ECE 4510/5530 Microcontroller Applications Chapter 1

Total Page:16

File Type:pdf, Size:1020Kb

ECE 4510/5530 Microcontroller Applications Chapter 1 ECE 4510/5530 Microcontroller Applications Chapter 1 Dr. Bradley J. Bazuin Associate Professor Department of Electrical and Computer Engineering College of Engineering and Applied Sciences Chapter 1 Overview • Basic Computer Concepts • Introduction to Microprocessor • Applications of Microprocessors • Introduction to Microcontroller • Applications of Microcontroller • Microprocessor vs Microcontroller • Processor, Memory, I/O ports and Peripheral modules and Software ECE 2 4510/5530 Modern Computers • They are everywhere and in just about everything. – Ubiquitous computing – Cloud computing • We are all users … – Some of us are knowledgeable users – Fewer understand basic “computer architecture” – Fewer yet are programmers – And a very few are designers, architecting and building the next generation. 3 Microcontroller vs. Microprocessor • From wikipedia: http://en.wikipedia.org/wiki/Microcontroller • Volume – About 55% of all CPUs sold in the world are 8-bit microcontrollers and microprocessors. According to Semico, over four billion 8-bit microcontrollers were sold in 2006.[http://www.semico.com] – A typical home in a developed country is likely to have only four general-purpose microprocessors but around three dozen microcontrollers. A typical mid-range automobile has as many as 30 or more microcontrollers. They can also be found in many electrical device such as washing machines, microwave ovens, and telephones. ECE 2510 This is old news … there are probably more! 4 Embedded Computers in Industry • The goal of general-purpose computers is to accommodate variety of the programs selected by user and execute them quickly. – To meet this goal, scientist/engineers have been developing powerful computing units, sophisticated memories, complex input outputs and efficient buses. • In 1970s automobile executive companies saw benefits of the computers in their cars. To make their cars reliable , safe and fuel efficient. – These applications do not need general purpose computers and demanded embedded computers. 5 Computers in Industry • The goal of general-purpose computers is to accommodate variety of the programs selected by user and execute them quickly. – To meet this goal, scientist/engineers have been developing powerful computing units, sophisticated memories, complex input outputs and efficient buses. • In 1970s automobile executive companies saw benefits of the computers in their cars. To make their cars reliable , safe and fuel efficient. – These and many more applications do not need general purpose computers and demanded embedded computers. ECE 6 4510/5530 Embedded Processors • The embedded processors contains all necessary parts including memory and I/O ports within a single chip. These computers run at much slower memory clock and have a smaller memory size. • Embedded computers can also be found in washing machine, microwave oven, camcorder, video cassette recorder, camera, cellular phone, and many other appliances. A family of embedded computers is based on the 68HC12 microcontroller. ECE 2510 7 Other Examples of Embedded System • Cell phone: making the phone call, accepting incoming call, accessing Internet, displaying • Home security system: sensing external temperature, smoke, humidity, and intruders; taking appropriate actions according to the detected events • Automobile: monitoring speed, gas level, temperature, distance, direction, and so on; controlling display, full injection, air bag deployment, cruising, and so on; giving warnings • Network router: responsible for message routing, congestion and traffic control, and so on ECE 8 4510/5530 Computers and embedded controllers • All general-purpose computers or microcontrollers contain four hardware modules: 1. Central processing unit (CPU) 2. Memory 3. Input/output (I/O) devices 4. Buses • CPU controls order of instruction execution, controls the access to the memory and I/O devices, performs arithmetic and logical operations, and handles interrupt services. • The CPU contains an arithmetic and logical unit (ALU), a control unit, internal registers (for temporary storage) ECE 9 4510/5530 The Computing Problem System or Application Requirements Operating Algorithm System and Data Mapping Structures Hardware Architcture Programming Binding High-Level (Compile, Application Languages Link, Load) Software Performance K. Hwang, Advanced Computer Architecture: Evaluation Parallelism, Scalability, Programmability, McGraw Hill, 1993. ISBM: 0-07-031622-8 ECE 10 4510/5530 Six layers for a computer system development Applications Programming Environment Machine Independent Languages Supported Communication Model Machine Dependent Addressing Space Hardware Architecture K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programmability, McGraw Hill, 1993. ISBM: 0-07-031622-8 ECE 11 4510/5530 The CPU • The CPU contains: Processor – arithmetic and logical unit Common Bus (address, data, & control) (ALU) Control Unit – control unit – internal registers (for Datapath temporary storage) Arithmetic Logic Unit Memory – Timer related components Output Program Data Input Units Units – Internal and external Registers Storage Storage connections (buses). Figure 1.1 Computer Organization ECE 12 4510/5530 The Processor • Registers – Contain digital values – Local data – Data memory addresses • Control Unit – Handles executing the program – Program counter (address of current instruction) – Instruction register (describes what is to be done) – Handle program flow (called branching when not linear) • Arithmetic Logic Unit – Arithmetic and logic operations on register or memory values ECE 2510 13 CPU Processing Rate • Speed of a CPU is based on: – The clock rate (speed in Hertz) – Format of an instruction (CPI: cycles per instruction) – Parallel nature of instruction execution (CPI <1) – Access time to its memory and I/O devices (Not likely, too slow) • A 3.2 GHz machine gives information about its clock speed which is a good indication of the machine speed but … it is equally important to consider other factors to measure overall performance of a computer: e.g. memory speed, I/O speed, how the software program was written, etc. ECE 2510 14 Memory • There are two types of information stored in memory: – Instructions, specifying types of operations a computer executes. • Such as: activities like accessing I/O, adding two numbers or logical operations – Data, the actual numerical values necessary to carry out instructions. • In adding two numbers the addition operation is an instruction and actual numbers being added are data. • Von Neumann memory architecture (1945): stores both instruction and data in a single memory. M68HC12 has this basic structure. • Harvard memory architecture: stores instruction and data in separate data memories. ECE 15 4510/5530 Memory Hierarchy • Registers are present in the CPU CPU • Cache is a type of memory designed to reduce memory latency Registers by reorganizing the memory. – Small memory component with fast access time is placed closer to CPU Cache PCs and large • 2nd level cache is larger than first computers layer cache and has faster access 2nd level cache time compare to main memory. • Main memory contains all data and programs. Main memory ECE 2510 16 Memory Types • Different types of memory are – RAM (Random Access Memory) • Allows processor to read from and write into any location on the memory chip • RAM is volatile and cannot retain data without power – ROM (Read Only Memory) • ROM is non volatile memory • ROM data can only be read. Does not allow to perform write operations on its memory locations – PROM (Programmable Read Only Memory) • Can be programmed using a PROM programmer or burner • Once programmed its contents cannot be changed. ECE 17 4510/5530 Memory Types (Cont.) • EPROM (Erasable Programmable Read Only Memory) – Read only memory that can be erased by exposing it to strong ultra violet rays – Requires to erase the contents of a location before writing a new value to it • EEPROM (Electrically Erasable Programmable ROM) – Non volatile memory that can be erased by electrical signals – Requires to erase the contents of a location before writing a new value to it – Allows each individual location to be erased and programmed •Flash Memory – Developed to overcome the drawbacks of EPROM and EEPROM – Can be erased and programmed without a dedicated programmer – Can be erased and programmed electrically – Does not provide the facility of erasing a single location but facilitates erasure of a block of memory or entire chip ECE 18 4510/5530 Buses and Peripheral Devices • Buses are physical connections or pathways among the CPU, memory and Peripheral (Inout/Output) devices. There are three types of buses: 1. The address buses, is used to identify the address location where data and instructions reside in memory . 2. The data buses is used to carry actual information between CPU, memory location and I/O devices. 3. The control buses, is for sending and receiving control command such as: CPU, memory, and I/O devices. • The purpose of input devices is transferring outside information into the computer, i.e. keyboard, mouse, microphone scanner. • The function of output devices is allowing the computer to inform its internal states and data to the outside world. Such as: monitor, speaker, and printer. ECE 19 4510/5530 Computer system • A computer system is shown above. It consists of a CPU or central processing, memory containing the program and data, and I/O interface with associated input and output devices, and three buses connecting
Recommended publications
  • Programming Model, Address Mode, HC12 Hardware Introduction
    EEL 4744C: Microprocessor Applications Lecture 2 Programming Model, Address Mode, HC12 Hardware Introduction Dr. Tao Li 1 Reading Assignment • Microcontrollers and Microcomputers: Chapter 3, Chapter 4 • Software and Hardware Engineering: Chapter 2 Or • Software and Hardware Engineering: Chapter 4 Plus • CPU12 Reference Manual: Chapter 3 • M68HC12B Family Data Sheet: Chapter 1, 2, 3, 4 Dr. Tao Li 2 EEL 4744C: Microprocessor Applications Lecture 2 Part 1 CPU Registers and Control Codes Dr. Tao Li 3 CPU Registers • Accumulators – Registers that accumulate answers, e.g. the A Register – Can work simultaneously as the source register for one operand and the destination register for ALU operations • General-purpose registers – Registers that hold data, work as source and destination register for data transfers and source for ALU operations • Doubled registers – An N-bit CPU in general uses N-bit data registers – Sometimes 2 of the N-bit registers are used together to double the number of bits, thus “doubled” registers Dr. Tao Li 4 CPU Registers (2) • Pointer registers – Registers that address memory by pointing to specific memory locations that hold the needed data – Contain memory addresses (without offset) • Stack pointer registers – Pointer registers dedicated to variable data and return address storage in subroutine calls • Index registers – Also used to address memory – An effective memory address is found by adding an offset to the content of the involved index register Dr. Tao Li 5 CPU Registers (3) • Segment registers – In some architectures, memory addressing requires that the physical address be specified in 2 parts • Segment part: specifies a memory page • Offset part: specifies a particular place in the page • Condition code registers – Also called flag or status registers – Hold condition code bits generated when instructions are executed, e.g.
    [Show full text]
  • The Birth, Evolution and Future of Microprocessor
    The Birth, Evolution and Future of Microprocessor Swetha Kogatam Computer Science Department San Jose State University San Jose, CA 95192 408-924-1000 [email protected] ABSTRACT timed sequence through the bus system to output devices such as The world's first microprocessor, the 4004, was co-developed by CRT Screens, networks, or printers. In some cases, the terms Busicom, a Japanese manufacturer of calculators, and Intel, a U.S. 'CPU' and 'microprocessor' are used interchangeably to denote the manufacturer of semiconductors. The basic architecture of 4004 same device. was developed in August 1969; a concrete plan for the 4004 The different ways in which microprocessors are categorized are: system was finalized in December 1969; and the first microprocessor was successfully developed in March 1971. a) CISC (Complex Instruction Set Computers) Microprocessors, which became the "technology to open up a new b) RISC (Reduced Instruction Set Computers) era," brought two outstanding impacts, "power of intelligence" and "power of computing". First, microprocessors opened up a new a) VLIW(Very Long Instruction Word Computers) "era of programming" through replacing with software, the b) Super scalar processors hardwired logic based on IC's of the former "era of logic". At the same time, microprocessors allowed young engineers access to "power of computing" for the creative development of personal 2. BIRTH OF THE MICROPROCESSOR computers and computer games, which in turn led to growth in the In 1970, Intel introduced the first dynamic RAM, which increased software industry, and paved the way to the development of high- IC memory by a factor of four.
    [Show full text]
  • IBM Z/Architecture Reference Summary
    z/Architecture IBMr Reference Summary SA22-7871-06 . z/Architecture IBMr Reference Summary SA22-7871-06 Seventh Edition (August, 2010) This revision differs from the previous edition by containing instructions related to the facilities marked by a bar under “Facility” in “Preface” and minor corrections and clari- fications. Changes are indicated by a bar in the margin. References in this publication to IBM® products, programs, or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM program product in this publication is not intended to state or imply that only IBM’s program product may be used. Any functionally equivalent pro- gram may be used instead. Additional copies of this and other IBM publications may be ordered or downloaded from the IBM publications web site at http://www.ibm.com/support/documentation. Please direct any comments on the contents of this publication to: IBM Corporation Department E57 2455 South Road Poughkeepsie, NY 12601-5400 USA IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you. © Copyright International Business Machines Corporation 2001-2010. All rights reserved. US Government Users Restricted Rights — Use, duplication, or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. ii z/Architecture Reference Summary Preface This publication is intended primarily for use by z/Architecture™ assembler-language application programmers. It contains basic machine information summarized from the IBM z/Architecture Principles of Operation, SA22-7832, about the zSeries™ proces- sors. It also contains frequently used information from IBM ESA/390 Common I/O- Device Commands and Self Description, SA22-7204, IBM System/370 Extended Architecture Interpretive Execution, SA22-7095, and IBM High Level Assembler for MVS & VM & VSE Language Reference, SC26-4940.
    [Show full text]
  • Computer Organization
    Chapter 12 Computer Organization Central Processing Unit (CPU) • Data section ‣ Receives data from and sends data to the main memory subsystem and I/O devices • Control section ‣ Issues the control signals to the data section and the other components of the computer system Figure 12.1 CPU Input Data Control Main Output device section section Memory device Bus Data flow Control CPU components • 16-bit memory address register (MAR) ‣ 8-bit MARA and 8-bit MARB • 8-bit memory data register (MDR) • 8-bit multiplexers ‣ AMux, CMux, MDRMux ‣ 0 on control line routes left input ‣ 1 on control line routes right input Control signals • Originate from the control section on the right (not shown in Figure 12.2) • Two kinds of control signals ‣ Clock signals end in “Ck” to load data into registers with a clock pulse ‣ Signals that do not end in “Ck” to set up the data flow before each clock pulse arrives 0 1 8 14 15 22 23 A IR T3 M1 0x00 0x01 2 3 9 10 16 17 24 25 LoadCk Figure 12.2 X T4 M2 0x02 0x03 4 5 11 18 19 26 27 5 C SP T1 T5 M3 0x04 0x08 5 6 7 12 13 20 21 28 29 B PC T2 T6 M4 0xFA 0xFC 5 30 31 A CPU registers M5 0xFE 0xFF CBus ABus BBus Bus MARB MARCk MARA MDRCk MDR MDRMux AMux AMux MDRMux CMux 4 ALU ALU CMux Cin Cout C CCk Mem V VCk ANDZ Addr ANDZ Z ZCk Zout 0 Data 0 0 0 N NCk MemWrite MemRead Figure 12.2 (Expanded) 0 1 8 14 15 22 23 A IR T3 M1 0x00 0x01 2 3 9 10 16 17 24 25 LoadCk X T4 M2 0x02 0x03 4 5 11 18 19 26 27 5 C SP T1 T5 M3 0x04 0x08 5 6 7 12 13 20 21 28 29 B PC T2 T6 M4 0xFA 0xFC 5 30 31 A CPU registers M5 0xFE 0xFF CBus ABus BBus
    [Show full text]
  • Chapter 1: Microprocessor Architecture
    Chapter 1: Microprocessor architecture ECE 3120 – Fall 2013 Dr. Mohamed Mahmoud http://iweb.tntech.edu/mmahmoud/ [email protected] Outline 1.1 Computer hardware organization 1.1.1 Number System 1.1.2 Computer hardware organization 1.2 The processor 1.3 Memory system operation 1.4 Program Execution 1.5 HCS12 Microcontroller 1.1.1 Number System - Computer hardware uses binary numbers to perform all operations. - Human beings are used to decimal number system. Conversion is often needed to convert numbers between the internal (binary) and external (decimal) representations. - Octal and hexadecimal numbers have shorter representations than the binary system. - The binary number system has two digits 0 and 1 - The octal number system uses eight digits 0 and 7 - The hexadecimal number system uses 16 digits: 0, 1, .., 9, A, B, C,.., F 1 - 1 - A prefix is used to indicate the base of a number. - Convert %01000101 to Hexadecimal = $45 because 0100 = 4 and 0101 = 5 - Computer needs to deal with signed and unsigned numbers - Two’s complement method is used to represent negative numbers - A number with its most significant bit set to 1 is negative, otherwise it is positive. 1 - 2 1- Unsigned number %1111 = 1 + 2 + 4 + 8 = 15 %0111 = 1 + 2 + 4 = 7 Unsigned N-bit number can have numbers from 0 to 2N-1 2- Signed number %1111 is a negative number. To convert to decimal, calculate the two’s complement The two’s complement = one’s complement +1 = %0000 + 1 =%0001 = 1 then %1111 = -1 %0111 is a positive number = 1 + 2 + 4 = 7.
    [Show full text]
  • Pep8cpu: a Programmable Simulator for a Central Processing Unit J
    Pep8CPU: A Programmable Simulator for a Central Processing Unit J. Stanley Warford Ryan Okelberry Pepperdine University Novell 24255 Pacific Coast Highway 1800 South Novell Place Malibu, CA 90265 Provo, UT 84606 [email protected] [email protected] ABSTRACT baum [5]: application, high-order language, assembly, operating This paper presents a software simulator for a central processing system, instruction set architecture (ISA), microcode, and logic unit. The simulator features two modes of operation. In the first gate. mode, students enter individual control signals for the multiplex- For a number of years we have used an assembler/simulator for ers, function controls for the ALU, memory read/write controls, Pep/8 in the Computer Systems course to give students a hands-on register addresses, and clock pulses for the registers required for a experience at the high-order language, assembly, and ISA levels. single CPU cycle via a graphical user interface. In the second This paper presents a software package developed by an under- mode, students write a control sequence in a text window for the graduate student, now a software engineer at Novell, who took the cycles necessary to implement a single instruction set architecture Computer Organization course and was motivated to develop a (ISA) instruction. The simulator parses the sequence and allows programmable simulator at the microcode level. students to single step through its execution showing the color- Yurcik gives a survey of machine simulators [8] and maintains a coded data flow through the CPU. The paper concludes with a Web site titled Computer Architecture Simulators [9] with links to description of the use of the software in the Computer Organiza- papers and internet sources for machine simulators.
    [Show full text]
  • Introduction to Cpu
    microprocessors and microcontrollers - sadri 1 INTRODUCTION TO CPU Mohammad Sadegh Sadri Session 2 Microprocessor Course Isfahan University of Technology Sep., Oct., 2010 microprocessors and microcontrollers - sadri 2 Agenda • Review of the first session • A tour of silicon world! • Basic definition of CPU • Von Neumann Architecture • Example: Basic ARM7 Architecture • A brief detailed explanation of ARM7 Architecture • Hardvard Architecture • Example: TMS320C25 DSP microprocessors and microcontrollers - sadri 3 Agenda (2) • History of CPUs • 4004 • TMS1000 • 8080 • Z80 • Am2901 • 8051 • PIC16 microprocessors and microcontrollers - sadri 4 Von Neumann Architecture • Same Memory • Program • Data • Single Bus microprocessors and microcontrollers - sadri 5 Sample : ARM7T CPU microprocessors and microcontrollers - sadri 6 Harvard Architecture • Separate memories for program and data microprocessors and microcontrollers - sadri 7 TMS320C25 DSP microprocessors and microcontrollers - sadri 8 Silicon Market Revenue Rank Rank Country of 2009/2008 Company (million Market share 2009 2008 origin changes $ USD) Intel 11 USA 32 410 -4.0% 14.1% Corporation Samsung 22 South Korea 17 496 +3.5% 7.6% Electronics Toshiba 33Semiconduc Japan 10 319 -6.9% 4.5% tors Texas 44 USA 9 617 -12.6% 4.2% Instruments STMicroelec 55 FranceItaly 8 510 -17.6% 3.7% tronics 68Qualcomm USA 6 409 -1.1% 2.8% 79Hynix South Korea 6 246 +3.7% 2.7% 812AMD USA 5 207 -4.6% 2.3% Renesas 96 Japan 5 153 -26.6% 2.2% Technology 10 7 Sony Japan 4 468 -35.7% 1.9% microprocessors and microcontrollers
    [Show full text]
  • Assembly Language: IA-X86
    Assembly Language for x86 Processors X86 Processor Architecture CS 271 Computer Architecture Purdue University Fort Wayne 1 Outline Basic IA Computer Organization IA-32 Registers Instruction Execution Cycle Basic IA Computer Organization Since the 1940's, the Von Neumann computers contains three key components: Processor, called also the CPU (Central Processing Unit) Memory and Storage Devices I/O Devices Interconnected with one or more buses Data Bus Address Bus data bus Control Bus registers Processor I/O I/O IA: Intel Architecture Memory Device Device (CPU) #1 #2 32-bit (or i386) ALU CU clock control bus address bus Processor The processor consists of Datapath ALU Registers Control unit ALU (Arithmetic logic unit) Performs arithmetic and logic operations Control unit (CU) Generates the control signals required to execute instructions Memory Address Space Address Space is the set of memory locations (bytes) that are addressable Next ... Basic Computer Organization IA-32 Registers Instruction Execution Cycle Registers Registers are high speed memory inside the CPU Eight 32-bit general-purpose registers Six 16-bit segment registers Processor Status Flags (EFLAGS) and Instruction Pointer (EIP) 32-bit General-Purpose Registers EAX EBP EBX ESP ECX ESI EDX EDI 16-bit Segment Registers EFLAGS CS ES SS FS EIP DS GS General-Purpose Registers Used primarily for arithmetic and data movement mov eax 10 ;move constant integer 10 into register eax Specialized uses of Registers eax – Accumulator register Automatically
    [Show full text]
  • I.T.S.O. Powerpc an Inside View
    SG24-4299-00 PowerPC An Inside View IBM SG24-4299-00 PowerPC An Inside View Take Note! Before using this information and the product it supports, be sure to read the general information under “Special Notices” on page xiii. First Edition (September 1995) This edition applies to the IBM PC PowerPC hardware and software products currently announced at the date of publication. Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the address given below. An ITSO Technical Bulletin Evaluation Form for reader′s feedback appears facing Chapter 1. If the form has been removed, comments may be addressed to: IBM Corporation, International Technical Support Organization Dept. JLPC Building 014 Internal Zip 5220 1000 NW 51st Street Boca Raton, Florida 33431-1328 When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes appropriate without incurring any obligation to you. Copyright International Business Machines Corporation 1995. All rights reserved. Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp. Abstract This document provides technical details on the PowerPC technology. It focuses on the features and advantages of the PowerPC Architecture and includes an historical overview of the development of the reduced instruction set computer (RISC) technology. It also describes in detail the IBM Power Series product family based on PowerPC technology, including IBM Personal Computer Power Series 830 and 850 and IBM ThinkPad Power Series 820 and 850.
    [Show full text]
  • A Closer Look at Instruction Set Architectures Objectives
    Chapter 5 A Closer Look at Instruction Set Architectures Objectives • Understand the factors involved in instruction set architecture design. • Gain familiarity with memory addressing modes. • Understand the concepts of instruction- level pipelining and its affect upon execution performance. 5.1 Introduction • This chapter builds upon the ideas in Chapter 4. • We present a detailed look at different instruction formats, operand types, and memory access methods. • We will see the interrelation between machine organization and instruction formats. • This leads to a deeper understanding of computer architecture in general. 5.2 Instruction Formats (1 of 31) • Instruction sets are differentiated by the following: – Number of bits per instruction. – Stack-based or register-based. – Number of explicit operands per instruction. – Operand location. – Types of operations. – Type and size of operands. 5.2 Instruction Formats (2 of 31) • Instruction set architectures are measured according to: – Main memory space occupied by a program. – Instruction complexity. – Instruction length (in bits). – Total number of instructions in the instruction set. 5.2 Instruction Formats (3 of 31) • In designing an instruction set, consideration is given to: – Instruction length. • Whether short, long, or variable. – Number of operands. – Number of addressable registers. – Memory organization. • Whether byte- or word addressable. – Addressing modes. • Choose any or all: direct, indirect or indexed. 5.2 Instruction Formats (4 of 31) • Byte ordering, or endianness, is another major architectural consideration. • If we have a two-byte integer, the integer may be stored so that the least significant byte is followed by the most significant byte or vice versa. – In little endian machines, the least significant byte is followed by the most significant byte.
    [Show full text]
  • IBM Z/Architecture Reference Summary
    z/Architecture IBMr Reference Summary SA22-7871-10 . z/Architecture IBMr Reference Summary SA22-7871-10 Eleventh Edition (September, 2019) This revision differs from the previous edition by containing instructions related to the facilities marked by a bar under “Facility” in “Preface” and minor corrections and clari- fications. Changes are indicated by a bar in the margin. References in this publication to IBM® products, programs, or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM program product in this publication is not intended to state or imply that only IBM’s program product may be used. Any functionally equivalent pro- gram may be used instead. Additional copies of this and other IBM publications may be ordered or downloaded from the IBM publications web site at http://www.ibm.com/support/documentation. Please direct any comments on the contents of this publication to: Internet e-mail: [email protected] IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you. © Copyright International Business Machines Corporation 2001-2019. All rights reserved. US Government Users Restricted Rights — Use, duplication, or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. ii z/Architecture Reference Summary Preface This publication is intended primarily for use by z/Architecture™ assembler-language application programmers. It contains basic machine information summarized from the IBM z/Architecture Principles of Operation (SA22-7832), about the IBM z Systems™ processors. It also contains frequently used information from IBM ESA/390 Common I/O-Device Commands and Self Description (SA22-7204), IBM System/370 Extended Architecture Interpretive Execution (SA22-7095), The Load-Program-Parameter and the CPU-Measurement Facilities (SC23-2260), and IBM High Level Assembler for z/OS, z/VM & z/VSE Language Reference (SC26-4940).
    [Show full text]
  • Addressing Modes of Computer - Ii
    ADDRESSING MODES OF COMPUTER - II INDEXING AND ARRAYS:- A different kind of flexibility for accessing operands is useful in dealing with lists and arrays. Index mode – the effective address of the operand is generated by adding a constant value to the contents of a register. The register use may be either a special register provided for this purpose, or, more commonly, it may be any one of a set of general-purpose registers in the processor. In either case, it is referred to as index register. We indicate the Index mode symbolically as X (Ri) Where X denotes the constant value contained in the instruction and Ri is the name of the register involved. The effective address of the operand is given by EA = X + [Rj] The contents of the index register are not changed in the process of generating the effective address. In an assembly language program, the constant X may be given either as an explicit number or as a symbolic name representing a numerical value. Fig a illustrates two ways of using the Index mode. In fig a, the index register, R1, contains the address of a memory location, and the value X defines an offset (also called a displacement) from this address to the location where the operand is found. An alternative use is illustrated in fig b. Here, the constant X corresponds to a memory address, and the contents of the index register define the offset to the operand. In either case, the effective address is the sum of two values; one is given explicitly in the instruction, and the other is stored in a register.
    [Show full text]