatocyte-Like Cells Via
Liver X receptor α (LXRα/NR1H3) regulates differentiation of hepatocyte-like cells via reciprocal regulation of HNF4α Kai-Ting Chen, Kelig Pernelle, Yuan-Hau Tsai, Yu-Hsuan Wu, Jui-Yu Hsieh, Ko-Hsun Liao, Christiane Guguen-Guillouzo, Hsei-Wei Wang To cite this version: Kai-Ting Chen, Kelig Pernelle, Yuan-Hau Tsai, Yu-Hsuan Wu, Jui-Yu Hsieh, et al.. Liver X recep- tor α (LXRα/NR1H3) regulates differentiation of hepatocyte-like cells via reciprocal regulation of HNF4α. Journal of Hepatology, Elsevier, 2014, 61 (6), pp.1276-1286. 10.1016/j.jhep.2014.07.025. hal-01072495 HAL Id: hal-01072495 https://hal.archives-ouvertes.fr/hal-01072495 Submitted on 8 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. This is the author’s final draft post-refeering (post-print) Find more peer-reviewed articles on our open access repository: http://hal-univ-rennes1.archives-ouvertes.fr/ MANUSCRIPT ACCEPTED Liver X receptor a (LXRa/NR1H3) regulates differentiation of hepatocyte-like cells via reciprocal regulation of HNF4a Kai-Ting Chen1,2,3, Kelig Pernelle4, Yuan-Hau -
Electronic Supplementary Material (ESI) for Metallomics
Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2018 Uniprot Entry name Gene names Protein names Predicted Pattern Number of Iron role EC number Subcellular Membrane Involvement in disease Gene ontology (biological process) Id iron ions location associated 1 P46952 3HAO_HUMAN HAAO 3-hydroxyanthranilate 3,4- H47-E53-H91 1 Fe cation Catalytic 1.13.11.6 Cytoplasm No NAD biosynthetic process [GO:0009435]; neuron cellular homeostasis dioxygenase (EC 1.13.11.6) (3- [GO:0070050]; quinolinate biosynthetic process [GO:0019805]; response to hydroxyanthranilate oxygenase) cadmium ion [GO:0046686]; response to zinc ion [GO:0010043]; tryptophan (3-HAO) (3-hydroxyanthranilic catabolic process [GO:0006569] acid dioxygenase) (HAD) 2 O00767 ACOD_HUMAN SCD Acyl-CoA desaturase (EC H120-H125-H157-H161; 2 Fe cations Catalytic 1.14.19.1 Endoplasmic Yes long-chain fatty-acyl-CoA biosynthetic process [GO:0035338]; unsaturated fatty 1.14.19.1) (Delta(9)-desaturase) H160-H269-H298-H302 reticulum acid biosynthetic process [GO:0006636] (Delta-9 desaturase) (Fatty acid desaturase) (Stearoyl-CoA desaturase) (hSCD1) 3 Q6ZNF0 ACP7_HUMAN ACP7 PAPL PAPL1 Acid phosphatase type 7 (EC D141-D170-Y173-H335 1 Fe cation Catalytic 3.1.3.2 Extracellular No 3.1.3.2) (Purple acid space phosphatase long form) 4 Q96SZ5 AEDO_HUMAN ADO C10orf22 2-aminoethanethiol dioxygenase H112-H114-H193 1 Fe cation Catalytic 1.13.11.19 Unknown No oxidation-reduction process [GO:0055114]; sulfur amino acid catabolic process (EC 1.13.11.19) (Cysteamine -
Liver X-Receptors Alpha, Beta (Lxrs Α , Β) Level in Psoriasis
Liver X-receptors alpha, beta (LXRs α , β) level in psoriasis Thesis Submitted for the fulfillment of Master Degree in Dermatology and Venereology BY Mohammad AbdAllah Ibrahim Awad (M.B., B.Ch., Faculty of Medicine, Cairo University) Supervisors Prof. Randa Mohammad Ahmad Youssef Professor of Dermatology, Faculty of Medicine Cairo University Prof. Laila Ahmed Rashed Professor of Biochemistry, Faculty of Medicine Cairo University Dr. Ghada Mohamed EL-hanafi Lecturer of Dermatology, Faculty of Medicine Cairo University Faculty of Medicine Cairo University 2011 ﺑﺴﻢ اﷲ اﻟﺮﺣﻤﻦ اﻟﺮﺣﻴﻢ "وﻣﺎ ﺗﻮﻓﻴﻘﻲ إﻻ ﺑﺎﷲ ﻋﻠﻴﻪ ﺗﻮآﻠﺖ وإﻟﻴﻪ أﻧﻴﺐ" (هﻮد، ٨٨) Acknowledgement Acknowledgement First and foremost, I am thankful to God, for without his grace, this work would never have been accomplished. I am honored to have Prof.Dr. Randa Mohammad Ahmad Youssef, Professor of Dermatology, Faculty of Medicine, Cairo University, as a supervisor of this work. I am so grateful and most appreciative to her efforts. No words can express what I owe her for hers endless patience and continuous advice and support. My sincere appreciation goes to Dr. Ghada Mohamed EL-hanafi, Lecturer of Dermatology, Faculty of Medicine, Cairo University, for her advice, support and supervision during the course of this study. I am deeply thankful to Dr. Laila Ahmed Rashed, Assistant professor of biochemistry, Faculty of Medicine, Cairo University, for her immense help, continuous support and encouragement. Furthermore, I wish to express my thanks to all my professors, my senior staff members, my wonderful friends and colleagues for their guidance and cooperation throughout the conduction of this work. Finally, I would like to thank my father who was very supportive and encouraging. -
Chain Hydroxycholesterols in Triple Negative Breast Cancer
Oncogene (2021) 40:2872–2883 https://doi.org/10.1038/s41388-021-01720-w ARTICLE Liver x receptor alpha drives chemoresistance in response to side- chain hydroxycholesterols in triple negative breast cancer 1,2 1 1 3 1 Samantha A. Hutchinson ● Alex Websdale ● Giorgia Cioccoloni ● Hanne Røberg-Larsen ● Priscilia Lianto ● 4 5 1 5 4 4 Baek Kim ● Ailsa Rose ● Chrysa Soteriou ● Arindam Pramanik ● Laura M. Wastall ● Bethany J. Williams ● 6 6 6 1 6,7,8,9,10 Madeline A. Henn ● Joy J. Chen ● Liqian Ma ● J. Bernadette Moore ● Erik Nelson ● 5,11 1,11 Thomas A. Hughes ● James L. Thorne Received: 6 August 2020 / Revised: 15 February 2021 / Accepted: 18 February 2021 / Published online: 19 March 2021 © The Author(s) 2021. This article is published with open access Abstract Triple negative breast cancer (TNBC) is challenging to treat successfully because targeted therapies do not exist. Instead, systemic therapy is typically restricted to cytotoxic chemotherapy, which fails more often in patients with elevated circulating cholesterol. Liver x receptors are ligand-dependent transcription factors that are homeostatic regulators of cholesterol, and are linked to regulation of broad-affinity xenobiotic transporter activity in non-tumor tissues. We show that 1234567890();,: 1234567890();,: LXR ligands confer chemotherapy resistance in TNBC cell lines and xenografts, and that LXRalpha is necessary and sufficient to mediate this resistance. Furthermore, in TNBC patients who had cancer recurrences, LXRalpha and ligands were independent markers of poor prognosis and correlated with P-glycoprotein expression. However, in patients who survived their disease, LXRalpha signaling and P-glycoprotein were decoupled. These data reveal a novel chemotherapy resistance mechanism in this poor prognosis subtype of breast cancer. -
Downloaded from the UCSC PRO-Seq Library Preparation and Sequencing
ARTICLE https://doi.org/10.1038/s41467-021-21687-2 OPEN Multi-omics analysis reveals contextual tumor suppressive and oncogenic gene modules within the acute hypoxic response ✉ ✉ Zdenek Andrysik1,2, Heather Bender1,2, Matthew D. Galbraith 1,2 & Joaquin M. Espinosa 1,2,3 Cellular adaptation to hypoxia is a hallmark of cancer, but the relative contribution of hypoxia- inducible factors (HIFs) versus other oxygen sensors to tumorigenesis is unclear. We employ 1234567890():,; a multi-omics pipeline including measurements of nascent RNA to characterize transcrip- tional changes upon acute hypoxia. We identify an immediate early transcriptional response that is strongly dependent on HIF1A and the kinase activity of its cofactor CDK8, includes indirect repression of MYC targets, and is highly conserved across cancer types. HIF1A drives this acute response via conserved high-occupancy enhancers. Genetic screen data indicates that, in normoxia, HIF1A displays strong cell-autonomous tumor suppressive effects through a gene module mediating mTOR inhibition. Conversely, in advanced malignancies, expression of a module of HIF1A targets involved in collagen remodeling is associated with poor prog- nosis across diverse cancer types. In this work, we provide a valuable resource for investi- gating context-dependent roles of HIF1A and its targets in cancer biology. 1 Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. 2 Linda Crnic Institute for Down Syndrome, School of Medicine, University