Effects of Atmospheric Breakup on Crater Field Formation 1

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Atmospheric Breakup on Crater Field Formation 1 ICARUS 42, 211--233 (1980) Effects of Atmospheric Breakup on Crater Field Formation 1 QUINN R. PASSEY AND H. J. MELOSH z Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125 Received October 5, 1979; revised February 18, 1980 This paper investigates the physics of meteoroid breakup in the atmosphere and its implications for the observed features of strewn fields. There are several effects which cause dispersion of the meteoroid fragments: gravity, differential lift of the fragments, bow shock interaction just after breakup, centripetal separation by a rotating meteroid, and possibly a dynamical transverse separation resulting from the crushing deceleration in the atmosphere. Of these, we show that gravity alone can produce the common pattern in which the largest crater occurs at the downrange end of the scatter ellipse. The average lift-to-drag ratio of the tumbling fragments must be less than about 10 -3, otherwise small fragments would produce small craters downrange of the main crater, and this is not generally observed. The cross-range dispersion is probably due to the combined effects of bow shock interaction, crushing deceleration, and possibly spinning of the meteoroid. A number of terrestrial strewn fields are discussed in the light of these ideas, which are formulated quantitatively for a range of meteoroid velocities, entry angles, and crushing strengths. It is found that when the crater size exceeds about 1 km, the separation between the fragments upon landing is a fraction of their own diameter, so that the crater formed by such a fragmented meteoroid is almost indistinguishable from that formed by a solid body of the same total mass and velocity. INTRODUCTION After breakup, the fragments fall over an It has been estimated that over area which is roughly elliptical in shape. If 70,000,000 meteoroids enter the Earth's the impacting meteorites have sufficient ki- atmosphere each day. Of these, about 1000 netic energy to produce craters, a crater kg (about 1%) of the meteoric material field is created in this same elliptical form survives the ablative effects of atmospheric and is often referred to as a strewn field or descent and strikes the surface (Baldwin, scatter ellipse. 1963, pp. 6-7). Within this crater field, the individual The meteoroids are subjected to high meteorites, or craters, are distributed in a pressures and stresses while traveling systematic manner; the largest masses or through the atmosphere at velocities of craters are generally located at, or near, the several kilometers per second and often downrange boundary of the crater field break into fragments which may or may not while the smallest masses fall at the up- survive the remaining descent to the sur- range boundary. There is also a cross-range face. The altitude at which breakup occurs distribution of craters which we show can generally varies from 4 to 40 km, and be the result of a transverse velocity sup- appears to be independent of either the plied to the meteoroid fragments at the time mass or class of the meteorite (Krinov, of the interaction of bow shocks coupled 1960, pp. 76-77). with the effects of crushing the meteoroid. Lift can also affect the distribution of cra- Contribution No. 3328 of the Division of Geologi- ters but we find that it is negligible except cal and Planetary Sciences, California Institute of Technology, Pasadena, Calif. 91125. for the case of fragments of masses less 2 Present address: Department of Earth and Space than about 10 z kg. Also, some deviations Sciences, SUNY, Stony Brook, N.Y. 11794. from a regular distribution of craters can be 211 0019-1035/80/050211-23502.00/0 Copyright © 1980 by Academic Press, Inc. All rights of reproduction in any form reserved. 212 PASSEY AND MELOSH explained by multiple breakup or relatively Rather, the information is based entirely steep angles of entry. upon publications. This paper is primarily concerned with The diameters of the craters listed in this crater fields but there are several single paper are generally from the measurements terrestrial craters which may be the result by previous authors. However, a few of the of the almost simultaneous impacts of me- diameters listed herein were estimated from teoroid fragments which, due to the angle published maps of the crater fields. The of entry or altitude of breakup, were not diameters refer to the present rim-to-rim sufficiently separated from one another to crater diameter without respect to a recon- form individual or obviously overlapping structed crater diameter and is probably craters. Some possible examples of these somewhat smaller than the original rim-to- include: Boxhole Crater, Brent Crater, rim diameter due to erosion of the rim. Dalgaranga Crater, Holleford Crater, Me- The distances recorded in the tables were teor (Barringer) Crater, New Quebec derived from maps or from written descrip- (Chubb) Crater, and Wolf Creek Crater tions as supplied by previous authors, and (Baldwin, 1963; Barringer, 1967; Heide, represent the distance from the center of 1963; Krinov, 1960, 1966; Millman, 1971). the crater in question to the center of the We first discuss the principal features of largest crater of the field. The largest crater several well-known terrestrial strewn is used as the origin of coordinates because fields, illustrated by maps of the fields, and it usually marks the distant end of the establish a measure of the crater dispersion scatter ellipse. Where the largest crater in these fields. We then review the physics does not lie near one end of the field (as of atmospheric entry and summarize our with the Campo del Cielo crater field) no computational scheme. We study the ef- distances are listed. fects of gravity, lift, bow shock interaction, spinning meteoroids, and crushing deceler- Campo del Cielo ation within the context of this model. The theory is then applied to the observed cra- The Campo del Cielo crater field is lo- ter fields and it is concluded that gravity, cated within the Chaco and Santiago del bow shock interactions, and possibly spin- Estero Provinces, Argentina (27038 'S, ning play the major roles in strewn field 61°42'W), and is composed of at least 20 formation with the effects of crushing de- craters (Romafia and Cassidy, 1973). The celeration and lift playing minor roles. The- distribution of craters is along a line trend- oretical plots are constructed showing the ing SW-NE, with the largest crater in the fate of meteoroids of given masses, veloci- middle, rather than at one end, of the crater ties, yield strengths, and angles of entry field (Cassidy et al., 1965) (refer to Table I). into earth's atmosphere. It is found that It has been suggested that the impact strewn fields are important only for craters angle for the meteorite involved in the less than about 1 km in diameter; in the formation of crater 9 was about 22° and that case of larger craters, the fragments fall so the final impact velocity was not greater close together (for entry angles greater than than 5.8 km sec -1 (Cassidy and Renard, approximately 10°) that the crater is almost 1970; Cassidy, 1971; Renard and Cassidy, indistinguishable from that made by a single 1971). solid meteoroid. Meteorites found in the immediate area are composed of iron (hexahedrite class) TERRESTRIAL CRATER FIELDS and samples have been recovered ranging Explanation in mass from 50 g to 4210 kg (Milton, 1963). No field study for any crater field dis- Studies have also revealed a meteorite with cussed in this paper was undertaken. an estimated mass of 22,000 kg in crater 10 CRATER FIELD FORMATION 213 TABLE I overlapping craters (Milton, 1968) (refer to Fig. 1 and Table II). CAMPO DEL CIELO a This crater field is one of the best pre- Crater number Crater diameter n Distance from served examples of a scatter ellipse. The (m) largest crater c direction of the impact is inferred to have (m) been from the SW to the NE, as evidenced by the location of the largest craters with l 85 NA a 2 71 NA respect to the smaller craters. 3 103 NA Meteoritic iron (octahedrite class) has 4 89 NA been found at the site (Hodge, 1965; 5 45e NA Krinov, 1966) and the largest meteorite 6a 35 NA recovered has a mass of about 150 kg 6b 20 NA 7 85 NA (Baldwin, 1963). 8 37 NA 9 40 NA Herault 10 221 NA The Herault craters are located in south- 11-20 Not given NA ern France (43°30'N, 3°15'E) near the " Data from Cassidy and Renard (1970), Cassidy towns of Faug~res and Cabrerolles (Beals, (1971), Romaiaa and Cassidy (1973), Cassidy et al. 1964; G~ze and Cailleux, 1950; Janssen, (1975). 1951; Hofl]eit, 1952). Average rim-to-rim diameter. In studying the crater profiles, Beals e Center-to-center. a Not applicable (reference point is uncertain since states that there is a possibility that the the largest crater is not near the downrange end of the craters are not of meteoritic origin because crater field). none of them exhibited a raised rim. If, e Average floor diameter. r Average reconstructed diameter. TABLE II HENBURY a (Cassidy, 1970, 1978 personal communica- tion). Crater numbern Crater diameter c Distance from (m) largest cratera Clearwater Lakes (m) In northern Quebec (56°N, 74 k°W) are 1 147 -- two nearly circular lakes with diameters of 2 119 55 32 and 26 km. These are known as Clearwa- 3 79 122 4 54 143 ter Lakes and the center-to-center separa- 5 47 393 tion is approximately 31 km.
Recommended publications
  • Cross-References ASTEROID IMPACT Definition and Introduction History of Impact Cratering Studies
    18 ASTEROID IMPACT Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D., 2002. The identification and confirmation of impact structures on supplemental IRAS minor planet survey. The Astronomical Earth were developed: (a) crater morphology, (b) geo- 123 – Journal, , 1056 1085. physical anomalies, (c) evidence for shock metamor- Tholen, D. J., and Barucci, M. A., 1989. Asteroid taxonomy. In Binzel, R. P., Gehrels, T., and Matthews, M. S. (eds.), phism, and (d) the presence of meteorites or geochemical Asteroids II. Tucson: University of Arizona Press, pp. 298–315. evidence for traces of the meteoritic projectile – of which Yeomans, D., and Baalke, R., 2009. Near Earth Object Program. only (c) and (d) can provide confirming evidence. Remote Available from World Wide Web: http://neo.jpl.nasa.gov/ sensing, including morphological observations, as well programs. as geophysical studies, cannot provide confirming evi- dence – which requires the study of actual rock samples. Cross-references Impacts influenced the geological and biological evolu- tion of our own planet; the best known example is the link Albedo between the 200-km-diameter Chicxulub impact structure Asteroid Impact Asteroid Impact Mitigation in Mexico and the Cretaceous-Tertiary boundary. Under- Asteroid Impact Prediction standing impact structures, their formation processes, Torino Scale and their consequences should be of interest not only to Earth and planetary scientists, but also to society in general. ASTEROID IMPACT History of impact cratering studies In the geological sciences, it has only recently been recog- Christian Koeberl nized how important the process of impact cratering is on Natural History Museum, Vienna, Austria a planetary scale.
    [Show full text]
  • Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
    Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P.
    [Show full text]
  • Disequilibrium Melting and Melt Migration Driven by Impacts: Implications for Rapid Planetesimal Core Formation
    Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 100 (2013) 41–59 www.elsevier.com/locate/gca Disequilibrium melting and melt migration driven by impacts: Implications for rapid planetesimal core formation Andrew G. Tomkins ⇑, Roberto F. Weinberg, Bruce F. Schaefer 1, Andrew Langendam School of Geosciences, P.O. Box 28E, Monash University, Melbourne, Victoria 3800, Australia Received 20 January 2012; accepted in revised form 24 September 2012; available online 12 October 2012 Abstract The e182W ages of magmatic iron meteorites are largely within error of the oldest solar system particles, apparently requir- ing a mechanism for segregation of metals to the cores of planetesimals within 1.5 million years of initial condensation. Cur- rently favoured models involve equilibrium melting and gravitational segregation in a static, quiescent environment, which requires very high early heat production in small bodies via decay of short-lived radionuclides. However, the rapid accretion needed to do this implies a violent early accretionary history, raising the question of whether attainment of equilibrium is a valid assumption. Since our use of the Hf–W isotopic system is predicated on achievement of chemical equilibrium during core formation, our understanding of the timing of this key early solar system process is dependent on our knowledge of the seg- regation mechanism. Here, we investigate impact-related textures and microstructures in chondritic meteorites, and show that impact-generated deformation promoted separation of liquid FeNi into enlarged sulfide-depleted accumulations, and that this happened under conditions of thermochemical disequilibrium. These observations imply that similar enlarged metal accumu- lations developed as the earliest planetesimals grew by rapid collisional accretion.
    [Show full text]
  • The Hamburg Meteorite Fall: Fireball Trajectory, Orbit and Dynamics
    The Hamburg Meteorite Fall: Fireball trajectory, orbit and dynamics P.G. Brown1,2*, D. Vida3, D.E. Moser4, M. Granvik5,6, W.J. Koshak7, D. Chu8, J. Steckloff9,10, A. Licata11, S. Hariri12, J. Mason13, M. Mazur3, W. Cooke14, and Z. Krzeminski1 *Corresponding author email: [email protected] ORCID ID: https://orcid.org/0000-0001-6130-7039 1Department of Physics and Astronomy, University of Western Ontario, London, Ontario, N6A 3K7, Canada 2Centre for Planetary Science and Exploration, University of Western Ontario, London, Ontario, N6A 5B7, Canada 3Department of Earth Sciences, University of Western Ontario, London, Ontario, N6A 3K7, Canada ( 4Jacobs Space Exploration Group, EV44/Meteoroid Environment Office, NASA Marshall Space Flight Center, Huntsville, AL 35812 USA 5Department of Physics, P.O. Box 64, 00014 University of Helsinki, Finland 6 Division of Space Technology, Luleå University of Technology, Kiruna, Box 848, S-98128, Sweden 7NASA Marshall Space Flight Center, ST11, Robert Cramer Research Hall, 320 Sparkman Drive, Huntsville, AL 35805, USA 8Chesapeake Aerospace LLC, Grasonville, MD 21638, USA 9Planetary Science Institute, Tucson, AZ, USA 10Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX, USA 11Farmington Community Stargazers, Farmington Hills, MI, USA 12Department of Physics and Astronomy, Eastern Michigan University, Ypsilanti, MI, USA 13Orchard Ridge Campus, Oakland Community College, Farmington Hills, MI, USA 14NASA Meteoroid Environment Office, Marshall Space Flight Center, Huntsville, Alabama 35812, USA Accepted to Meteoritics and Planetary Science, June 19, 2019 85 pages, 4 tables, 15 figures, 1 appendix. Original submission September, 2018. 1 Abstract The Hamburg (H4) meteorite fell on January 17, 2018 at 01:08 UT approximately 10km North of Ann Arbor, Michigan.
    [Show full text]
  • Catalogo Librario
    Catalogo librario centotre “L’albero di Irene” !"#$%$"&'("&)"'già Naturalistica via San Simone, 5 - 40126 BOLOGNA Telefono (051) 22.03.44 e 22.25.62 - Fax (051) 23.35.67 (h: 0-24) Orario : 10/19 (su appuntamento) - P.IVA 04117040370 email: [email protected] - Web: http://www.libnat.it PRINCIPALI ABBREVIAZIONI USATE A. Autore es. esemplare perg. pergamena AA.VV. Autori vari estr. (vedi sotto) estratto post. posteriore acc. acciaio f. fuori pp. pagine anast. anastatica ÀJ ÀJXUDH p.pag. piena pagina ant. anteriore fot. IRWRJUDÀH pref. prefazione antip. antiporta front. frontespizio ril. rilegato/ura autog. autografo/a f.t. fuori testo risg. risguardo/i gr. grande b. bianca/che ritr. ritratto bal. balacron ibid. ibidem. br. brossura id. idem riv. riveduto brunit. bruniture ill. illustrazione/i s.cop. senza copertina c.a circa impress. impressione/i s.d. senza data (di stampa) cat. catalogo inc. incisione/i s.l. senza luogo (di stampa) cart. cartonato/a inf. inferiore sovr. sovracoperta cc. carte leg. legatura str. stretto cicl. ciclostilato lit. OLWRJUDÀDFD sx. sinistra cof. cofanetto m. mezza t. tutto/a/i/e col. colore/i/ato/ate mod. moderno/a tass. tassello/i cop. copertina/e nn. non numerate tav. tavola/e cromolit FURPROLWRJUDÀDFR n.t. nel testo test. testatina/e num. numerose/i dis. disegno/i tip. WLSRJUDÀFDR dor. dorato/e/i num.me numerosissime dx. destra orig. originale tit. titolo edit. editoriale p. piena t.tela tutta tela ediz. edizione p. a r. prezzo a richiesta vol. volume ep. epoca perc. percallino, percalle xil. [LORJUDÀDHFRFKHFL Folio oltre 38 cm.
    [Show full text]
  • First International Conference on Mars Polar Science and Exploration
    FIRST INTERNATIONAL CONFERENCE ON MARS POLAR SCIENCE AND EXPLORATION Held at The Episcopal Conference Center at Carnp Allen, Texas Sponsored by Geological Survey of Canada International Glaciological Society Lunar and Planetary Institute National Aeronautics and Space Administration Organizers Stephen Clifford, Lunar and Planetary Institute David Fisher, Geological Survey of Canada James Rice, NASA Ames Research Center LPI Contribution No. 953 Compiled in 1998 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (1998) Title of abstract. In First International Conference on Mars Polar Science and Exploration, p. xx. LPI Contribution No. 953, Lunar and Planetary Institute, Houston. This report is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1 113 Mail order requestors will be invoiced for the cost of shipping and handling. LPI Contribution No. 953 iii Preface This volume contains abstracts that have been accepted for presentation at the First International Conference on Mars Polar Science and Exploration, October 18-22? 1998. The Scientific Organizing Committee consisted of Terrestrial Members E. Blake (Icefield Instruments), G. Clow (U.S. Geologi- cal Survey, Denver), D. Dahl-Jensen (University of Copenhagen), K. Kuivinen (University of Nebraska), J.
    [Show full text]
  • Calcium Isotopes in Natural and Experimental Carbonated Silicate Melts
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 2-27-2018 2:30 PM Calcium Isotopes in Natural and Experimental Carbonated Silicate Melts Matthew Maloney The University of Western Ontario Supervisor Bouvier, Audrey The University of Western Ontario Co-Supervisor Withers, Tony The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Matthew Maloney 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geochemistry Commons Recommended Citation Maloney, Matthew, "Calcium Isotopes in Natural and Experimental Carbonated Silicate Melts" (2018). Electronic Thesis and Dissertation Repository. 5256. https://ir.lib.uwo.ca/etd/5256 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract The calcium stable isotopic compositions of mantle-sourced rocks and minerals were investigated to better understand the carbon cycle in the Earth’s mantle. Bulk carbonatites and kimberlites were analyzed to identify a geochemical signature of carbonatite magmatism, while inter-mineral fractionation was measured in co-existing Ca-bearing carbonate and silicate minerals. Bulk samples show a range of composition deviating from the bulk silicate Earth δ44/40Ca composition indicating signatures of magmatic processes or marine carbonate addition 44/40 to source materials. Δ Cacarbonate-silicate values range from -0.55‰ to +1.82‰ and positively correlate with Ca/Mg ratios in pyroxenes.
    [Show full text]
  • Flynn Creek Crater, Tennessee: Final Report, by David J
    1967010060 ASTROGEOLOGIC STUDIES / ANNUAL PROGRESS REPORT " July 1, 1965 to July 1, 1966 ° 'i t PART B - h . CRATERINVESTIGATIONS N 67_1_389 N 57-" .]9400 (ACCEC_ION [4U _" EiER! (THRU} .2_ / PP (PAGLS) (CO_ w ) _5 (NASA GR OR I"MX OR AD NUMBER) (_ATEGORY) DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOQICAL SURVEY • iri i i i i iiii i i 1967010060-002 ASTROGEOLOGIC STUDIES ANNUAL PROGRESS REPORT July i, 1965 to July I, 1966 PART B: CRATER INVESTIGATIONS November 1966 This preliminary report is distributed without editorial and technical review for conformity with official standards and nomenclature. It should not be quoted without permission. This report concerns work done on behalf of the National Aeronautics and Space Administration. DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY 1967010060-003 • #' C OING PAGE ,BLANK NO/" FILMED. CONTENTS PART B--CRATER INVESTIGATIONS Page Introduction ........................ vii History and origin of the Flynn Creek crater, Tennessee: final report, by David J. Roddy .............. 1 Introductien ..................... 1 Geologic history of the Flynn Creek crater ....... 5 Origin of the Flynn Creek crater ............ ii Conc lusions ...................... 32 References cited .................... 35 Geology of the Sierra Madera structure, Texas: progress report, by H. G. Wilshire ............ 41_ Introduction ...................... 41 Stratigraphy ...................... 41 Petrography and chemical composition .......... 49 S truc ture ....................... 62 References cited ............. ...... 69 Some aspects of the Manicouagan Lake structure in Quebec, Canada, by Stephen H. Wolfe ................ 71 f Craters produced by missile impacts, by H. J. Moore ..... 79 Introduction ...................... 79 Experimental procedure ................. 80 Experimental results .................. 81 Summary ........................ 103 References cited .................... 103 Hypervelocity impact craters in pumice, by H. J. Moore and / F.
    [Show full text]
  • Asteroid Regolith Weathering: a Large-Scale Observational Investigation
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved.
    [Show full text]
  • DISTRIBUTION of PULTUSK METEORITE FRAGMENTS. T. Brachaniec1 and J. W. Kosiński2, 1University of Silesia; Faculty of Earth Science; Bedzinska Str
    45th Lunar and Planetary Science Conference (2014) 1067.pdf DISTRIBUTION OF PULTUSK METEORITE FRAGMENTS. T. Brachaniec1 and J. W. Kosiński2, 1University of Silesia; Faculty of Earth Science; Bedzinska str. 60, 41-200 Sosnowiec; email: [email protected], 2Comet and Meteor Workshop - Meteorites Section, Warsaw; email: [email protected]. Pultusk meteorite, which is classified as a brec- Modern research of literature and field working ciated H5 chondrite [1] fell at 30th of January 1868 in (Fig. 1) clearly show that the map created by Sam- Central Poland. The bolide was witnessed over a huge sonowicz is only a approximate picture of the distribu- part of Europe, from cities in Hungary and Austria in tion of Pultusk meteorites. The result of a field search- the south, to Gdańsk (Poland), Russia, in the north, ing is an observation that in a small area occur small and big specimens. Author has been claimed that in and from Berlin (Germany), in the west to Grodno the central part of the ellipse should be found speci- (Belarus), in the east. The shock from the bolide re- mens from 0.2 to 2 kg, however, in this area occur portedly collapsed structures in Warsaw, 60 km south small meteorites, weighing a few grams, called “Pul- of where it impacted. Within a few days of the fall, tusk peas”. There are many indications that Sam- about 400 pieces of the meteorite were collected. sonowicz also overestimated the amount of fallen me- After 80 years after the fall Samsonowicz as first teorites [3][4]. published his field working results [2].
    [Show full text]
  • Handbook of Iron Meteorites, Volume 3
    1350 Yenberrie - York (Iron) Specimens in the U.S. National Museum in Washington: 3.54 kg on three slices (no. 607) 290 g part slice (no. 1626) York (Iron), Nebraska, U.S.A. Approximately 40°52'N, 97°35'W; 500 m Medium octahedrite, Om. Bandwidth 1.00±0.15 mm. E-structure. HV 305 ±15 . Probably group III A. About 7.7% Ni and 0.12% P. HISTORY A mass of 835 g was found in 1878 on the farm of ~ - . Robert M. Lytle, near York in York County. The mass was Figure 2007. Yenberric (U.S.N.M. no. 607). Taenite with cloudy plowed up from a edges and martensitic interior in which cloudy patches occasionally depth of 20 em in virgin, black loamy occur. Part of the explanation may be sought in the taenite lamella prairie soil. It was in the fmder's possession until 1895 being parallel to the plane of section. Etched. Scale bar 200 J.L. See when it was acquired by Barbour (1898) who described it also Figures 109 and 119. and gave figures of the exterior and of etched slices. COLLECfiONS \ New York (701 g), Washington (30 g). \ ANALYSES Kunz reported (in Barbour 1898) 7.38% Ni and 0 .74% Co. The sum appears correct, but the present author would expect that some of the nickel has been included with the cobalt. The meteorite is estimated to have the following composition: 7 .7±0.2% Ni, 0.50% Co, 0.12±0.02% P, with trace elements placing it in the chemical group IliA.
    [Show full text]
  • James Hutton's Reputation Among Geologists in the Late Eighteenth and Nineteenth Centuries
    The Geological Society of America Memoir 216 Revising the Revisions: James Hutton’s Reputation among Geologists in the Late Eighteenth and Nineteenth Centuries A. M. Celâl Şengör* İTÜ Avrasya Yerbilimleri Enstitüsü ve Maden Fakültesi, Jeoloji Bölümü, Ayazağa 34469 İstanbul, Turkey ABSTRACT A recent fad in the historiography of geology is to consider the Scottish polymath James Hutton’s Theory of the Earth the last of the “theories of the earth” genre of publications that had begun developing in the seventeenth century and to regard it as something behind the times already in the late eighteenth century and which was subsequently remembered only because some later geologists, particularly Hutton’s countryman Sir Archibald Geikie, found it convenient to represent it as a precursor of the prevailing opinions of the day. By contrast, the available documentation, pub- lished and unpublished, shows that Hutton’s theory was considered as something completely new by his contemporaries, very different from anything that preceded it, whether they agreed with him or not, and that it was widely discussed both in his own country and abroad—from St. Petersburg through Europe to New York. By the end of the third decade in the nineteenth century, many very respectable geologists began seeing in him “the father of modern geology” even before Sir Archibald was born (in 1835). Before long, even popular books on geology and general encyclopedias began spreading the same conviction. A review of the geological literature of the late eighteenth and the nineteenth centuries shows that Hutton was not only remembered, but his ideas were in fact considered part of the current science and discussed accord- ingly.
    [Show full text]