Hypoxia and Oxygen-Sensing Signaling in Gene Regulation and Cancer Progression
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Cross-Talk Between Methylation and Phosphorylation in Lymphoid-Specific Helicase Drives Cancer Stem-Like Properties
Signal Transduction and Targeted Therapy www.nature.com/sigtrans ARTICLE OPEN The cross-talk between methylation and phosphorylation in lymphoid-specific helicase drives cancer stem-like properties Na Liu1,2,3, Rui Yang1,2, Ying Shi1,2, Ling Chen1,2, Yating Liu1,2, Zuli Wang1,2, Shouping Liu1,2, Lianlian Ouyang4, Haiyan Wang1,2, Weiwei Lai1,2, Chao Mao1,2, Min Wang1,2, Yan Cheng5, Shuang Liu4, Xiang Wang6, Hu Zhou7, Ya Cao1,2, Desheng Xiao1 and Yongguang Tao1,2,6 Posttranslational modifications (PTMs) of proteins, including chromatin modifiers, play crucial roles in the dynamic alteration of various protein properties and functions including stem-cell properties. However, the roles of Lymphoid-specific helicase (LSH), a DNA methylation modifier, in modulating stem-like properties in cancer are still not clearly clarified. Therefore, exploring PTMs modulation of LSH activity will be of great significance to further understand the function and activity of LSH. Here, we demonstrate that LSH is capable to undergo PTMs, including methylation and phosphorylation. The arginine methyltransferase PRMT5 can methylate LSH at R309 residue, meanwhile, LSH could as well be phosphorylated by MAPK1 kinase at S503 residue. We further show that the accumulation of phosphorylation of LSH at S503 site exhibits downregulation of LSH methylation at R309 residue, which eventually promoting stem-like properties in lung cancer. Whereas, phosphorylation-deficient LSH S503A mutant promotes the accumulation of LSH methylation at R309 residue and attenuates stem-like properties, indicating the critical roles of LSH PTMs in modulating stem-like properties. Thus, our study highlights the importance of the crosstalk between LSH PTMs in determining its activity and function in lung cancer stem-cell maintenance. -
Distinct RNA N-Demethylation Pathways Catalyzed by Nonheme Iron ALKBH5 and FTO Enzymes Enable Regulation of Formaldehyde Release Rates
Distinct RNA N-demethylation pathways catalyzed by nonheme iron ALKBH5 and FTO enzymes enable regulation of formaldehyde release rates Joel D. W. Toha,1, Steven W. M. Crossleya,1, Kevin J. Bruemmera, Eva J. Gea, Dan Hea, Diana A. Iovana, and Christopher J. Changa,b,2 aDepartment of Chemistry, University of California, Berkeley, CA 94720; and bDepartment of Molecular and Cell Biology, University of California, Berkeley, CA 94720 Edited by Amy C. Rosenzweig, Northwestern University, Evanston, IL, and approved August 24, 2020 (received for review April 17, 2020) The AlkB family of nonheme Fe(II)/2-oxoglutarate–dependent oxy- m6A (23) is relatively stable compared to other hydroxymethyl- genases are essential regulators of RNA epigenetics by serving as containing nucleobases and has been reported to decay to the free erasers of one-carbon marks on RNA with release of formaldehyde adenosine (A) base over 10 h (22). m6A is the most prominent (FA). Two major human AlkB family members, FTO and ALKBH5, modification of messenger RNA (mRNA) (24, 25) and is installed by both act as oxidative demethylases of N6-methyladenosine (m6A) the S-adenosylmethionine–dependent METTL3/14-WTAP writer but furnish different major products, N6-hydroxymethyladenosine complex (26) and removed by two human AlkB eraser enzymes, fat (hm6A) and adenosine (A), respectively. Here we identify founda- mass and obesity-associated protein (FTO) (4) and AlkB family tional mechanistic differences between FTO and ALKBH5 that pro- member 5 (ALKBH5) (27). Internal m6A modifications control the mote these distinct biochemical outcomes. In contrast to FTO, fate of mRNA (28–32) through translation, splicing, localization, which follows a traditional oxidative N-demethylation pathway stability, and decay and are connected to cancer progression, im- to catalyze conversion of m6A to hm6A with subsequent slow mune responses, and metabolic states (27, 29, 32–36). -
Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy
Cancers 2011, 3, 1691-1707; doi:10.3390/cancers3021691 OPEN ACCESS cancers ISSN 2072-6694 www.mdpi.com/journal/cancers Review Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy Monica Mann 1, Valerie Cortez 1 and Ratna K. Vadlamudi 2,* 1 Department of Cellular and Structural Biology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; E-Mails: [email protected] (M.M.); [email protected] (V.C.) 2 Department of Obstetrics and Gynecology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-210-567-4930; Fax: +1-210-567-4958. Received: 4 January 2011; in revised form: 11 March 2011 / Accepted: 25 March 2011 / Published: 29 March 2011 Abstract: Estrogen receptor (ER) signaling plays a key role in hormonal cancer progression. ER is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ER signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ER target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ER-mediated epigenetic pathway could play a vital role in ER driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERdriven epigenetic changes In this review, we summarize current knowledge on mechanisms by which ER signaling potentiates epigenetic changes in cancer cells via histone modifications. -
Potential for and Distribution of Enzymatic Biodegradation of Polystyrene by Environmental Microorganisms
materials Communication Potential for and Distribution of Enzymatic Biodegradation of Polystyrene by Environmental Microorganisms Liyuan Hou and Erica L.-W. Majumder * Department of Chemistry, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +1-3154706854 Abstract: Polystyrene (PS) is one of the main polymer types of plastic wastes and is known to be resistant to biodegradation, resulting in PS waste persistence in the environment. Although previous studies have reported that some microorganisms can degrade PS, enzymes and mechanisms of microorganism PS biodegradation are still unknown. In this study, we summarized microbial species that have been identified to degrade PS. By screening the available genome information of microorganisms that have been reported to degrade PS for enzymes with functional potential to depolymerize PS, we predicted target PS-degrading enzymes. We found that cytochrome P4500s, alkane hydroxylases and monooxygenases ranked as the top potential enzyme classes that can degrade PS since they can break C–C bonds. Ring-hydroxylating dioxygenases may be able to break the side-chain of PS and oxidize the aromatic ring compounds generated from the decomposition of PS. These target enzymes were distributed in Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes, suggesting a broad potential for PS biodegradation in various earth environments and microbiomes. Our results provide insight into the enzymatic degradation of PS and suggestions for realizing the biodegradation of this recalcitrant plastic. Citation: Hou, L.; Majumder, E.L. Keywords: plastics; polystyrene biodegradation; enzymatic biodegradation; monooxygenase; alkane Potential for and Distribution of hydroxylase; cytochrome P450 Enzymatic Biodegradation of Polystyrene by Environmental Microorganisms. -
Molecular Mechanisms Involved Involved in the Interaction Effects of HCV and Ethanol on Liver Cirrhosis
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2010 Molecular Mechanisms Involved Involved in the Interaction Effects of HCV and Ethanol on Liver Cirrhosis Ryan Fassnacht Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Physiology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2246 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Ryan C. Fassnacht 2010 All Rights Reserved Molecular Mechanisms Involved in the Interaction Effects of HCV and Ethanol on Liver Cirrhosis A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University. by Ryan Christopher Fassnacht, B.S. Hampden Sydney University, 2005 M.S. Virginia Commonwealth University, 2010 Director: Valeria Mas, Ph.D., Associate Professor of Surgery and Pathology Division of Transplant Department of Surgery Virginia Commonwealth University Richmond, Virginia July 9, 2010 Acknowledgement The Author wishes to thank his family and close friends for their support. He would also like to thank the members of the molecular transplant team for their help and advice. This project would not have been possible with out the help of Dr. Valeria Mas and her endearing -
Interplay Between Epigenetics and Metabolism in Oncogenesis: Mechanisms and Therapeutic Approaches
OPEN Oncogene (2017) 36, 3359–3374 www.nature.com/onc REVIEW Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches CC Wong1, Y Qian2,3 and J Yu1 Epigenetic and metabolic alterations in cancer cells are highly intertwined. Oncogene-driven metabolic rewiring modifies the epigenetic landscape via modulating the activities of DNA and histone modification enzymes at the metabolite level. Conversely, epigenetic mechanisms regulate the expression of metabolic genes, thereby altering the metabolome. Epigenetic-metabolomic interplay has a critical role in tumourigenesis by coordinately sustaining cell proliferation, metastasis and pluripotency. Understanding the link between epigenetics and metabolism could unravel novel molecular targets, whose intervention may lead to improvements in cancer treatment. In this review, we summarized the recent discoveries linking epigenetics and metabolism and their underlying roles in tumorigenesis; and highlighted the promising molecular targets, with an update on the development of small molecule or biologic inhibitors against these abnormalities in cancer. Oncogene (2017) 36, 3359–3374; doi:10.1038/onc.2016.485; published online 16 January 2017 INTRODUCTION metabolic genes have also been identified as driver genes It has been appreciated since the early days of cancer research mutated in some cancers, such as isocitrate dehydrogenase 1 16 17 that the metabolic profiles of tumor cells differ significantly from and 2 (IDH1/2) in gliomas and acute myeloid leukemia (AML), 18 normal cells. Cancer cells have high metabolic demands and they succinate dehydrogenase (SDH) in paragangliomas and fuma- utilize nutrients with an altered metabolic program to support rate hydratase (FH) in hereditary leiomyomatosis and renal cell 19 their high proliferative rates and adapt to the hostile tumor cancer (HLRCC). -
Mutant IDH, (R)-2-Hydroxyglutarate, and Cancer
Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer Julie-Aurore Losman1 and William G. Kaelin Jr.1,2,3 1Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA; 2Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA Mutations in metabolic enzymes, including isocitrate whether altered cellular metabolism is a cause of cancer dehydrogenase 1 (IDH1) and IDH2, in cancer strongly or merely an adaptive response of cancer cells in the face implicate altered metabolism in tumorigenesis. IDH1 of accelerated cell proliferation is still a topic of some and IDH2 catalyze the interconversion of isocitrate and debate. 2-oxoglutarate (2OG). 2OG is a TCA cycle intermediate The recent identification of cancer-associated muta- and an essential cofactor for many enzymes, including tions in three metabolic enzymes suggests that altered JmjC domain-containing histone demethylases, TET cellular metabolism can indeed be a cause of some 5-methylcytosine hydroxylases, and EglN prolyl-4-hydrox- cancers (Pollard et al. 2003; King et al. 2006; Raimundo ylases. Cancer-associated IDH mutations alter the enzymes et al. 2011). Two of these enzymes, fumarate hydratase such that they reduce 2OG to the structurally similar (FH) and succinate dehydrogenase (SDH), are bone fide metabolite (R)-2-hydroxyglutarate [(R)-2HG]. Here we tumor suppressors, and loss-of-function mutations in FH review what is known about the molecular mechanisms and SDH have been identified in various cancers, in- of transformation by mutant IDH and discuss their im- cluding renal cell carcinomas and paragangliomas. -
Dn056490.Pdf
A Rapid Transcriptome Response Is Associated with Desiccation Resistance in Aerially-Exposed Killifish Embryos Ange`le Tingaud-Sequeira1¤a, Juan-Jose´ Lozano2, Cinta Zapater1, David Otero1, Michael Kube3¤b, Richard Reinhardt3¤c, Joan Cerda` 1* 1 Institut de Recerca i Tecnologia Agroalimenta`ries (IRTA)-Institut de Cie`ncies del Mar, CSIC, Barcelona, Spain, 2 Bioinformatics Platform, CIBERHED, Barcelona, Spain, 3 Max Planck Institute for Molecular Genetics, Berlin-Dahlem, Germany Abstract Delayed hatching is a form of dormancy evolved in some amphibian and fish embryos to cope with environmental conditions transiently hostile to the survival of hatchlings or larvae. While diapause and cryptobiosis have been extensively studied in several animals, very little is known concerning the molecular mechanisms involved in the sensing and response of fish embryos to environmental cues. Embryos of the euryhaline killifish Fundulus heteroclitus advance dvelopment when exposed to air but hatching is suspended until flooding with seawater. Here, we investigated how transcriptome regulation underpins this adaptive response by examining changes in gene expression profiles of aerially incubated killifish embryos at ,100% relative humidity, compared to embryos continuously flooded in water. The results confirm that mid-gastrula embryos are able to stimulate development in response to aerial incubation, which is accompanied by the differential expression of at least 806 distinct genes during a 24 h period. Most of these genes (,70%) appear to be differentially expressed within 3 h of aerial exposure, suggesting a broad and rapid transcriptomic response. This response seems to include an early sensing phase, which overlaps with a tissue remodeling and activation of embryonic development phase involving many regulatory and metabolic pathways. -
Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen, -
Histone Demethylase JMJD6 Regulates Cellular Migration And
Shen et al. Stem Cell Research & Therapy (2018) 9:212 https://doi.org/10.1186/s13287-018-0949-3 RESEARCH Open Access Histone demethylase JMJD6 regulates cellular migration and proliferation in adipose-derived mesenchymal stem cells Chongyang Shen1,2, Qingli Quan3*, Chuan Yang1, Yueqiang Wen2 and Hong Li1* Abstract Background: Adipose-derived mesenchymal stem cells (ADSCs) have been extensively explored as a promising therapeutic agent due to their differentiation, proliferation and migration abilities. The epigenetic mechanisms that regulate the fate of mesenchymal stem cells (MSCs) have been described in detail. However, the epigenetic modulation of ADSCs proliferation and migration is poorly understood. Methods: The present study examined histone demethylases roles and expression by RT-PCR, as well as through siRNA screening and ChIP-qPCR assay. Cellular proliferation and migration assays were employed in shRNA- mediated JMJD6 knockdown and control ADSCs. PDE1C inhibition studies were conducted to confirm its role in JMJD6-mediated epigenetic regulation of ADSCs. Results: The data demonstrate that the histone demethylase JMJD6 plays a critical role in regulating the proliferation and migration of ADSCs by removing H4R3me2a at the promoter regions of PDEC1 and suppressing PDEC1 expression. Importantly, the depletion of JMJD6 in ADSCs significantly increased cellular proliferation and motility, which was associated with increases in PDE1C expression and decreases in the levels of both cAMP and cGMP. The increase in proliferation and migration was reversed by treatment with a PDE1C inhibitor, suggesting that JMJD6 attenuates the proliferation and migration of ADSCs as an epigenetic regulator and PDE1C partially contributes to the JMJD6-mediated regulation. Conclusions: Taken together, our results indicate for the first time that JMJD6 plays an important role in the regulation of ADSCs proliferation and migration through the modulation of PDE1C expression. -
Egln2 Associates with the NRF1PGC1 Complex and Controls
Article EglN2 associates with the NRF1-PGC1a complex and controls mitochondrial function in breast cancer Jing Zhang1,†, Chengyang Wang2,†, Xi Chen3, Mamoru Takada1, Cheng Fan1, Xingnan Zheng1, Haitao Wen1,4, Yong Liu1, Chenguang Wang5, Richard G Pestell6, Katherine M Aird7, William G Kaelin Jr8,9, Xiaole Shirley Liu10 & Qing Zhang1,11,* Abstract Introduction The EglN2/PHD1 prolyl hydroxylase is an important oxygen sensor The presence of hypoxic cells in the tumor microenvironment was contributing to breast tumorigenesis. Emerging studies suggest proposed by Thomlinson and Gray more than 50 years ago that there is functional cross talk between oxygen sensing and (Thomlinson & Gray, 1955). These hypoxic cells confer radio- or mitochondrial function, both of which play an essential role for chemotherapeutic resistance and therefore are hypothesized to be sustained tumor growth. However, the potential link between under selection for aggressive malignancy during the course of EglN2 and mitochondrial function remains largely undefined. cancer development (Brown & Wilson, 2004). One central question Here, we show that EglN2 depletion decreases mitochondrial is how hypoxic cancer cells sense their oxygen availability, adapt to respiration in breast cancer under normoxia and hypoxia, which the stressful environment, and proliferate out of control. The key correlates with decreased mitochondrial DNA in a HIF1/2a- proteins mediating oxygen sensing in these cells mainly involve independent manner. Integrative analyses of gene expression proteins that are responsible for the hydroxylation of hypoxia- profile and genomewide binding of EglN2 under hypoxic condi- inducible factor (HIF), namely the prolyl hydroxylases EglN1-3. As a tions reveal nuclear respiratory factor 1 (NRF1) motif enrichment key EglN enzyme substrate, HIF1a is hydroxylated on prolines 402 in EglN2-activated genes, suggesting NRF1 as an EglN2 binding and 564 under normoxic conditions. -
Human Alkb Homologue 5 Is a Nuclear 2-Oxoglutarate Dependent Oxygenase and a Direct Target of Hypoxia- Inducible Factor 1A (HIF-1A)
Human AlkB Homologue 5 Is a Nuclear 2-Oxoglutarate Dependent Oxygenase and a Direct Target of Hypoxia- Inducible Factor 1a (HIF-1a) Armin Thalhammer2, Zuzana Bencokova3., Rachel Poole3., Christoph Loenarz2., Julie Adam1, Linda O’Flaherty1, Johannes Scho¨ del1, David Mole1, Konstantinos Giaslakiotis4, Christopher J. Schofield2, Ester M. Hammond3, Peter J. Ratcliffe1, Patrick J. Pollard1* 1 Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford, United Kingdom, 2 Chemistry Research Laboratory and The Oxford Centre for Integrative Systems Biology, Department of Chemistry, University of Oxford, Oxford, United Kingdom, 3 Gray Institute for Radiation Oncology and Biology, University of Oxford, Oxford, United Kingdom, 4 Department of Cellular Pathology, John Radcliffe Hospital, Oxford, United Kingdom Abstract Human 2-oxoglutarate oxygenases catalyse a range of biological oxidations including the demethylation of histone and nucleic acid substrates and the hydroxylation of proteins and small molecules. Some of these processes are centrally involved in regulation of cellular responses to hypoxia. The ALKBH proteins are a sub-family of 2OG oxygenases that are defined by homology to the Escherichia coli DNA-methylation repair enzyme AlkB. Here we report evidence that ALKBH5 is probably unique amongst the ALKBH genes in being a direct transcriptional target of hypoxia inducible factor-1 (HIF-1) and is induced by hypoxia in a range of cell types. We show that purified recombinant ALKBH5 is a bona fide 2OG oxygenase that catalyses the decarboxylation of 2OG but appears to have different prime substrate requirements from those so far defined for other ALKBH family members. Our findings define a new class of HIF-transcriptional target gene and suggest that ALKBH5 may have a role in the regulation of cellular responses to hypoxia.