Disequilibrium Melting and Melt Migration Driven by Impacts: Implications for Rapid Planetesimal Core Formation

Total Page:16

File Type:pdf, Size:1020Kb

Disequilibrium Melting and Melt Migration Driven by Impacts: Implications for Rapid Planetesimal Core Formation Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 100 (2013) 41–59 www.elsevier.com/locate/gca Disequilibrium melting and melt migration driven by impacts: Implications for rapid planetesimal core formation Andrew G. Tomkins ⇑, Roberto F. Weinberg, Bruce F. Schaefer 1, Andrew Langendam School of Geosciences, P.O. Box 28E, Monash University, Melbourne, Victoria 3800, Australia Received 20 January 2012; accepted in revised form 24 September 2012; available online 12 October 2012 Abstract The e182W ages of magmatic iron meteorites are largely within error of the oldest solar system particles, apparently requir- ing a mechanism for segregation of metals to the cores of planetesimals within 1.5 million years of initial condensation. Cur- rently favoured models involve equilibrium melting and gravitational segregation in a static, quiescent environment, which requires very high early heat production in small bodies via decay of short-lived radionuclides. However, the rapid accretion needed to do this implies a violent early accretionary history, raising the question of whether attainment of equilibrium is a valid assumption. Since our use of the Hf–W isotopic system is predicated on achievement of chemical equilibrium during core formation, our understanding of the timing of this key early solar system process is dependent on our knowledge of the seg- regation mechanism. Here, we investigate impact-related textures and microstructures in chondritic meteorites, and show that impact-generated deformation promoted separation of liquid FeNi into enlarged sulfide-depleted accumulations, and that this happened under conditions of thermochemical disequilibrium. These observations imply that similar enlarged metal accumu- lations developed as the earliest planetesimals grew by rapid collisional accretion. We suggest that the nonmagmatic iron mete- orites formed this way and explain why they contain chondritic fragments in a way that is consistent with their trace element characteristics. As some planetesimals grew large enough to develop partially molten silicate mantles, these enlarged metal accumulations would settle rapidly to form cores leaving sulfide and small metal particles behind, since gravitational settling rate scales with the square of metal particle size. Our model thus provides a mechanism for more rapid core formation with less radiogenic heating. In contrast to existing models of core formation, the observed rarity of sulfide-dominant meteorites is an expected consequence of our model, which promotes early and progressive separation of metal and sulfide. We suggest that the core formation models that assume attainment of equilibrium in the Hf–W system underestimate the core formation time. Ó 2012 Elsevier Ltd. All rights reserved. 1. INTRODUCTION tem particles (Bizzaro et al., 2005; Carlson and Boyet, 2009; Kleine et al., 2009; Kruijer et al., 2012). However, these ages Magmatic iron meteorites are thought to represent the assume that cores formed by equilibrium fractionation of cores of planetesimals (Wasson and Richardson, 2001; Cha- metal from silicate, which is problematic given the implied bot and Haack, 2006; Schersten et al., 2006). Their tungsten rapidity of core formation. In the more widely accepted core isotope signatures have been interpreted as indicating that formation models, immiscible globules of Fe–Ni–S melt cores formed within 1.5 million years of the oldest solar sys- either settled through a partially molten silicate mantle (cf. Stevenson, 1990; McCoy et al., 2006; Wood et al., 2006; Sahijpal et al., 2007; Bagdassarov et al., 2009), or migrated ⇑ Corresponding author. Tel.: +61 3 99051643; fax: +61 3 through percolative flow (Yoshino et al., 2003, 2004; 99054903. Roberts et al., 2007), allowing equilibrium partitioning of E-mail address: [email protected] (A.G. Tomkins). siderophile and lithophile elements. A third model suggests 1 Present address: GEMOC, Earth and Planetary Sciences, that impacts may have played a role in driving melt Macquarie University, NSW 2109, Australia. 0016-7037/$ - see front matter Ó 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.gca.2012.09.044 42 A.G. Tomkins et al. / Geochimica et Cosmochimica Acta 100 (2013) 41–59 migration (Bruhn et al., 2000; Rushmer et al., 2005), which formed before the OC parent bodies. This principle allows could happen on a comparatively rapid timescale and may us to investigate how impacts in the earliest solar system not require a silicate magma ocean, or complete equilibra- might have influenced the process of core formation, and tion between metal and silicate. Incomplete equilibration be- generate insights into the consequences for the global-scale tween segregating metal and silicate would result in mantle geochemistry of planetesimals and ultimately, planets. excess of 182W, and thus the ages derived from isotopic anal- ysis of iron meteorites would underestimate the core forma- 2. OBSERVED FEATURES OF IMPACT-INDUCED tion time (Nimmo and Agnor, 2006). Thus understanding MELTING AND METAL/SULFIDE MELT whether planetesimal cores formed by an equilibrium, or MIGRATION partial disequilibrium, process is critical to our understand- ing of the temporal evolution of the early solar system. The dominant majority of OC meteorites have been af- Here, we investigate processes that controlled formation fected by shock caused by hypervelocity collisions on their of enlarged metal accumulations within ordinary chondrite parent bodies. A well-accepted petrographic classification (OC) meteorites. The parent bodies for these meteorites are scheme (Stoffler et al., 1991) has been used by scientists to thought to have formed approximately 2–3 million years. divide numerous OC meteorites into six classes reflecting after CAIs (e.g., see Harrison and Grimm, 2010). Thermal increasing intensity of shock from S1 to S6. In this section, metamorphism in the early solar system is thought to have an overview of melt-bearing features attributed to impact been dominantly caused by radiogenic heating through de- processes is provided, progressing from micro- to macro- cay of 26Al and 60Fe (e.g., Moskovitz and Gaidos, 2011), scale, highlighting key aspects that will facilitate discussion and since the half lives of these isotopes are only 0.717 on drivers of melt segregation and associated disequilib- and 1.5 million years respectively, the OC meteorites es- rium in subsequent sections. caped the most intense period of radiogenic heating. Although radiogenic metamorphism generated tempera- 2.1. Isolated melt pockets tures that may have significantly exceeded 900 °C near the cores of the OC parent bodies (e.g., Harrison and Grimm, Initial signs of shock-induced melting are recognised in 2010), they are thought to have escaped widespread metal– moderately impact-affected meteorites that have character- troilite melting (Slater-Reynolds and McSween, 2005), and istics of shock Stages S3 and S4. In these meteorites, iso- this is certainly true for less metamorphosed petrologic lated melt pockets preferentially occur at interfaces types (types 3–5). The OC meteorites thus preserve the ef- between high density metal or troilite, and low density sili- fects of impacts on metal–sulfide–silicate assemblages, with- cate phases, particularly plagioclase (Dodd and Jarosewich, out having been overprinted by melting associated with 1979; Stoffler et al., 1991). At low degrees of shock, melt radiogenic metamorphism, and are consequently our best pockets are not interconnected at scales exceeding 2 mm. record of these processes. These melt pockets are recognised as irregularly shaped do- In OC meteorites, many researchers have observed sili- mains containing variable proportions of either (1) glass- cate glasses in veins and breccias, which formed through like silicate material (cf. Stoffler et al., 1991; henceforth re- localised impact heating during collisions between asteroids ferred to as silicate glass) with spherical metal-only, metal– (Stoffler et al., 1991). Encapsulated within these silicate troilite or troilite-only inclusions (Fig. 1A), or (2) metal glasses are typically numerous micro- to nano-scale spheri- and/or troilite with numerous spherical inclusions of silicate cal balls of FeNi metal and/or troilite (FeS), indicating that glass (Fig. 1B). These represent two different liquid emul- these components were also melted during impacts and then sions with distinct physical properties. To describe the com- trapped as immiscible melt globules in the silicate melt. Mi- position of these emulsions we will refer to them, for cro-scale metal ± troilite veinlets have also been observed in example, as metal-dominated emulsions, meaning immisci- these meteorites, and it is generally accepted that they repre- ble silicate melt globules contained within metal melt, or sil- sent trapped metal and/or troilite melt (Stoffler et al., 1991). icate-dominated emulsions, meaning the opposite. Rare OC meteorites contain significantly thicker (mm- to The impact heating process responsible for this incipient cm-scale) metal-dominated veins, or metal-cemented brec- melting was typically tightly spatially focused such that cias (Rubin et al., 2001; Ruzicka et al., 2005). This metal even in conjoined metal–troilite grains, the dense phase in- enrichment is thought to be the result of migration of immis- volved in melting was either (1) FeNi metal only (Fig. 1A cible metal ± sulfide melts generated by impact heating (Ru- and B), (2) troilite only (Fig. 1C), or (3) both
Recommended publications
  • Meteorologia
    MINISTÉRIO DA DEFESA COMANDO DA AERONÁUTICA METEOROLOGIA ICA 105-1 DIVULGAÇÃO DE INFORMAÇÕES METEOROLÓGICAS 2006 MINISTÉRIO DA DEFESA COMANDO DA AERONÁUTICA DEPARTAMENTO DE CONTROLE DO ESPAÇO AÉREO METEOROLOGIA ICA 105-1 DIVULGAÇÃO DE INFORMAÇÕES METEOROLÓGICAS 2006 MINISTÉRIO DA DEFESA COMANDO DA AERONÁUTICA DEPARTAMENTO DE CONTROLE DO ESPAÇO AÉREO PORTARIA DECEA N° 15/SDOP, DE 25 DE JULHO DE 2006. Aprova a reedição da Instrução sobre Divulgação de Informações Meteorológicas. O CHEFE DO SUBDEPARTAMENTO DE OPERAÇÕES DO DEPARTAMENTO DE CONTROLE DO ESPAÇO AÉREO, no uso das atribuições que lhe confere o Artigo 1°, inciso IV, da Portaria DECEA n°136-T/DGCEA, de 28 de novembro de 2005, RESOLVE: Art. 1o Aprovar a reedição da ICA 105-1 “Divulgação de Informações Meteorológicas”, que com esta baixa. Art. 2o Esta Instrução entra em vigor em 1º de setembro de 2006. Art. 3o Revoga-se a Portaria DECEA nº 131/SDOP, de 1º de julho de 2003, publicada no Boletim Interno do DECEA nº 124, de 08 de julho de 2003. (a) Brig Ar RICARDO DA SILVA SERVAN Chefe do Subdepartamento de Operações do DECEA (Publicada no BCA nº 146, de 07 de agosto de 2006) MINISTÉRIO DA DEFESA COMANDO DA AERONÁUTICA DEPARTAMENTO DE CONTROLE DO ESPAÇO AÉREO PORTARIA DECEA N° 33 /SDOP, DE 13 DE SETEMBRO DE 2007. Aprova a edição da emenda à Instrução sobre Divulgação de Informações Meteorológicas. O CHEFE DO SUBDEPARTAMENTO DE OPERAÇÕES DO DEPARTAMENTO DE CONTROLE DO ESPAÇO AÉREO, no uso das atribuições que lhe confere o Artigo 1°, alínea g, da Portaria DECEA n°34-T/DGCEA, de 15 de março de 2007, RESOLVE: Art.
    [Show full text]
  • Lost Lake by Robert Verish
    Meteorite-Times Magazine Contents by Editor Like Sign Up to see what your friends like. Featured Monthly Articles Accretion Desk by Martin Horejsi Jim’s Fragments by Jim Tobin Meteorite Market Trends by Michael Blood Bob’s Findings by Robert Verish IMCA Insights by The IMCA Team Micro Visions by John Kashuba Galactic Lore by Mike Gilmer Meteorite Calendar by Anne Black Meteorite of the Month by Michael Johnson Tektite of the Month by Editor Terms Of Use Materials contained in and linked to from this website do not necessarily reflect the views or opinions of The Meteorite Exchange, Inc., nor those of any person connected therewith. In no event shall The Meteorite Exchange, Inc. be responsible for, nor liable for, exposure to any such material in any form by any person or persons, whether written, graphic, audio or otherwise, presented on this or by any other website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. does not endorse, edit nor hold any copyright interest in any material found on any website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. shall not be held liable for any misinformation by any author, dealer and or seller. In no event will The Meteorite Exchange, Inc. be liable for any damages, including any loss of profits, lost savings, or any other commercial damage, including but not limited to special, consequential, or other damages arising out of this service. © Copyright 2002–2010 The Meteorite Exchange, Inc. All rights reserved. No reproduction of copyrighted material is allowed by any means without prior written permission of the copyright owner.
    [Show full text]
  • Bez Tytu³u-2
    BIULETYN MI£ONIKÓW METEORYTÓW METEORYT Nr 1 (25) Marzec 1998 W numerze: Jawor, Baszkówka, Mt Tazerzait, ¯elazo Pallasa Meteoryt Sikhote-Alin (105 g) bêd¹cy w³asnoci¹ miasta Lidzbarka Warmiñskiego. METEORYT 1/98 1 Od redaktora: Meteoryt biuletyn dla mi³o- ników meteorytów wydawany Wydarzeniem numeru jest rozwi¹zanie zagadki meteorytu przez Olsztyñskie Planetarium Jawor. Cudzys³ów podpowiada ju¿, ¿e wynik jest negatywny. Wro- i Obserwatorium Astronomicz- c³awscy naukowcy potrafili jednak dociec, czym jest kawa³ek ska³y ne, Muzeum Miko³aja Koper- le¿¹cy w muzeum w Jaworze z etykietk¹ meteoryt? i sk¹d do nika we Fromborku i Pallasite muzeum trafi³. Meteoryt czuje siê zaszczycony, ¿e to z jego ³amów Press wydawcê kwartalnika mo¿na siê o tym po raz pierwszy dowiedzieæ. Pe³ne opracowanie Meteorite! z którego pochodzi uka¿e siê w jednym z bardziej fachowych czasopism. wiêksza czêæ publikowanych Z nowym rokiem i z 25 numerem Meteoryt znów zmienia materia³ów. wygl¹d, co tradycyjnie jest zas³ug¹ Jacka Dr¹¿kowskiego. Z przy- Redaguje Andrzej S. Pilski jemnoci¹ odnotowujê te¿ powrót Micha³a Kosmulskiego do t³uma- czenia artyku³ów, oraz do³¹czenie siê Marka Muæka do grona t³uma- Sk³ad: Jacek Dr¹¿kowski czy i wspó³pracowników. Ronie te¿ grono czytelników, czyli nowy Druk: Jan, Lidzbark Warm. rok dobrze siê zapowiada. Adres redakcji: Dobrze zapowiada siê te¿ pozyskiwanie meteorytów dla kolekcjo- skr. poczt. 6, nerów, ale idzie to bardzo powoli. W kontaktach z zagranicznymi 14-530 Frombork, dealerami wystêpuje zjawisko znane naszym kolekcjonerom z kontak- tel. 0-55-243-7392. tów z ni¿ej podpisanym: wysy³a siê zamówienie i..
    [Show full text]
  • Ron Hartman and the Lucerne Valley Meteorites by Robert Verish Ron Hartman and the Lucerne Valley Meteorites
    Meteorite Times Magazine Contents by Editor Featured Monthly Articles Accretion Desk by Martin Horejsi Jim's Fragments by Jim Tobin Meteorite Market Trends by Michael Blood Bob's Findings by Robert Verish IMCA Insights by The IMCA Team Micro Visions by John Kashuba Meteorite Calendar by Anne Black Meteorite of the Month by Editor Tektite of the Month by Editor Terms Of Use Materials contained in and linked to from this website do not necessarily reflect the views or opinions of The Meteorite Exchange, Inc., nor those of any person connected therewith. In no event shall The Meteorite Exchange, Inc. be responsible for, nor liable for, exposure to any such material in any form by any person or persons, whether written, graphic, audio or otherwise, presented on this or by any other website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. does not endorse, edit nor hold any copyright interest in any material found on any website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. shall not be held liable for any misinformation by any author, dealer and or seller. In no event will The Meteorite Exchange, Inc. be liable for any damages, including any loss of profits, lost savings, or any other commercial damage, including but not limited to special, consequential, or other damages arising out of this service. © Copyright 2002–2011 The Meteorite Exchange, Inc. All rights reserved. No reproduction of copyrighted material is allowed by any means without prior written permission of the copyright owner.
    [Show full text]
  • The Mineralogical Magazine Journal
    THE MINERALOGICAL MAGAZINE AND JOURNAL OF THE MINERALOGICAL SOCIETY. 1~o. 40. OCTOBER 1889. Vol. VIII. On the Meteorites which have been found iu the Desert of Atacama and its neighbourhood. By L. FLETCHER, M.A., F.R.S., Keeper of Minerals in the British Museum. (With a Map of the District, Plate X.) [Read March 12th and May 7th, ]889.J 1. THE immediate object of the present paper is to place on record J- the history and characters of several Atacama meteorites of which no description has yet been published; but incidentally it is con- venient at the same time to consider the relationship of these masses to others from the same region, which either have been already described, or at least are stated to be preserved in one or more of the known Meteo. rite-Collections. 2. The term " Desert of Atacama " is generally applied to that part of western South America which lies between the towns of Copiapo and Cobija, about 330 miles distant from each other, and which extends island as far as the Indian hamlet of Antofagasta, about 180 miles from 224 L. FLETCHER ON THE METEORITES OF ATACAMA. the coast. The Atacama meteorites preserved in the Collections have been found at several places widely separated throughout the Desert. 3. A critical examination of the descriptive literature, and a compari- son of the manuscript and printed meteorite-lists, which have been placed at my service, lead to the conclusion that all the meteoritic frag- ments from Atacama now preserved in the known Collections belong to one or other of at most thirteen meteorites, which, for reasons given below, are referred to in this paper under the following names :-- 1.
    [Show full text]
  • The Weston Meteorite (1807) – Impact Sites in Fairfield County, Connecticut
    Lunar and Planetary Science XXXIX (2008) 2163.pdf THE WESTON METEORITE (1807) – IMPACT SITES IN FAIRFIELD COUNTY, CONNECTICUT. D. T. King, Jr.1 and L. W. Petruny2, 1Geology Office, Auburn University, Auburn, AL 36849 [[email protected]], 2Astra-Terra Research, Auburn, AL 36831-3323 [[email protected]]. Introduction: Ernst Chladni’s 1794 book laying within the town of Weston as constituted in 1807, out the arguments that meteorites came from outer hence the name). This primary site is located about space, not volcanoes or storm clouds, marks the theo- 500 m north of a road intersection at the historic 1715 retical origin of the modern science of meteoritics. Burton House. The largest fragment (~ 16 kg) was Criticisms of Chladni’s assertions began to fall away excavated from a shallow (~ 60 cm) pit at this site. At after the witnessed and well-documented meteoritic that time, the property owner was William Prince [3]. falls at Wold Cottage, Yorkshire, England (1795), and This area is today in a heavily wooded, upscale hous- l’Aigle, Normandy, France (1803). On December 14, ing subdivision with a vigilant neighborhood watch. 1807, a widely witnessed meteorite fall over Weston, Fairfield County, Connecticut, brought the new sci- ence of meteoritics to the United States. Recovered, documented, and chemically analyzed by Yale Univer- sity professors Benjamin Silliman and James Kingsley, the Weston meteorite became the first such scientifi- cally verified meteorite fall in the New World. Frag- ments collected by Silliman and Kingsley were the first catalogued objects in the Yale meteorite collec- tion, the oldest such collection in the United States.
    [Show full text]
  • Handbook of Iron Meteorites, Volume 3
    1350 Yenberrie - York (Iron) Specimens in the U.S. National Museum in Washington: 3.54 kg on three slices (no. 607) 290 g part slice (no. 1626) York (Iron), Nebraska, U.S.A. Approximately 40°52'N, 97°35'W; 500 m Medium octahedrite, Om. Bandwidth 1.00±0.15 mm. E-structure. HV 305 ±15 . Probably group III A. About 7.7% Ni and 0.12% P. HISTORY A mass of 835 g was found in 1878 on the farm of ~ - . Robert M. Lytle, near York in York County. The mass was Figure 2007. Yenberric (U.S.N.M. no. 607). Taenite with cloudy plowed up from a edges and martensitic interior in which cloudy patches occasionally depth of 20 em in virgin, black loamy occur. Part of the explanation may be sought in the taenite lamella prairie soil. It was in the fmder's possession until 1895 being parallel to the plane of section. Etched. Scale bar 200 J.L. See when it was acquired by Barbour (1898) who described it also Figures 109 and 119. and gave figures of the exterior and of etched slices. COLLECfiONS \ New York (701 g), Washington (30 g). \ ANALYSES Kunz reported (in Barbour 1898) 7.38% Ni and 0 .74% Co. The sum appears correct, but the present author would expect that some of the nickel has been included with the cobalt. The meteorite is estimated to have the following composition: 7 .7±0.2% Ni, 0.50% Co, 0.12±0.02% P, with trace elements placing it in the chemical group IliA.
    [Show full text]
  • Geological Survey Research 1961 Synopsis of Geologic and Hydrologic Results
    Geological Survey Research 1961 Synopsis of Geologic and Hydrologic Results GEOLOGICAL SURVEY PROFESSIONAL PAPER 424-A Geological Survey Research 1961 THOMAS B. NOLAN, Director GEOLOGICAL SURVEY PROFESSIONAL PAPER 424 A synopsis ofgeologic and hydrologic results, accompanied by short papers in the geologic and hydrologic sciences. Published separately as chapters A, B, C, and D UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1961 FOEEWOED The Geological Survey is engaged in many different kinds of investigations in the fields of geology and hydrology. These investigations may be grouped into several broad, inter­ related categories as follows: (a) Economic geology, including engineering geology (b) Eegional geologic mapping, including detailed mapping and stratigraphic studies (c) Eesource and topical studies (d) Ground-water studies (e) Surface-water studies (f) Quality-of-water studies (g) Field and laboratory research on geologic and hydrologic processes and principles. The Geological Survey also carries on investigations in its fields of competence for other Fed­ eral agencies that do not have the required specialized staffs or scientific facilities. Nearly all the Geological Survey's activities yield new data and principles of value in the development or application of the geologic and hydrologic sciences. The purpose of this report, which consists of 4 chapters, is to present as promptly as possible findings that have come to the fore during the fiscal year 1961 the 12 months ending June 30, 1961. The present volume, chapter A, is a synopsis of the highlights of recent findings of scientific and economic interest. Some of these findings have been published or placed on open file during the year; some are presented in chapters B, C, and D ; still others have not been pub­ lished previously.
    [Show full text]
  • The Tennessee Meteorite Impact Sites and Changing Perspectives on Impact Cratering
    UNIVERSITY OF SOUTHERN QUEENSLAND THE TENNESSEE METEORITE IMPACT SITES AND CHANGING PERSPECTIVES ON IMPACT CRATERING A dissertation submitted by Janaruth Harling Ford B.A. Cum Laude (Vanderbilt University), M. Astron. (University of Western Sydney) For the award of Doctor of Philosophy 2015 ABSTRACT Terrestrial impact structures offer astronomers and geologists opportunities to study the impact cratering process. Tennessee has four structures of interest. Information gained over the last century and a half concerning these sites is scattered throughout astronomical, geological and other specialized scientific journals, books, and literature, some of which are elusive. Gathering and compiling this widely- spread information into one historical document benefits the scientific community in general. The Wells Creek Structure is a proven impact site, and has been referred to as the ‘syntype’ cryptoexplosion structure for the United State. It was the first impact structure in the United States in which shatter cones were identified and was probably the subject of the first detailed geological report on a cryptoexplosive structure in the United States. The Wells Creek Structure displays bilateral symmetry, and three smaller ‘craters’ lie to the north of the main Wells Creek structure along its axis of symmetry. The question remains as to whether or not these structures have a common origin with the Wells Creek structure. The Flynn Creek Structure, another proven impact site, was first mentioned as a site of disturbance in Safford’s 1869 report on the geology of Tennessee. It has been noted as the terrestrial feature that bears the closest resemblance to a typical lunar crater, even though it is the probable result of a shallow marine impact.
    [Show full text]
  • Meteorite Collections: Sample List
    Meteorite Collections: Sample List Institute of Meteoritics Department of Earth and Planetary Sciences University of New Mexico October 01, 2021 Institute of Meteoritics Meteorite Collection The IOM meteorite collection includes samples from approximately 600 different meteorites, representative of most meteorite types. The last printed copy of the collection's Catalog was published in 1990. We will no longer publish a printed catalog, but instead have produced this web-based Online Catalog, which presents the current catalog in searchable and downloadable forms. The database will be updated periodically. The date on the front page of this version of the catalog is the date that it was downloaded from the worldwide web. The catalog website is: Although we have made every effort to avoid inaccuracies, the database may still contain errors. Please contact the collection's Curator, Dr. Rhian Jones, ([email protected]) if you have any questions or comments. Cover photos: Top left: Thin section photomicrograph of the martian shergottite, Zagami (crossed nicols). Brightly colored crystals are pyroxene; black material is maskelynite (a form of plagioclase feldspar that has been rendered amorphous by high shock pressures). Photo is 1.5 mm across. (Photo by R. Jones.) Top right: The Pasamonte, New Mexico, eucrite (basalt). This individual stone is covered with shiny black fusion crust that formed as the stone fell through the earth's atmosphere. Photo is 8 cm across. (Photo by K. Nicols.) Bottom left: The Dora, New Mexico, pallasite. Orange crystals of olivine are set in a matrix of iron, nickel metal. Photo is 10 cm across. (Photo by K.
    [Show full text]
  • W Numerze: – Wspominanie R. Nortona – Po¿Egnanie G
    KWARTALNIK MI£OŒNIKÓW METEORYTÓW METEORYTMETEORYT Nr 4 (72) Grudzieñ 2009 ISSN 1642-588X Gujba W numerze: – wspominanie R. Nortona – po¿egnanie G. Kurata i Ch. Angera – intryguj¹ce ciemne inkluzje – jeszcze o meteorycie Lixna – skandal wokó³ ALH 84001 – 40 rocznica lotu Apollo 11 Od redaktora: METEORYT Zgodnie z zapowiedzi¹, w ostatnim numerze Meteorite z roku 2009 znalaz³y kwartalnik dla mi³oœników siê wspomnienia o Richardzie Nortonie, które w ca³oœci przenios³em do tego meteorytów numeru. Przez wiele lat mogliœmy czytaæ artyku³y Richarda w Meteorycie, a znaj¹cy jêzyk angielski mogli tak¿e czytaæ jego znakomite ksi¹¿ki. Pozna³em Wydawca: Richarda, gdy zwróci³em uwagê na zaskakuj¹c¹ zbie¿noœæ naszych losów Olsztyñskie Planetarium zawodowych: obaj zaczêliœmy od planetarium, a potem zajêliœmy siê i Obserwatorium Astronomiczne meteorytami; tylko moje osi¹gniêcia s¹ skromniejsze. Poniewa¿ znajomoœæ Al. Pi³sudskiego 38 nasza zaczê³a siê w erze przed-emailowej, pozosta³a kolekcja piêknych listów 10-450 Olsztyn od Richarda na charakterystycznym, firmowym papierze. tel. (0-89) 533 4951 OpóŸnienie tego numeru i z³y los sprawi³y, ¿e niespodziewanie ¿egnamy nie tylko Richarda. Odszed³ Gero Kurat, d³ugoletni kustosz wiedeñskiej kolekcji [email protected] meteorytów, od którego przed laty otrzyma³em cenne informacje i zdjêcia konto: meteorytu Bia³ystok, a którego zas³ugi dla meteorytyki przypominaj¹ 88 1540 1072 2001 5000 3724 0002 wspó³pracownicy. ¯egnamy te¿ Christiana Angera, ogromnie lubianego BOŒ SA O/Olsztyn w meteorytowym œwiatku, który zas³yn¹³ tym, ¿e pierwszy meteoryt, jaki uda³o mu siê znaleŸæ samodzielnie, by³ jedynym okazem meteorytu Moravka, który Kwartalnik jest dostêpny g³ównie sta³ siê dostêpny dla prywatnych kolekcjonerów.
    [Show full text]
  • Elastic Properties of Iron Meteorites. Nikolay Dyaur1, Robert R. Stewart1, and Martin Cassidy1, 1University of Houston, Science
    51st Lunar and Planetary Science Conference (2020) 3063.pdf Elastic properties of iron meteorites. Nikolay Dyaur1, Robert R. Stewart1, and Martin Cassidy1, 1University of Houston, Science and Research Building 1, 3507 Cullen Boulevard, room 312, Houston, TX 77204, [email protected] Introduction: We investigate the elastic properties of a ture, in the iron meteorites indicates directionality in variety of iron meteorites using ultrasonic (0.5 MHz to 5 physical properties. So, we explored the possibility of MHz) laboratory measurements. Our meteorite samples elastic anisotropy. First, we estimated Vp- and Vs- include Campo de Cielo, Canyon Diablo, Gibeon, and anisotropy from the measured maximum and minimum Nantan. The densities of the meteorites range from 7.15 velocity for each sample. g/cc to 7.85 g/cc. P-wave velocities are from 5.58 km/s to 7.85 km/s, and S-wave velocities are from 2.61 km/s to 3.37 km/s. There is a direct relationship between P-wave velocity and density (approximately quadratic). We find evidence of anisotropy and S-wave splitting in the Gibe- on sample. These measurements may help inform studies related to planetary core properties, asteroid mining, and Earth protection. Iron meteorites are composed of Fe-Ni mixes with Fe content around 90%. The principal minerals are kamacite and taenite with some inclusions mainly repre- sented by troilite, graphite, diamond, gold, quartz, and some others. Iron meteorites are divided into groups based on their structure linked to Ni content: Hexahe- drites (4-6% of Ni), Octahedrites (6-14% of Ni) and Nickel-rich ataxites (>12% of Ni) [1].
    [Show full text]