Stargazer Astronomical Society of South East Texas P O Box 654

Total Page:16

File Type:pdf, Size:1020Kb

Stargazer Astronomical Society of South East Texas P O Box 654 ASSET NEWSLETTER STARGAZER ASTRONOMICAL SOCIETY OF SOUTH EAST TEXAS P O BOX 654 President - Will Young Vice-President - Kyle Overturf Secretary - Brenda Tantzen president@asset-astronomer. org [email protected] [email protected] Treasurer - Eddie & Cat Trevino Newsletter Editor - Howard Minor [email protected] [email protected] THE CLUB WEB SITE: CHECK THESE ARTICLES MARCH 2017 ISSUE asset-astronomer.org PAGE 2…….Standard Time NEXT MEETING IS FRIDAY ASSET Meeting PAGE 3…….The Sailboat Location D MARCH 10TH, AT 7:00 PM 10 PAGE 4…….Comet Campaign BISD - The meeting is back in I 19TH ST 19TH the Frank Planetarium PAGE 5…….Fun Facts R ACCESS PARKING OK MEMBERS, PLEASE PAY OVERFLOW PAGE 6…….Planet Parade NORTH ST. THOSE CLUB DUES: THANKS BRENDA’S MINUTES WILL’S WORDS Flowers are in bloom and the ASSET Minutes February 10, 2017 winter constellations are making their way toward the west! It's Welcome new member Julie Page. We also had two visitors. We will be having Solar a great time of year to get out and observe. Safety and Introduction to Astronomy classes Speaking of observing, the Hodges Gardens sometime in May at the Planetarium. The Star Party is coming up! This is a very close Hodges Garden Star Party is March 22-26. star party and is one of my favorites. Bring Hodges Gardens is south of Many, LA, and a your dry camping gear as there is no power but great site for a star party. Kids event spon- the skies are very good. I'll have more on this sored by the Beaumont Art Museum on April 7. We will be setting up at Riverfront Park. one at the March meeting. Our dark sky spot Meet about 6:30 p.m. Martin Dies Star Party, at Magnolia Ridge is as good as ever. We had April 22, 6:45 p.m. Will had a video about the our monthly dark sky party and the skies were iridium flares that have made for such vivid fantastic! The park is excited to have us come displays of light in the sky. They are being out so we need to take advantage. We have deorbited and replaced. Don’t forget to several outreach events coming up as well! SMILE when you buy on AMAZON. Watch for emails about those and help if you Attendance: 20 can. We appreciate those of you who help March refreshments: Julie Choate educate future astronomers! I will see you at Brenda Tantzen the March meeting! Will ASSET Secretary PA OBSERVERS’ PAGE WHAT DO YOU KNOW ABOUT STANDARD TIME? In the 1800’s the time was a local matter, and most cities used some form of solar time. As trains began to travel across the country, time was seen to be more standardized. On Nov. 18, 1883, railroad companies agreed to a new system which divided the U.S. into 4 standard zones. This was established by U.S. law by the “Standard Time Act” of March 19, 1918. For the purposes of navigation and astronomy (especially interferometry in radio astron- omy), it is useful to have a single time for the entire Earth. For historical reasons, this “world time” was chosen to be the mean solar time at Greenwich, England (0 degrees longitude), and this time is called the Universal Time (UT). But due to a physical processes, such as mass mo- tions in the atmosphere, the rate of rotation of the Earth varies from the mean solar time, and so a timescale called Coordinated Universal Time (UTC) was adopted. On the internet there is a ton of info on time around the world. Check it out! LAST SATURDAY NIGHT THE CLUB DARK SKY STAR PARTY HAD GOOD SKIES! Will reported with this Quick Note. The star party at Magnolia Ridge was amazing! Gerald and I brought scopes out and Patrick, our park ranger, and new members Linda and Alex came out to ob- serve with us. We saw quite a few good objects. About 10pm the dew came in and got all my gear. But the skies were amazing. We truly have a nice spot at that park. STARTING TONIGHT, AS YOU GET THIS STARGAZER, THE NEXT 7 DAYS WILL BE A CRESCENT MOON The time is now to get out the Telescope, Binoculars, and your Naked Eye, to observe the Moon dancing pass Venus and Mars. And as it continues across the sky watch the terminator change the surface features from night to night. Maybe the skies will clear enough for a good week to catch the “Crescent Moon”. Pull out your Moon Maps and find some of the neat features like the Mares, Craters and Mountains. How small a crateret can you see or did you notice a mountain in the center of a crater? HODGES GDNS STAR PARTY, IT IS NOT TO0 LATE TO GO! You don’t have to sign up ahead of time, just go. You also can just make the weekend. It is so simple. Please check with Will at the meeting on the 10th. He can get you lined out, if you can’t make up your mind. The cost is cheap. Just the weekend nights total, approx. 20 to 25 bucks plus gas and food. 2 hours up there! An Astronomy Team To Take Care Of All Your Astronomical COLLINS ARMSTRONG Needs RITTER SABINE Clayton 713-569-7529 + TRANQUILITY PAGE 2 LIKE ME, HAVE YOU FORGOTTEN ABOUT THE VOYAGER 1 AND 2? HERE IS A REMINDER OF THE MISSION OVERVIEW The twin Voyager 1 and 2 spacecrafts are exploring where noth- ing from Earth has flown before. Continuing on their more-than-37- year journey since their 1977 launches, they each are much farther away from Earth and the Sun than Pluto. In August 2012, Voyager 1 made the historic entry into interstellar space, the region between stars, filled with material ejected by the death of nearby stars millions of years ago. Scientists hope to learn more about this region when Voyager 2, in the "heliosheath" -- the outermost layer of the helio- sphere where the solar wind is slowed by the pressure of interstellar medium -- also reaches interstellar space. Both spacecraft are still sending scientific information about their surroundings through the Deep Space Network, or DSN. The primary mission was the exploration of Jupiter and Saturn. After making a string of discov- eries there -- such as active volcanoes on Jupiter's moon Io and intricacies of Saturn's rings -- the mis- sion was extended. Voyager 2 went on to explore Uranus and Neptune, and is still the only spacecraft to have visited those outer planets. The adventurers' current mission, the Voyager Interstellar Mission (VIM), will explore the outermost edge of the Sun's domain. And beyond. (FROM NASA—JPL) Seven Earth-like Planets Orbit Nearby Star Well I guess you all saw on the nightly news about the 7 planets found. Here is a little more detail on them. Seven Earth-sized planets have been discovered orbiting a star (TRAPPIST-1), just 40 lightyears away, three of which could host oceans of liquid water on their surfaces. As- tronomers made the discovery by looking for dips in the light emitted by TRAPPIST-1, as this can indicate the presence of an orbiting planet. These dips are known as ‘transits’ and studying them also enables astronomers to learn much about the planets’ composition, sizes and orbits. TRAPPIST-1 is just 8 per cent the mass of our Sun and appears very dim when viewed from Earth. The orbits of the seven planets are thought to be smaller than the orbits of Mercury, which is the closest planet to the Sun in our Solar System. Because TRAPPIST-1 is much smaller and cool- er than our own Sun, the close orbit of the planets puts them in the ‘habitable’ zone, meaning they are just the right temperature to potentially support life. Density measurements also revealed the six innermost planets could be rocky in composition. Planets e, f and g, are thought to orbit in the 'Goldilocks zone' and could host water, meaning there is the potential for life to exist. All this sounds like it is the most important discovery since the exoplanet project was started. The Sailboat Cluster Leo Minor The Sailboat Cluster looks a lot like a sailboat. The 13 or 14 stars that form this asterism are blue/white and have differ- ent magnitudes. It also contains the star 22 Leonis. In the mast there are 2 red colored stars visible. In binoculars the Sailboat stands upside down. 22 Leo Minoris is 6th mag., so easy in binoculars. The other stars are fainter, . 22 Leo Minoris but your binoculars should show down to 9th 22 LEO mag. Also, the asterism was brought to the MINORIS amateur community in the summer of 1988. (from Sky & Telescope Mag.) PAGE 3 Comet Campaign: Amateurs Wanted By Marcus Woo In a cosmic coincidence, three comets will soon be approaching Earth—and astronomers want you to help study them. This global campaign, which will begin at the end of January when the first comet is bright enough, will enlist amateur astronomers to help researchers continuously monitor how the comets change over time and, ultimately, learn what these ancient ice chunks reveal about the origins of the solar system. Over the last few years, spacecraft like NASA's Deep Impact/EPOXI or ESA's Rosetta (of which NASA played a part) discovered that comets are more dynamic than anyone realized. The missions found that dust and gas burst from a comet's nucleus every few days or weeks—fleeting phenomena that would have gone unnoticed if it were- n't for the constant and nearby observations.
Recommended publications
  • Calcium Isotopes in Natural and Experimental Carbonated Silicate Melts
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 2-27-2018 2:30 PM Calcium Isotopes in Natural and Experimental Carbonated Silicate Melts Matthew Maloney The University of Western Ontario Supervisor Bouvier, Audrey The University of Western Ontario Co-Supervisor Withers, Tony The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Matthew Maloney 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geochemistry Commons Recommended Citation Maloney, Matthew, "Calcium Isotopes in Natural and Experimental Carbonated Silicate Melts" (2018). Electronic Thesis and Dissertation Repository. 5256. https://ir.lib.uwo.ca/etd/5256 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract The calcium stable isotopic compositions of mantle-sourced rocks and minerals were investigated to better understand the carbon cycle in the Earth’s mantle. Bulk carbonatites and kimberlites were analyzed to identify a geochemical signature of carbonatite magmatism, while inter-mineral fractionation was measured in co-existing Ca-bearing carbonate and silicate minerals. Bulk samples show a range of composition deviating from the bulk silicate Earth δ44/40Ca composition indicating signatures of magmatic processes or marine carbonate addition 44/40 to source materials. Δ Cacarbonate-silicate values range from -0.55‰ to +1.82‰ and positively correlate with Ca/Mg ratios in pyroxenes.
    [Show full text]
  • Asteroid Regolith Weathering: a Large-Scale Observational Investigation
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved.
    [Show full text]
  • February 2015 Premiere | 3 CONTENTS
    February 2015 Premiere | 3 CONTENTS Chocolate lovers can find countless ways to satisfy their desires for the sweet treat, but it can also be good for you. Learn more about it, with features beginning on page 26. 8 LOCAL HISTORY Paragould Meteorite 10 Top Spellers 12 Scene ‘Ya 14 OUTSTANDING TEACHERS 16 GET UP AND GO Powhatan State Park 20 Calendar 32 Our Community 38 NEA Baptist Holds Celebration 44 ENGAGEMENTS Rachel Holder and Jason Boyd 50 NEA COOKS On the cover: A chocolate experience (Items provided by: Cakes By Ginger) 4 | Premiere February 2015 Photo by Tim Rand Photography appealing to readers, the Premiere writing each month, introducing readers to the From the Managing Editor… staff has added a couple of new features this future leaders of the community. month to go along with our regular fare. The main theme for February, however, is a One is “Get Up and Go,” a series designed to double-edged presentation geared toward bring to you points of interest that are both our fascination with chocolate, and situated within quick driving time from the with heart health. Paragould-Jonesboro area. Not only are gooey chocolate treats among The initial entry features the Powhatan State the nation’s favorite desserts, health experts Park, a delightful experience for those who will tell you that in some instances chocolate are history buffs. A self-guided tour affords is actually good for you. We have lots of visitors a first-hand look at what life in the chocolate info on the inside pages, including 1800s was like.
    [Show full text]
  • Xb Ie'ian%Mlseltm
    Xb1oxfitateie'ian%Mlseltm PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2 I 90 SEPTEMBER IO, I964 The Meteorite and Tektite Collection of the American Museum of Natural History BY BRIAN MASON' INTRODUCTION The first meteorite received by the American Museum of Natural History was a 46-gram piece of the Searsmont chondrite, presented by G. M. Brainerd of Rockland, Maine, in 1872. For some years the col- lection grew very slowly. Hovey (1896) published the first catalogue, in which he enumerated 55 pieces representing 26 different meteorites. However, the status of the collection was radically changed in 1900 with the acquisition of the Bement collection of minerals, through the gener- osity ofJ. Pierpont Morgan. Besides some 12,000 mineral specimens, the Bement collection contained 580 meteorites, representing nearly 500 different falls and finds. This acquisition established the meteorite col- lection of this museum as one of the great collections of the world, a situation that has been maintained by more recent additions. Some of the more notable additions may be briefly noted. In 1904 three Cape York irons, brought from Greenland in 1897 by R. E. Peary, were deposited in the museum. These are known as "Ahnighito" or "The Tent," "The Woman," and "The Dog" (fig. 1). "Ahnighito," the largest of the three, is approximately 11 feet long, 7 feet high, and 6 feet thick. Various estimates of its weight, ranging from 30 to 80 tons, have been published. Thanks to the Toledo Scale Company it was mounted 1 Chairman, Department of Mineralogy, the American Museum of Natural History.
    [Show full text]
  • Link Between the Potentially Hazardous Asteroid (86039) 1999 NC43 and the Chelyabinsk Meteoroid Tenuous ⇑ Vishnu Reddy A,1, , David Vokrouhlicky´ B, William F
    Icarus 252 (2015) 129–143 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Link between the potentially hazardous Asteroid (86039) 1999 NC43 and the Chelyabinsk meteoroid tenuous ⇑ Vishnu Reddy a,1, , David Vokrouhlicky´ b, William F. Bottke c, Petr Pravec d, Juan A. Sanchez a,1, Bruce L. Gary e, Rachel Klima f, Edward A. Cloutis g, Adrián Galád d, Tan Thiam Guan h, Kamil Hornoch d, Matthew R.M. Izawa g, Peter Kušnirák d, Lucille Le Corre a,1, Paul Mann g, Nicholas Moskovitz i,1, Brian Skiff i, Jan Vraštil b a Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719, USA b Institute of Astronomy, Charles University, V Holešovicˇkách 2, CZ-18000 Prague, Czech Republic c Southwest Research Institute, 1050 Walnut St, Suite 300, Boulder, CO 80302, USA d Astronomical Institute, Academy of Sciences of the Czech Republic, Fricˇova 1, CZ-25165 Ondrˇejov, Czech Republic e Hereford Arizona Observatory, Hereford, AZ 85615, USA f Johns Hopkins University/Applied Physics Laboratory, Laurel, MD, USA g Department of Geography, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba R3B 2E9, Canada h Perth Exoplanet Survey Telescope, 20 Lisle St, Mount Claremont, WA 6010, Australia i Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001, USA article info abstract Article history: We explored the statistical and compositional link between Chelyabinsk meteoroid and potentially haz- Received 31 July 2014 ardous Asteroid (86039) 1999 NC43 to investigate their proposed relation proposed by Borovicˇka et al. Revised 17 December 2014 (Borovicˇka, J., et al. [2013]. Nature 503, 235–237).
    [Show full text]
  • February 16-22, 2020
    8# Ice & Stone 2020 Week 8: February 16-22, 2020 Presented by The Earthrise Institute This week in history FEBRUARY 16 17 18 19 20 21 22 FEBRUARY 17, 1930: A bright meteor appears in the sky above the midwestern U.S. and falls to the ground near Paragould, Arkansas. With a total mass of 370 kg, the Paragould meteorite, a stony chondrite, is the second- largest meteorite fall seen from and recovered in North America. FEBRUARY 17, 1996: The Near-Earth Asteroid Rendezvous (NEAR) spacecraft – later renamed NEAR Shoemaker after renowned planetary geologist Eugene Shoemaker – is launched from Cape Canaveral, Florida. After passing by the main-belt asteroid (253) Mathilde in June 1997 and the near-Earth asteroid (433) Eros in late 1998, NEAR Shoemaker returned to Eros in February 2000 and went into orbit around it, and one year later successfully soft-landed onto Eros’ surface. The NEAR Shoemaker mission was covered in a previous “Special Topics” presentation. FEBRUARY 16 17 18 19 20 21 22 FEBRUARY 18, 1930: Clyde Tombaugh at Lowell Observatory in Arizona discovers Pluto while examining photographs he had taken in late January. Pluto is the subject of a future “Special Topics” presentation. FEBRUARY 18, 1948: A bright meteor appears over the midwestern U.S. and drops a large shower of meteorites over parts of Kansas and Nebraska. The Norton County meteorite, as this has been called, has a total mass of 1070 kg and is the largest meteorite fall seen from and recovered in North America. FEBRUARY 18, 1991: Rob McNaught at Siding Spring Observatory in New South Wales discovers the apparent “asteroid” now known as (5335) Damocles.
    [Show full text]
  • The Stubenberg Meteorite—An LL6 Chondrite Fragmental Breccia Recovered Soon After Precise Prediction of the Strewn field
    Meteoritics & Planetary Science 1–21 (2017) doi: 10.1111/maps.12883 The Stubenberg meteorite—An LL6 chondrite fragmental breccia recovered soon after precise prediction of the strewn field Addi BISCHOFF1,* , Jean-Alix BARRAT2, Kerstin BAUER3, Christoph BURKHARDT1, Henner BUSEMANN3 , Samuel EBERT1, Michael GONSIOR4, Janina HAKENMULLER€ 5, Jakub HALODA6, Dennis HARRIES7, Dieter HEINLEIN8, Harald HIESINGER1, Rupert HOCHLEITNER9, Viktor HOFFMANN10, Melanie KALIWODA9, Matthias LAUBENSTEIN11, Colin MADEN3, Matthias M. M. MEIER3 , Andreas MORLOK1, Andreas PACK12, Alexander RUF13,14, Philippe SCHMITT-KOPPLIN13,14, Maria SCHONB€ ACHLER€ 3, Robert C. J. STEELE3, Pavel SPURNY 15, and Karl WIMMER16 1Institut fur€ Planetologie, Westfalische€ Wilhelms-Universitat€ Munster,€ Wilhelm-Klemm Str. 10, Munster€ D-48149, Germany 2Universite de Bretagne Occidentale, Institut Universitaire Europeen de la Mer, Place Nicolas Copernic, Plouzane Cedex F-29280, France 3ETH Zurich,€ Institut fu¨ r Geochemie und Petrologie, Clausiusstrasse 25, Zurich€ CH-8092, Switzerland 4University of Maryland, Center for Environmental Science, Chesapeake Biological Laboratory, 146 Williams Street, Solomons, Maryland 20688, USA 5Max-Planck-Institut fur€ Kernphysik, Saupfercheckweg 1, Heidelberg D-69117, Germany 6Czech Geological Survey, Geologicka 6, Praha 5 CZ-152 00, Czech Republic 7Institut fur€ Geowissenschaften, Friedrich-Schiller-Universitat€ Jena, Carl-Zeiss-Promenade 10, Jena D-07745, Germany 8German Fireball Network, Lilienstraße 3, Augsburg D-86156, Germany 9Mineralogische
    [Show full text]
  • Nature and Origins of Meteoritic Breccias 679
    Bischoff et al.: Nature and Origins of Meteoritic Breccias 679 Nature and Origins of Meteoritic Breccias Addi Bischoff Westfälische Wilhelms-Universität Münster Edward R. D. Scott University of Hawai‘i Knut Metzler Westfälische Wilhelms-Universität Münster Cyrena A. Goodrich University of Hawai‘i Meteorite breccias provide information about impact processes on planetary bodies, their collisional evolution, and their structure. Fragmental and regolith breccias are abundant in both differentiated and chondritic meteorite groups and together with rarer impact-melt rocks pro- vide constraints on cratering events and catastrophic impacts on asteroids. These breccias also constrain the stratigraphy of differentiated and chondritic asteroids and the relative abundance of different rock types among projectiles. Accretional chondritic breccias formed at low impact speeds (typically tens or hundreds of meters per second), while other breccias reflect hyper- velocity impacts at higher speeds (~5 km/s) after asteroidal orbits were dynamically excited. Iron and stony-iron meteorite breccias only formed, when their parent bodies were partly molten. Polymict fragmental breccias and regolith breccias in some meteorite groups contain unique types of clasts that do not occur as individual meteorites in our collections. For example, ureilite breccias contain feldspathic clasts from the ureilite parent body as well as carbonaceous chon- dritic projectile material. Such clasts provide new rock types from both unsampled parent bod- ies and unsampled parts of known parent bodies. We review breccias in all types of asteroidal meteorites and focus on the formation of regolith breccias and the role of catastrophic impacts on asteroids. 1. GENERAL INTRODUCTION shock waves during collisional processes. Partsch (1843) and von Reichenbach (1860) described “polymict breccias” 1.1.
    [Show full text]
  • Effects of Atmospheric Breakup on Crater Field Formation 1
    ICARUS 42, 211--233 (1980) Effects of Atmospheric Breakup on Crater Field Formation 1 QUINN R. PASSEY AND H. J. MELOSH z Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125 Received October 5, 1979; revised February 18, 1980 This paper investigates the physics of meteoroid breakup in the atmosphere and its implications for the observed features of strewn fields. There are several effects which cause dispersion of the meteoroid fragments: gravity, differential lift of the fragments, bow shock interaction just after breakup, centripetal separation by a rotating meteroid, and possibly a dynamical transverse separation resulting from the crushing deceleration in the atmosphere. Of these, we show that gravity alone can produce the common pattern in which the largest crater occurs at the downrange end of the scatter ellipse. The average lift-to-drag ratio of the tumbling fragments must be less than about 10 -3, otherwise small fragments would produce small craters downrange of the main crater, and this is not generally observed. The cross-range dispersion is probably due to the combined effects of bow shock interaction, crushing deceleration, and possibly spinning of the meteoroid. A number of terrestrial strewn fields are discussed in the light of these ideas, which are formulated quantitatively for a range of meteoroid velocities, entry angles, and crushing strengths. It is found that when the crater size exceeds about 1 km, the separation between the fragments upon landing is a fraction of their own diameter, so that the crater formed by such a fragmented meteoroid is almost indistinguishable from that formed by a solid body of the same total mass and velocity.
    [Show full text]
  • The Stubenberg Meteorite - an LL6 Chondrite Fragmental Breccia Recovered Soon After Precise Prediction of the Strewn Field
    The Stubenberg meteorite - an LL6 chondrite fragmental breccia recovered soon after precise prediction of the strewn field Addi BISCHOFF1, Jean-Alix BARRAT2, Kerstin BAUER3, Christoph BURKHARDT1, Henner BUSEMANN3, Samuel EBERT1, Michael GONSIOR4, Janina HAKENMÜLLER5, Jakub HALODA6, Dennis HARRIES7, Dieter HEINLEIN8, Harald HIESINGER1, Rupert HOCHLEITNER9 , Viktor HOFFMANN10, Melanie KALIWODA9, Matthias LAUBENSTEIN11, Colin MADEN3, Matthias M. M. MEIER3, Andreas MORLOK1, Andreas PACK12, Alexander RUF13,14, Philippe SCHMITT-KOPPLIN13,14, Maria SCHÖNBÄCHLER3, Robert C. J. STEELE3, Pavel SPURNÝ15, and Karl WIMMER16 1Institut für Planetologie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm Str. 10, D-48149 Münster, Germany. 2Université de Bretagne Occidentale, Institut Universitaire Européen de la Mer, Place Nicolas Copernic, F-29280 Plouzané Cedex, France. 3ETH Zurich, Departement Erdwissenschaften, Clausiusstraße 25, CH-8092 Zurich, Switzerland. 4University of Maryland, Center for Environmental Science, Chesapeake Biological Laboratory, 146 Williams Street, Solomons, MD-20688, USA. 5Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany. 6Czech Geological Survey, Geologická 6, CZ-152 00 Praha 5, Czech Republic. 7Friedrich-Schiller-Universität Jena, Institut für Geowissenschaften, Carl-Zeiss-Promenade 10, D-07745 Jena, Germany. 8German Fireball Network, Lilienstraße 3, D-86156 Augsburg, Germany. 9Mineralogische Staatssammlung München (SNSB), Theresienstr. 41, D-80333 München, Germany. 10Department of Geosciences,
    [Show full text]
  • The Jurassic Meteorite Flux: a Record from Extraterrestrial Chrome-Spinels
    THE JURASSIC METEORITE FLUX: A RECORD FROM EXTRATERRESTRIAL CHROME-SPINELS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN EARTH & PLANETARY SCIENCE December 2020 By Caroline E. Caplan Dissertation Committee: Gary R. Huss, Chairperson Kazu Nagashima Hope A. Ishii Greg Ravizza Schelte J. Bus Keywords: chrome-spinel, chromite, Jurassic, meteorites, oxygen isotopes To my ten-year-old self who wanted this for so long, you did it! ii ACKNOWLEDGMENTS Graduate school will forever be one of my favorite times in life. Through its ups and downs I have become more knowledgeable, confident, and have found true joy in science. I am especially thankful to my advisor, Gary Huss, without whom none of this work would have been possible. He has guided me through graduate school to grow as researcher, including giving me the opportunities to explore new avenues of my work. I would also like to thank my committee members: Kazu Nagashima for always answering my questions with patience, Hope Ishii for work and life guidance, Greg Ravizza for his excitement and new perspectives, and Bobby Bus for help with statistics and his endless curiosity. Thanks to Birger Schmitz who allowed me to work on such a special project and for the incredible opportunity to travel to Sweden, Russia, and Italy to obtain a better understanding of my samples and the area of work. I would also like to thank the HIGP and ERTH (GG) departments for fostering a productive and friendly environment.
    [Show full text]
  • Asteroid 2008 TC3—Almahata Sitta: a Spectacular Breccia Containing Many Different Ureilitic and Chondritic Lithologies
    Meteoritics & Planetary Science 45, Nr 10–11, 1638–1656 (2010) doi: 10.1111/j.1945-5100.2010.01108.x Asteroid 2008 TC3—Almahata Sitta: A spectacular breccia containing many different ureilitic and chondritic lithologies Addi BISCHOFF1*, Marian HORSTMANN1, Andreas PACK2, Matthias LAUBENSTEIN3, and Siegfried HABERER4 1Institut fu¨ r Planetologie, Wilhelm-Klemm-Str. 10, 48149 Mu¨ nster, Germany 2Geowissenschaftliches Zentrum, Universita¨ tGo¨ ttingen, Goldschmidtstrasse 1, 37077 Go¨ ttingen, Germany 3Laboratori Nazionali del Gran Sasso—I.N.F.N., S.S.17 ⁄ bis, km 18+910, I-67010 Assergi (AQ), Italy 4Haberer-Meteorites, Ruhbankweg 15, 79111 Freiburg, Germany *Corresponding author. E-mail: [email protected] (Received 24 February 2010; revision accepted 11 August 2010) Abstract–Asteroid 2008 TC3 impacted Earth in northern Sudan on October 7, 2008. The meteorite named Almahata Sitta was classified as a polymict ureilite. In this study, 40 small pieces from different fragments collected in the Almahata Sitta strewn field were investigated and a large number of different lithologies were found. Some of these fragments are ureilitic in origin, whereas others are clearly chondritic. As all are relatively fresh (W0–W0 ⁄ 1) and as short-lived cosmogenic radioisotopes were detected within two of the chondritic fragments, there is strong evidence that most, if not all belong to the Almahata Sitta meteorite fall. The fragments can roughly be subdivided into achondritic (ureilitic; 23 samples) and chondritic lithologies (17 samples). Among the ureilitic rocks are at least 10 different lithologies. A similar number of different chondritic lithologies also exist. Most chondritic fragments belong to at least seven different E-chondrite rock types (EH3, EL3 ⁄ 4, EL6, EL breccias, several different types of EL and EH impact melt rocks and impact melt breccias; some of the latter are shock-darkened).
    [Show full text]