Recent Contributions to the Knowledge of the Skates of Alaska by Duane E

Total Page:16

File Type:pdf, Size:1020Kb

Recent Contributions to the Knowledge of the Skates of Alaska by Duane E FEATURE Recent Contributions to the Knowledge of the Skates of Alaska by Duane E. Stevenson and James W. Orr Figure 1. Raja binoculata (big skate). Photo by Duane Stevenson. he fish family Rajidae, commonly known imately 30 species worldwide and a North Pacific as the skates, includes about 280 species of assemblage of 6 species ranging from the Gulf of primarily benthic fishes found throughout California to the Bering Sea and into the western Tthe world’s oceans from tropical to cold temperate North Pacific. This North Pacific Assemblage is latitudes. The fishes of Alaska (Mecklenburg et al., thought to be a cluster of closely related species and 2002), the most recent inventory of Alaska’s fishes, will probably be recognized as a separate genus in lists 12 species of skates known to occur in the Gulf the future. The genus Bathyraja, also known as the of Alaska, Aleutian Islands, and Bering Sea from “soft-snout” skates due to their flexible rostral car- the intertidal zone to depths of over 1500 m, and tilage, includes over 40 species distributed through- at least 2 other species have been discovered in the out the world’s oceans. Bathyraja is the most broadly region since the publication of that volume as de- distributed as well as the most diverse of all the scribed in Bathyraja mariposa: a new species of skate skate genera, and the greatest diversity of Bathyraja (Rajidae: Arhynchobatinae) from the Aleutian Islands occurs in the North Pacific. The majority of Alaska’s (Stevenson et al., 2004a) and New records of two deep- skate species are included in this genus, although water skate species from the Bering Sea (Stevenson and some authors include one or two of the species in Orr, submitted). Many of these species are widely the genus Rhinoraja. In general, members of the ge- distributed, with ranges extending south along the nus Bathyraja tend to be smaller and inhabit deeper coast of North America as well as into the western waters than species of Raja. North Pacific, Sea of Okhotsk, and Sea of Japan. Many skate species attain very large sizes (Raja Alaska’s skate fauna includes representatives of binoculata reaches over 2 m in length and may weigh two genera: Raja and Bathyraja. The genus Raja, well over 70 kg) (Fig. 1) and can be locally abun- commonly known as the “stiff-snout” skates because dant. Therefore, skate populations represent a large they have a robust rostral cartilage, includes approx- proportion of the groundfish biomass in Alaskan AFSC Quarterly Report 1 waters, particularly on the Bering Sea shelf, and Field Identification are important components of the food web dynam- The Atlas and zoogeography of common fishes of ics and nutrient cycling in Alaska’s marine ecosys- the Bering Sea and Northeastern Pacific, (Allen and tems. However, due to their large size, relatively Smith, 1988) noted several problems with skate data long life expectancy, and low fecundity, skates may in the National Marine Fisheries Service (NMFS) be particularly vulnerable to fishing pressure. In the survey database and concluded that further study North Atlantic where fisheries target skate popula- was needed to clarify the distribution of these spe- tions, several species are in a state of decline and cies. The problems were largely a reflection of the at least two species have been extirpated from large poor state of skate systematics and the lack of use- portions of their native range. Furthermore, skate ful field identification tools. In fact, until recently, populations may be adversely affected by fishing ac- a comprehensive field guide to the skates of Alaska tivity, even if they are not directly targeted. was not available for use on the Center’s Resource Although they represent a large proportion of the Assessment and Conservation Engineering (RACE) worldwide diversity of cartilaginous fishes (roughly Division surveys. AFSC scientists began to con- 35% of elasmobranch species currently known are sistently identify skates to the species level begin- skates), skates are morphologically conservative and ning in 1997 during the Aleutian Islands triennial differences among species or even genera are often groundfish survey. For several years, identifications subtle. Moreover, the limits of morphological varia- were based on a dichotomous key provided by John tion in many species are poorly known, and as a re- McEachran of the Texas A&M University (later sult skates have been very challenging to identify incorporated into the key of Mecklenburg et al.). in the field, especially in the North Pacific. These Recently, McEachran’s key was refined, developed challenges are compounded by the fact that skates into a color field guide, and integrated into the on- are generally large fishes and are difficult to col- deck field guides used on groundfish surveys. This lect, preserve, and curate. Therefore, they are poorly field guide incorporates geographic and bathymetric represented in museum collections and difficult to distribution information for each species as well as study in the laboratory. As a result of identification high-resolution color photos taken on recent RACE difficulties and a relative lack of commercial im- surveys. Another version of this field guide, includ- portance, species-specific data on skate populations ed in Identification of skates, sculpins, and smelts by are often not available, and catch statistics are com- observers in North Pacific groundfish fisheries (2002- monly recorded only at the aggregate level. This is 2003) (Stevenson, 2004), has been developed for use a concern because apparent stability or increases in by groundfish observers and includes a dichotomous aggregate skate catches may mask declines in some key to the skates of Alaska. These tools have greatly components of those species aggregates, particularly facilitated species-level identification of skates in the larger species. the field. Recent emphasis on ecosystem-level manage- Confidence in field identifications has also been ment of federally regulated marine fisheries and the improved with the establishment of a voucher col- recent development of a commercial fishery target- lection process that allows for laboratory verifica- ing skates in the Gulf of Alaska have underscored tion or reidentification of significant specimens. the need for basic biological data on these fishes. As This process involves labeling and photographing these needs are recognized, researchers and fishery the specimen on deck, then preserving it and ship- managers will require a level of detailed informa- ping it back to the laboratory for identification and tion on the diversity and distribution of skates in further study. Many of these specimens collected as Alaskan waters that was previously not available. vouchers have provided the material to recognize In response to these needs, scientists at the Alaska previously undescribed species in the region. The Fisheries Science Center (AFSC) have been in- majority of specimens collected as part of the voucher volved in several projects that have advanced our process, including primary types of new species, are knowledge of the skates of the North Pacific and now archived at the University of Washington Fish Bering Sea. This research feature article describes Collection. This collection provides loans and access several of those efforts. to these and other specimens to researchers world- 2 January-February-March 2005 wide. Other type material, which serves as verified Although skate species diversity is particularly examples of new species, has been distributed to fish low on the Bering Sea shelf, total skate biomass ap- collections around the United States, including the pears to be greater in this area than in any other U.S. Natural History Museum at the Smithsonian region of Alaskan waters (Fig. 3). Skates are en- Institution, the California Academy of Sciences, and countered in nearly every haul on the Bering Sea the Los Angeles County Natural History Museum. shelf survey, and they often occur in large num- In addition, tissue samples from many specimens bers, particularly on the outer shelf in the northern have been collected for genetic studies and are Bering Sea. Skate biomass also appears to be high stored in the University of Washington and in the in parts of the central and western Aleutian Islands, University of Kansas Natural History Museum, where large species like the whiteblotched skate, B. Division of Ichthyology. From this vouchered tis- maculata, and the Aleutian skate, B. aleutica, are sue collection, genetic markers have been developed encountered in large numbers along with several by Mike Canino and Ingrid Spies of the RACE smaller species. In the Gulf of Alaska, big skates Division to identify all of the common skates of and longnose skates (R. binoculata and R. rhina, re- Alaska (see below). spectively), which are the largest species of skates in Alaskan waters, make up a higher proportion of the catch. These large species are most common in the Documenting Diversity Kodiak Island region. As survey personnel have been trained to rec- In addition to improvements in distribution ognize species-level differences among skates and data, new species of skates are being discovered field identifications have improved, a clearer pic- and others newly recorded from Alaskan waters. ture of skate diversity has begun to emerge. The Using morphological characteristics such as counts geographic and bathymetric ranges of each species of vertebrae, fin rays, and thorns, measurements of are now known with greater certainty than ever be- body shape, overall shape of clasper cartilages, and fore. Generally, in Alaskan waters, skate diversity body color, AFSC scientists James Orr and Duane is higher on the continental slope than on the shelf Stevenson have examined and identified hundreds as many species are found only near the shelf break of skate specimens collected in Alaska. In sum- and deeper. The area of greatest skate diversity is the mer 2003 they traveled to the Zoological Institute eastern Aleutian Islands and southeastern Bering of St.
Recommended publications
  • The Evolutionary Origins of Vertebrate Haematopoiesis: Insights from Non-Vertebrate Chordates
    THE EVOLUTIONARY ORIGINS OF VERTEBRATE HAEMATOPOIESIS: INSIGHTS FROM NON-VERTEBRATE CHORDATES A thesis submitted to the University of Manchester for the degree of MPhil Evolutionary Biology in the Faculty of Life Sciences. 2015 PETER E D MILLS 2 LIST OF CONTENTS List of Contents 2 List of Figures 4 List of Abbreviations 5 Abstract 6 Declaration 7 Copyright Statement 7 Introduction 8 Haematopoiesis 11 In gnathostomes 11 In cyclostomes 18 In ascidians 20 In amphioxi 22 In sea urchins 24 In fruit flies 24 The evolution of haematopoiesis 26 Haematopoiesis and innate immune cells 26 Lymphocytes 26 Erythrocytes 27 Aims 28 The basic aim 28 Choice of genes 30 Homologue identification 31 Analysis of EST collections 31 In situ hybridisations 32 gata1/2/3 rescue experiment 34 gata1/2/3 reporter experiment 36 3 Methods 39 Homologue identification 39 Analysis of EST data 39 Collection of amphioxus embryos 40 Collection of ascidian embryos 40 Collection of zebrafish embryos 40 Cloning genes 41 Whole mount in situ hybridisations 41 Knockdown and rescue of gata1 42 gata1/2/3:mCherry reporter 42 Results Homologues in non-gnathostomes 44 Gene expression in ascidian and amphioxus embryos 48 Knockdown of gata1 and rescue with gata1/2/3 51 gata1/2/3:mCherry reporter expression 52 Discussion Non-chordate gene expression 54 Amphioxus gene expression 54 Ascidian gene expression 56 Cyclostome gene expression 59 gata1/2/3 rescue experiment 60 gata1/2/3 reporter experiment 62 Evolution of erythrocytes 63 Evolution of lymphocytes 67 Conclusion 72 References 75 (Word count: 26,246) 4 LIST OF FIGURES Figure 1 – Phylogenetic relationships between the organisms studied in this thesis.
    [Show full text]
  • Breaking with Tradition: Redefining Measures for Diet Description with a Case Study of the Aleutian Skate Bathyraja Aleutica (Gilbert 1896)
    Environ Biol Fish (2012) 95:3–20 DOI 10.1007/s10641-011-9959-z Breaking with tradition: redefining measures for diet description with a case study of the Aleutian skate Bathyraja aleutica (Gilbert 1896) Simon C. Brown & Joseph J. Bizzarro & Gregor M. Cailliet & David A. Ebert Received: 1 September 2010 /Accepted: 27 October 2011 /Published online: 16 November 2011 # Springer Science+Business Media B.V. 2011 Abstract Characterization of fish diets from stomach Aleutian skate Bathyraja aleutica from specimens content analysis commonly involves the calculation of collected from three ecoregions of the northern Gulf multiple relative measures of prey quantity (%N,%W,% of Alaska (GOA) continental shelf during June- FO), and their combination in the standardized Index of September 2005–2007. Aleutian skate were found to Relative Importance (%IRI). Examining the underlying primarily consume the commonly abundant benthic structure of dietary data matrices reveals interdependen- crustaceans, northern pink shrimp Pandalus eous and cies among diet measures, and obviates the advantageous Tanner crab Chionoecetes bairdi, and secondarily use of underused prey-specific measures to diet charac- consume various teleost fishes. Multivariate variance terization. With these interdependencies clearly realized partitioning by Redundancy Analysis revealed spa- as formal mathematical expressions, we proceed to tially driven differences in the diet to be as influential isolate algebraically, the inherent bias in %IRI, and as skate size, sex, and depth of capture. Euphausiids provide a correction for it by substituting traditional and other mid-water prey in the diet were strongly measures with prey-specific measures. The resultant new associated with the Shelikof Strait region during 2007 index, the Prey-Specific Index of Relative Importance (% that may be explained by atypical marine climate PSIRI), is introduced and recommended to replace %IRI conditions during that year.
    [Show full text]
  • Age, Growth, and Sexual Maturity of the Deepsea Skate, Bathyraja
    AGE, GROWTH, AND SEXUAL MATURITY OF THE DEEPSEA SKATE, BATHYRAJA ABYSSICOLA A Thesis Presented to the Faculty of Alaska Pacific University In Partial Fulfillment of the Requirements For the Degree of Master of Science in Environmental Science by Cameron Murray Provost April 2016 Pro Q u est Nu m b er: 10104548 All rig hts reserv e d INF O RM ATI O N T O ALL USERS Th e q u a lity of this re pro d u ctio n is d e p e n d e nt u p o n th e q u a lity of th e c o p y su b mitt e d. In th e unlik e ly e v e nt th a t th e a uth or did n ot se n d a c o m ple t e m a nuscript a n d th ere are missin g p a g es, th ese will b e n ot e d. Also, if m a t eria l h a d to b e re m o v e d, a n ot e will in dic a t e th e d e le tio n. Pro Q u est 10104548 Pu blish e d b y Pro Q u est LL C (2016). C o p yrig ht of th e Dissert a tio n is h e ld b y th e A uth or. All rig hts reserv e d. This w ork is prot e ct e d a g a inst un a uth orize d c o p yin g un d er Title 17, Unit e d St a t es C o d e Microform Editio n © Pro Q u est LL C .
    [Show full text]
  • Beringraja Binoculata) and Longnose Skate (Raja Rhina)
    Bomb Dating and Age Estimates of Big Skate (Beringraja binoculata) and Longnose Skate (Raja rhina) Jacquelynne King, Fisheries and Oceans Canada David Ebert, Moss Landing Marine Laboratories Craig Kastelle, Alaska Fisheries Science Center Thomas Helser, Alaska Fisheries Science Center Christopher Gburski, Alaska Fisheries Science Center Gregor Cailliet, Moss Landing Marine Laboratories ABSTRACT MATERIALS AND METHODS RESULTS Age and growth curve estimates have been produced for big skate Bomb radiocarbon analyses Big skate (Beringraja binoculata [formerly Raja binoculata]) and longnose skate 1. Big skate (n=12) and longnose skate (n=33) vertebrae were collected • the estimated birth years ranged from 1965-1970 (Raja rhina) populations in the Gulf of Alaska, British Columbia and during the early 1980s off California. These fishes were estimated to • there were no low ∆14C values for big skate California. Age estimation for these two skate species relies on growth be alive during the atmospheric testing of atomic bombs which resulted Longnose skate band counts of sectioned vertebrae. However these studies have not in the rapid increase in oceanic radiocarbon (14C). • the ∆14C values for longnose skate overlapped with mid to top portion of the produced similar results for either species, highlighting the need for age 2. Vertebrae where thin (0.7-1.0 mm) sectioned and mounted on ∆14C reference curve for Petrale sole (Fig. 3) validation. Archived large specimens of big skate and longnose skate microscope slides. • these skate were not as old as originally estimated but there were early collected in 1980 and 1981 had minimum age estimates old enough to 3. Ages were estimated based on vertebral band counts (Fig.
    [Show full text]
  • Skates and Rays Diversity, Exploration and Conservation – Case-Study of the Thornback Ray, Raja Clavata
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Doutoramento em Ciências do Mar 2010 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Tese orientada por Professor Auxiliar com Agregação Leonel Serrano Gordo e Investigadora Auxiliar Ivone Figueiredo Doutoramento em Ciências do Mar 2010 The research reported in this thesis was carried out at the Instituto de Investigação das Pescas e do Mar (IPIMAR - INRB), Unidade de Recursos Marinhos e Sustentabilidade. This research was funded by Fundação para a Ciência e a Tecnologia (FCT) through a PhD grant (SFRH/BD/23777/2005) and the research project EU Data Collection/DCR (PNAB). Skates and rays diversity, exploration and conservation | Table of Contents Table of Contents List of Figures ............................................................................................................................. i List of Tables ............................................................................................................................. v List of Abbreviations ............................................................................................................. viii Agradecimentos ........................................................................................................................
    [Show full text]
  • A Systematic Revision of the South American Freshwater Stingrays (Chondrichthyes: Potamotrygonidae) (Batoidei, Myliobatiformes, Phylogeny, Biogeography)
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1985 A systematic revision of the South American freshwater stingrays (chondrichthyes: potamotrygonidae) (batoidei, myliobatiformes, phylogeny, biogeography) Ricardo de Souza Rosa College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Fresh Water Studies Commons, Oceanography Commons, and the Zoology Commons Recommended Citation Rosa, Ricardo de Souza, "A systematic revision of the South American freshwater stingrays (chondrichthyes: potamotrygonidae) (batoidei, myliobatiformes, phylogeny, biogeography)" (1985). Dissertations, Theses, and Masters Projects. Paper 1539616831. https://dx.doi.org/doi:10.25773/v5-6ts0-6v68 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Pagefs)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
    [Show full text]
  • Stomach Content Analysis of Short-Finned Pilot Whales
    f MARCH 1986 STOMACH CONTENT ANALYSIS OF SHORT-FINNED PILOT WHALES h (Globicephala macrorhynchus) AND NORTHERN ELEPHANT SEALS (Mirounga angustirostris) FROM THE SOUTHERN CALIFORNIA BIGHT by Elizabeth S. Hacker ADMINISTRATIVE REPORT LJ-86-08C f This Administrative Report is issued as an informal document to ensure prompt dissemination of preliminary results, interim reports and special studies. We recommend that it not be abstracted or cited. STOMACH CONTENT ANALYSIS OF SHORT-FINNED PILOT WHALES (GLOBICEPHALA MACRORHYNCHUS) AND NORTHERN ELEPHANT SEALS (MIROUNGA ANGUSTIROSTRIS) FROM THE SOUTHERN CALIFORNIA BIGHT Elizabeth S. Hacker College of Oceanography Oregon State University Corvallis, Oregon 97331 March 1986 S H i I , LIBRARY >66 MAR 0 2 2007 ‘ National uooarac & Atmospheric Administration U.S. Dept, of Commerce This report was prepared by Elizabeth S. Hacker under contract No. 84-ABA-02592 for the National Marine Fisheries Service, Southwest Fisheries Center, La Jolla, California. The statements, findings, conclusions and recommendations herein are those of the author and do not necessarily reflect the views of the National Marine Fisheries Service. Charles W. Oliver of the Southwest Fisheries Center served as Contract Officer's Technical Representative for this contract. ADMINISTRATIVE REPORT LJ-86-08C CONTENTS PAGE INTRODUCTION.................. 1 METHODS....................... 2 Sample Collection........ 2 Sample Identification.... 2 Sample Analysis.......... 3 RESULTS....................... 3 Globicephala macrorhynchus 3 Mirounga angustirostris... 4 DISCUSSION.................... 6 ACKNOWLEDGEMENTS.............. 11 REFERENCES.............. 12 i LIST OF TABLES TABLE PAGE 1 Collection data for Globicephala macrorhynchus examined from the Southern California Bight........ 19 2 Collection data for Mirounga angustirostris examined from the Southern California Bight........ 20 3 Stomach contents of Globicephala macrorhynchus examined from the Southern California Bight.......
    [Show full text]
  • Stock Assessment and Fishery Evaluation of Skate Species (Rajidae)
    16. Gulf of Alaska Skates by Sarah Gaichas1, Nick Sagalkin2, Chris Gburski1, Duane Stevenson1, and Rob Swanson3 1NMFS Alaska Fisheries Science Center, Seattle WA 2ADF&G Commercial Fisheries Division, Kodiak AK 3NMFS Alaska Fisheries Science Center, Kodiak AK Executive Summary Summary of Major Changes Changes in the input data: 1. Total catch weight for GOA skates is updated with 2004 and partial 2005 data. 2. Biomass estimates from the 2005 GOA bottom trawl survey are incorporated. 3. Life history information has been updated with recent research results. 4. Information on the position of skates within the GOA ecosystem and the potential ecosystem effects of skate removals are included. Changes in assessment methodology: There are no changes to the Tier 5 assessment methodology. Changes in assessment results: No directed fishing for skates in the GOA is recommended, due to high incidental catch in groundfish and halibut fisheries. Skate biomass changed between the last NMFS GOA trawl survey in 2003 and the most recent survey in 2005, which changes the Tier 5 assessment results based on survey biomass. The recommendations for 2005 based on the three most recent survey biomass estimates for skates and M=0.10 are: Western Central GOA Eastern GOA GOA (610) (620, 630) (640, 650) Bathyraja skates Gulfwide Big skate ABC 695 2,250 599 ABC 1,617 OFL 927 3,001 798 OFL 2,156 Longnose skate ABC 65 1,969 861 OFL 87 2,625 1,148 Responses to SSC Comments SSC comments specific to the GOA Skates assessment: From the December, 2004 SSC minutes: The SSC is grateful to samplers with ADF&G who collected catch data and biological samples for Kodiak landings.
    [Show full text]
  • Pacific, Northeast
    536 Fish, crustaceans, molluscs, etc Capture production by species items Pacific, Northeast C-67 Poissons, crustacés, mollusques, etc Captures par catégories d'espèces Pacifique, nord-est (a) Peces, crustáceos, moluscos, etc Capturas por categorías de especies Pacífico, nordeste English name Scientific name Species group Nom anglais Nom scientifique Groupe d'espèces 2012 2013 2014 2015 2016 2017 2018 Nombre inglés Nombre científico Grupo de especies t t t t t t t White sturgeon Acipenser transmontanus 21 76 64 27 21 23 36 26 Pink(=Humpback) salmon Oncorhynchus gorbuscha 23 107 935 327 085 146 932 278 246 62 659 228 336 61 591 Chum(=Keta=Dog) salmon Oncorhynchus keta 23 74 254 78 418 44 746 68 310 61 935 86 782 62 944 Sockeye(=Red) salmon Oncorhynchus nerka 23 100 038 81 848 141 311 135 474 132 554 132 610 120 341 Chinook(=Spring=King) salmon Oncorhynchus tshawytscha 23 7 543 9 067 11 894 9 582 6 991 5 251 3 203 Coho(=Silver) salmon Oncorhynchus kisutch 23 11 470 19 716 23 167 12 241 14 699 17 170 13 100 Pacific salmons nei Oncorhynchus spp 23 ... ... ... ... ... ... 17 586 Eulachon Thaleichthys pacificus 23 - - 9 6 2 1 ... Smelts nei Osmerus spp, Hypomesus spp 23 335 213 280 261 162 162 159 Salmonoids nei Salmonoidei 23 1 1 0 1 1 - 1 American shad Alosa sapidissima 24 152 23 52 51 94 95 179 Pacific halibut Hippoglossus stenolepis 31 19 048 17 312 14 098 14 718 15 033 15 707 13 207 English sole Pleuronectes vetulus 31 202 367 295 319 393 204 304 Greenland halibut Reinhardtius hippoglossoides 31 4 621 1 394 1 397 2 084 2 156 2 733 1 760
    [Show full text]
  • XIV. Appendices
    Appendix 1, Page 1 XIV. Appendices Appendix 1. Vertebrate Species of Alaska1 * Threatened/Endangered Fishes Scientific Name Common Name Eptatretus deani black hagfish Lampetra tridentata Pacific lamprey Lampetra camtschatica Arctic lamprey Lampetra alaskense Alaskan brook lamprey Lampetra ayresii river lamprey Lampetra richardsoni western brook lamprey Hydrolagus colliei spotted ratfish Prionace glauca blue shark Apristurus brunneus brown cat shark Lamna ditropis salmon shark Carcharodon carcharias white shark Cetorhinus maximus basking shark Hexanchus griseus bluntnose sixgill shark Somniosus pacificus Pacific sleeper shark Squalus acanthias spiny dogfish Raja binoculata big skate Raja rhina longnose skate Bathyraja parmifera Alaska skate Bathyraja aleutica Aleutian skate Bathyraja interrupta sandpaper skate Bathyraja lindbergi Commander skate Bathyraja abyssicola deepsea skate Bathyraja maculata whiteblotched skate Bathyraja minispinosa whitebrow skate Bathyraja trachura roughtail skate Bathyraja taranetzi mud skate Bathyraja violacea Okhotsk skate Acipenser medirostris green sturgeon Acipenser transmontanus white sturgeon Polyacanthonotus challengeri longnose tapirfish Synaphobranchus affinis slope cutthroat eel Histiobranchus bathybius deepwater cutthroat eel Avocettina infans blackline snipe eel Nemichthys scolopaceus slender snipe eel Alosa sapidissima American shad Clupea pallasii Pacific herring 1 This appendix lists the vertebrate species of Alaska, but it does not include subspecies, even though some of those are featured in the CWCS.
    [Show full text]
  • Redescription and Taxonomic Status of Dipturus Chilensis (Guichenot, 1848), and Description of Dipturus Lamillai Sp
    Zootaxa 4590 (5): 501–524 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4590.5.1 http://zoobank.org/urn:lsid:zoobank.org:pub:F484C560-CAE9-4A9E-B408-AEC2C8893DAD Redescription and taxonomic status of Dipturus chilensis (Guichenot, 1848), and description of Dipturus lamillai sp. nov. (Rajiformes: Rajidae), a new species of long-snout skate from the Falkland Islands FRANCISCO J. CONCHA1,2,7, JANINE N. CAIRA1, DAVID A. EBERT3,4,5 & JOOST H. W. POMPERT6 1Department of Ecology & Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043 Storrs, CT 06269 – 3043, USA 2Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso, Av. Borgoño 16344, Viña del Mar, Chile 3Pacific Shark Research Center, Moss Landing Marine Laboratories, Moss Landing, CA 95039, USA 4Department of Ichthyology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA 5South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown 6140, South Africa 6Georgia Seafoods Ltd, Waverley House, Stanley, Falkland Islands, United Kingdom 7Corresponding author. E-mail: [email protected] Abstract Recent molecular evidence has called into question the identity of skates collected in the waters off the Falkland Islands previously identified as Zearaja chilensis. NADH2 sequence data indicate that these specimens are not conspecific with those currently referred to as Z. chilensis from Chile and, in fact, represent a novel cryptic species. This study aimed to investigate this hypothesis based on morphological comparisons of specimens from the coasts of both western and eastern South America.
    [Show full text]
  • Humboldt Bay Fishes
    Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar
    [Show full text]