Age, Growth, and Sexual Maturity of the Deepsea Skate, Bathyraja

Total Page:16

File Type:pdf, Size:1020Kb

Age, Growth, and Sexual Maturity of the Deepsea Skate, Bathyraja AGE, GROWTH, AND SEXUAL MATURITY OF THE DEEPSEA SKATE, BATHYRAJA ABYSSICOLA A Thesis Presented to the Faculty of Alaska Pacific University In Partial Fulfillment of the Requirements For the Degree of Master of Science in Environmental Science by Cameron Murray Provost April 2016 Pro Q u est Nu m b er: 10104548 All rig hts reserv e d INF O RM ATI O N T O ALL USERS Th e q u a lity of this re pro d u ctio n is d e p e n d e nt u p o n th e q u a lity of th e c o p y su b mitt e d. In th e unlik e ly e v e nt th a t th e a uth or did n ot se n d a c o m ple t e m a nuscript a n d th ere are missin g p a g es, th ese will b e n ot e d. Also, if m a t eria l h a d to b e re m o v e d, a n ot e will in dic a t e th e d e le tio n. Pro Q u est 10104548 Pu blish e d b y Pro Q u est LL C (2016). C o p yrig ht of th e Dissert a tio n is h e ld b y th e A uth or. All rig hts reserv e d. This w ork is prot e ct e d a g a inst un a uth orize d c o p yin g un d er Title 17, Unit e d St a t es C o d e Microform Editio n © Pro Q u est LL C . Pro Q u est LL C . 789 E ast Eise nh o w er P arkw a y P. O . Box 1346 A nn Arb or, MI 48106 - 1346 ACKNOWLEDGEMENTS This project would not have been possible without the cooperation and dedication of several individuals. I would like to thank my committee chair and advisor Bradley P. Harris for his tireless support and guidance throughout the entirety of this project. I would also like to thank my committee: David A. Ebert, Kenneth J. Goldman, and Cindy A. Tribuzio for their invaluable assistance and mentoring and Lisa J. Natanson for teaching and aiding me with the histological aspects of this project. Sarah Webster, Nathan Wolf, Aileen Nimick, T. Scott Smeltz, Kelsey James, and James Knuckey your help with this project was greatly appreciated. Last but not least, thank you At-Sea Processors Association for funding my project and education at Alaska Pacific University as part of the Fisheries, Aquatic Science & Technology Laboratory. ii ABSTRACT Research into the age, growth, and reproductive characteristics of chondrichthyan fishes has increased substantially over the past couple of decades. This study set out to estimate age deepsea skate, Bathyraja abyssicola using vertebral centra and caudal thorns, estimate length at age, and determine length at maturity. Sixty-three specimens of B. abyssicola (n=29 males; n=34 females) were taken on National Marine Fisheries Service bottom trawl surveys between 2001 and 2012. Information derived and structures collected from these samples included sex, maturity class, total length, caudal thorns and, vertebrae. Ageing methods attempted include histology and gross sectioning (vertebral centra) and surface staining (caudal thorns). Moderate success with centra sectioned using the histological method allowed some inference to be made into life history characteristics. Deepsea skates appear to have slow average growth (26 mm yr-1 ±5.41, 95% c.i.) and mature at a large size (males: TL50 = 1175.4 mm, females: TL50 = 1267.3 mm). Band pair counts were not validated as true ages. Males from which growth bands could be enumerated were smaller (� = 10, �̅ = 718 mm, SD = 209 mm) on average than that for females (n = 7, �̅ = 990 mm, SD = 319 mm). This study provides the first attempt to assess abyssicola age, growth rate, and sexual maturity traits; information needed for informed skate management. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS...........................................................................................................ii ABSTRACT..................................................................................................................................iii TABLE OF CONTENTS..............................................................................................................iv LIST OF TABLES.........................................................................................................................v LIST OF FIGURES.......................................................................................................................vi GENERAL INTRODUCTION......................................................................................................1 ASSESSMENT OF AGE, GROWTH AND MATURITY OF THE DEEPSEA SKATE, BATHYRAJA ABYSSICOLA 1.1 INTRODUCTION....................................................................................................................6 1.2 METHODS…………………………………………………………………………………...8 1.3 RESULTS………………………………………………………………………………...…13 1.4 DISCUSSION………………………………………………………………………………16 REFERENCES.............................................................................................................................22 TABLES.......................................................................................................................................28 FIGURES.....................................................................................................................................31 APPENDICES..............................................................................................................................39 iv LIST OF TABLES Table 1…………………………………………………………………………………………...28 Procedure for histology embedding. Table 2……………………………………………………………………………………...……29 Procedure for histology staining. Table 3……………………………………………………………………………………...……30 Maturity classes and definitions. v LIST OF FIGURES Figure 1…………………………………………………………………………………………..31 Vertebral centra and caudal thorn sampling areas. Figure 2…………………………………………………………………………………………..31 Photographs of gross sectioned (A) and histological sectioned (B) vertebral centra and alizarin red stained caudal thorn (C) from Bathyraja abyssicola. Figure 3…………………………………………………………………………………………..32 Bathyraja abyssicola total length (mm) at band pair count as determined by histology with fit linear regression line. Figure 4…………………………………………………………………………………………..33 Female Bathyraja abyssicola total length (mm) at band pair count as determined by histology with fit linear regression line. Figure 5…………………………………………………………………………………………..34 Male Bathyraja abyssicola total length (mm) at band pair count as determined by histology with fit linear regression line. Figure 6…………………………………………………………………………………………..35 Bathyraja abyssicola total length (mm) at band pair count as determined by caudal thorns with fit linear regression line. Figure 7…………………………………………………………………………………………..36 Bathyraja abyssicola total length (mm) at band pair count as determined by histology and caudal thorns. vi Figure 8…………………………………………………………………………………………37 Bathyraja abyssicola total length (mm) at band pair count as determined by histology separated by maturity class for males and females. Figure 9…………………………………………………………………………………………38 Estimated probability of maturity at size based on an ogive for male and female samples of B. abyssicola. vii GENERAL INTRODUCTION The class Chondrichthyes (derived from the Greek prefix khondros meaning “cartilage” and suffix ikhthus meaning “fish”) is a species diverse group of fishes with simplified internal cartilaginous skeletons, lacking true bone (Ebert 2003, Klimley 2013). Other distinguishing characteristics of this class include fins without bony rays, true upper and lower jaws, nostrils on the underside of the head, and transverse rows of teeth or fused tooth plates that are constantly replaced from inside the mouth (Ebert 2003). Cartilaginous fishes also lack bony plates on their heads, have placoid scales (toothlike dermal denticles) and fertilization takes place internally (Ebert 2003). Two subclasses comprise the class Chondrichthyes, the small subclass Holocephali (chimaeras) and the large subclass Elasmobranchii (sharks and rays) (Ebert 2003, Klimley 2013). The Holocephali have a single gill opening on each side of their heads and are given the common name chimaeras because of their unique body shape, which vaguely resembles the mythic Greek monster of the same name (Klimley 2013). The subclass Elasmobranchii is a large taxonomic group comprised of the cylindrical-bodied sharks and flat-bodied rays (Klimley 2013). These species have multiple gill openings on each side of their heads numbering from five to seven (Klimley 2013). Over the past few decades, the sensitivity of global chondrichthyan populations to fishing mortality has been an area of focus because they typically possess life history characteristics such as slow growth rates, late maturation, and low fecundity which make them particularly vulnerable to exploitation (Holden 1974, Brander 1981, Dulvy et al. 2000, Stevens et al. 2000, Dulvy and Reynolds 2002). The order Rajiformes (skates) are a species-rich, but relatively undiverse group of batoids receiving increased attention as once common species are becoming 1 increasingly scarce or locally extinct (Brander 1981, Dulvey et al. 2000). In the northwest Atlantic, the winter skate, Leucoraja ocellata, barndoor skate, Dipturus laevis, and blue skate, Dipturus batis have all demonstrated population declines due in part to fishing mortality (Johnson 1979, Brander 1981, Casey and Myers 1998). Research efforts are relatively high for targeted or frequently encountered commercial fishery bycatch species. However, research efforts are generally lacking for non-target and rarely encountered skate species (Winton et al. 2013). Deeper-dwelling, cooler water species generally have slower growth rates, later maturation and lower productivity leading to increased sensitivity to fishing mortality and risk of overexploitation (Cailliet et al. 2001, Garcia
Recommended publications
  • Notoraja Martinezi Sp. Nov., a New Species of Deepwater Skate and The
    Zootaxa 4098 (1): 179–190 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4098.1.9 http://zoobank.org/urn:lsid:zoobank.org:pub:C7826AC7-6493-42D3-A0A4-89FEBB5AB3E3 Notoraja martinezi sp. nov., a new species of deepwater skate and the first record of the genus Notoraja Ishiyama, 1958 (Rajiformes: Arhynchobatidae) from the eastern Pacific Ocean FRANCISCO J. CONCHA1,2,7, DAVID A. EBERT3,4,5 & DOUGLAS J. LONG4,6 1Department of Ecology & Evolutionary Biology, University of Connecticut. 75 North Eagleville Road – Unit 3043 Storrs, CT, 06269, USA. E-mail: [email protected] 2Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso. Av. Borgoño 16344, Viña del Mar, Chile. 3Pacific Shark Research Center, Moss Landing Marine Laboratories, Moss Landing, CA 95039, USA. 4Department of Ichthyology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA. 94118, USA. 5South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown, 6140, South Africa. E-mail: [email protected] state.edu. 6Department of Biology, St. Mary’s College, 1928 St. Mary’s Road, Moraga, California 94575. E-mail: [email protected] 7Corresponding author Abstract A new arhynchobatid skate, Notoraja martinezi, sp. nov., is described from four specimens collected from the eastern Central Pacific from Costa Rica to Ecuador and between depths of 1256–1472 m. The new species is placed in the genus Notoraja based on the long and flexible rostrum and its proportionally long tail with respect to total length.
    [Show full text]
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • Barndoor Skate, Dipturus Laevis, Life History and Habitat Characteristics
    NOAA Technical Memorandum NMFS-NE-173 Essential Fish Habitat Source Document: Barndoor Skate, Dipturus laevis, Life History and Habitat Characteristics U. S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Region Northeast Fisheries Science Center Woods Hole, Massachusetts March 2003 Recent Issues in This Series: 155. Food of Northwest Atlantic Fishes and Two Common Species of Squid. By Ray E. Bowman, Charles E. Stillwell, William L. Michaels, and Marvin D. Grosslein. January 2000. xiv + 138 p., 1 fig., 7 tables, 2 app. NTIS Access. No. PB2000-106735. 156. Proceedings of the Summer Flounder Aging Workshop, 1-2 February 1999, Woods Hole, Massachusetts. By George R. Bolz, James Patrick Monaghan, Jr., Kathy L. Lang, Randall W. Gregory, and Jay M. Burnett. May 2000. v + 15 p., 5 figs., 5 tables. NTIS Access. No. PB2000-107403. 157. Contaminant Levels in Muscle of Four Species of Recreational Fish from the New York Bight Apex. By Ashok D. Deshpande, Andrew F.J. Draxler, Vincent S. Zdanowicz, Mary E. Schrock, Anthony J. Paulson, Thomas W. Finneran, Beth L. Sharack, Kathy Corbo, Linda Arlen, Elizabeth A. Leimburg, Bruce W. Dockum, Robert A. Pikanowski, Brian May, and Lisa B. Rosman. June 2000. xxii + 99 p., 6 figs., 80 tables, 3 app., glossary. NTIS Access. No. PB2001-107346. 158. A Framework for Monitoring and Assessing Socioeconomics and Governance of Large Marine Ecosystems. By Jon G. Sutinen, editor, with contributors (listed alphabetically) Patricia Clay, Christopher L. Dyer, Steven F. Edwards, John Gates, Tom A. Grigalunas, Timothy Hennessey, Lawrence Juda, Andrew W. Kitts, Philip N.
    [Show full text]
  • Chondrichthyan Fishes (Sharks, Skates, Rays) Announcements
    Chondrichthyan Fishes (sharks, skates, rays) Announcements 1. Please review the syllabus for reading and lab information! 2. Please do the readings: for this week posted now. 3. Lab sections: 4. i) Dylan Wainwright, Thursday 2 - 4/5 pm ii) Kelsey Lucas, Friday 2 - 4/5 pm iii) Labs are in the Northwest Building basement (room B141) 4. Lab sections done: first lab this week on Thursday! 5. First lab reading: Agassiz fish story; lab will be a bit shorter 6. Office hours: we’ll set these later this week Please use the course web site: note the various modules Outline Lecture outline: -- Intro. to chondrichthyan phylogeny -- 6 key chondrichthyan defining traits (synapomorphies) -- 3 chondrichthyan behaviors -- Focus on several major groups and selected especially interesting ones 1) Holocephalans (chimaeras or ratfishes) 2) Elasmobranchii (sharks, skates, rays) 3) Batoids (skates, rays, and sawfish) 4) Sharks – several interesting groups Not remotely possible to discuss today all the interesting groups! Vertebrate tree – key ―fish‖ groups Today Chondrichthyan Fishes sharks Overview: 1. Mostly marine 2. ~ 1,200 species 518 species of sharks 650 species of rays 38 species of chimaeras Skates and rays 3. ~ 3 % of all ―fishes‖ 4. Internal skeleton made of cartilage 5. Three major groups 6. Tremendous diversity of behavior and structure and function Chimaeras Chondrichthyan Fishes: 6 key traits Synapomorphy 1: dentition; tooth replacement pattern • Teeth are not fused to jaws • New rows move up to replace old/lost teeth • Chondrichthyan teeth are
    [Show full text]
  • Skates and Rays Diversity, Exploration and Conservation – Case-Study of the Thornback Ray, Raja Clavata
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Doutoramento em Ciências do Mar 2010 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Tese orientada por Professor Auxiliar com Agregação Leonel Serrano Gordo e Investigadora Auxiliar Ivone Figueiredo Doutoramento em Ciências do Mar 2010 The research reported in this thesis was carried out at the Instituto de Investigação das Pescas e do Mar (IPIMAR - INRB), Unidade de Recursos Marinhos e Sustentabilidade. This research was funded by Fundação para a Ciência e a Tecnologia (FCT) through a PhD grant (SFRH/BD/23777/2005) and the research project EU Data Collection/DCR (PNAB). Skates and rays diversity, exploration and conservation | Table of Contents Table of Contents List of Figures ............................................................................................................................. i List of Tables ............................................................................................................................. v List of Abbreviations ............................................................................................................. viii Agradecimentos ........................................................................................................................
    [Show full text]
  • An Introduction to the Classification of Elasmobranchs
    An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved.
    [Show full text]
  • Spatial Ecology and Fisheries Interactions of Rajidae in the Uk
    UNIVERSITY OF SOUTHAMPTON FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Ocean and Earth Sciences SPATIAL ECOLOGY AND FISHERIES INTERACTIONS OF RAJIDAE IN THE UK Samantha Jane Simpson Thesis for the degree of DOCTOR OF PHILOSOPHY APRIL 2018 UNIVERSITY OF SOUTHAMPTON 1 2 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Ocean and Earth Sciences Doctor of Philosophy FINE-SCALE SPATIAL ECOLOGY AND FISHERIES INTERACTIONS OF RAJIDAE IN UK WATERS by Samantha Jane Simpson The spatial occurrence of a species is a fundamental part of its ecology, playing a role in shaping the evolution of its life history, driving population level processes and species interactions. Within this spatial occurrence, species may show a tendency to occupy areas with particular abiotic or biotic factors, known as a habitat association. In addition some species have the capacity to select preferred habitat at a particular time and, when species are sympatric, resource partitioning can allow their coexistence and reduce competition among them. The Rajidae (skate) are cryptic benthic mesopredators, which bury in the sediment for extended periods of time with some species inhabiting turbid coastal waters in higher latitudes. Consequently, identifying skate fine-scale spatial ecology is challenging and has lacked detailed study, despite them being commercially important species in the UK, as well as being at risk of population decline due to overfishing. This research aimed to examine the fine-scale spatial occurrence, habitat selection and resource partitioning among the four skates across a coastal area off Plymouth, UK, in the western English Channel. In addition, I investigated the interaction of Rajidae with commercial fisheries to determine if interactions between species were different and whether existing management measures are effective.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Identification Guide to the Deep-Sea Cartilaginous Fishes Of
    Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean FAO. 2015. Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean. FishFinder Programme, by Ebert, D.A. and Mostarda, E., Rome, Italy. Supervision: Merete Tandstad, Jessica Sanders (FAO, Rome) Technical editor: Edoardo Mostarda (FAO, Rome) Colour illustrations, cover and graphic design: Emanuela D’Antoni (FAO, Rome) This guide was prepared under the “FAO Deep–sea Fisheries Programme” thanks to a generous funding from the Government of Norway (Support to the implementation of the International Guidelines on the Management of Deep-Sea Fisheries in the High Seas project) for the purpose of assisting states, institutions, the fishing industry and RFMO/As in the implementation of FAO International Guidelines for the Management of Deep-sea Fisheries in the High Seas. It was developed in close collaboration with the FishFinder Programme of the Marine and Inland Fisheries Branch, Fisheries Department, Food and Agriculture Organization of the United Nations (FAO). The present guide covers the deep–sea Southeastern Atlantic Ocean and that portion of Southwestern Indian Ocean from 18°42’E to 30°00’E (FAO Fishing Area 47). It includes a selection of cartilaginous fish species of major, moderate and minor importance to fisheries as well as those of doubtful or potential use to fisheries. It also covers those little known species that may be of research, educational, and ecological importance. In this region, the deep–sea chondrichthyan fauna is currently represented by 50 shark, 20 batoid and 8 chimaera species. This guide includes full species accounts for 37 shark, 9 batoid and 4 chimaera species selected as being the more difficult to identify and/or commonly caught.
    [Show full text]
  • Reproductive Biology of Sympterygia Bonapartii (Chondrichthyes: Rajiformes: Arhynchobatidae) in San Matías Gulf, Patagonia, Argentina
    Neotropical Ichthyology, 15(1): e160022, 2017 Journal homepage: www.scielo.br/ni DOI: 10.1590/1982-0224-20160022 Published online: 03 April 2017 (ISSN 1982-0224) Printed: 31 March 2017 (ISSN 1679-6225) Reproductive biology of Sympterygia bonapartii (Chondrichthyes: Rajiformes: Arhynchobatidae) in San Matías Gulf, Patagonia, Argentina María L. Estalles1, María R. Perier2 and Edgardo E. Di Giácomo2 This study estimates and analyses the reproductive parameters and cycle of Sympterygia bonapartii in San Matías Gulf, northern Patagonia, Argentina. A total of 827 males and 1,299 females were analysed. Males ranged from 185 to 687 mm of total length (TL) and females from 180 to 742 mm TL. Sexual dimorphism was detected; females were larger, heavier, exhibited heavier livers, wider discs and matured at lager sizes than males. Immature females ranged from 180 to 625 mm TL, maturing females from 408 to 720 mm TL, mature ones from 514 to 742 mm TL and females with egg capsules from 580 to 730 mm TL. Immature males ranged from 185 to 545 mm TL, maturing ones from 410 to 620 mm TL and mature males from 505 to 687 mm TL. Size at which 50% of the skates reached maturity was estimated to be 545 mm TL for males and 594 mm TL for females. According to the reproductive indexes analysed, S. bonapartii exhibited a seasonal reproductive pattern. Mating may occur during winter-early spring and the egg-laying season, during spring and summer. Keywords: Elasmobranchii, Reproduction, Skate, South Western Atlantic Ocean. El presente estudio estima y analiza los parámetros reproductivos y el ciclo reproductivo de Sympterygia bonapartii en el Golfo San Matías, Patagonia norte, Argentina.
    [Show full text]
  • XIV. Appendices
    Appendix 1, Page 1 XIV. Appendices Appendix 1. Vertebrate Species of Alaska1 * Threatened/Endangered Fishes Scientific Name Common Name Eptatretus deani black hagfish Lampetra tridentata Pacific lamprey Lampetra camtschatica Arctic lamprey Lampetra alaskense Alaskan brook lamprey Lampetra ayresii river lamprey Lampetra richardsoni western brook lamprey Hydrolagus colliei spotted ratfish Prionace glauca blue shark Apristurus brunneus brown cat shark Lamna ditropis salmon shark Carcharodon carcharias white shark Cetorhinus maximus basking shark Hexanchus griseus bluntnose sixgill shark Somniosus pacificus Pacific sleeper shark Squalus acanthias spiny dogfish Raja binoculata big skate Raja rhina longnose skate Bathyraja parmifera Alaska skate Bathyraja aleutica Aleutian skate Bathyraja interrupta sandpaper skate Bathyraja lindbergi Commander skate Bathyraja abyssicola deepsea skate Bathyraja maculata whiteblotched skate Bathyraja minispinosa whitebrow skate Bathyraja trachura roughtail skate Bathyraja taranetzi mud skate Bathyraja violacea Okhotsk skate Acipenser medirostris green sturgeon Acipenser transmontanus white sturgeon Polyacanthonotus challengeri longnose tapirfish Synaphobranchus affinis slope cutthroat eel Histiobranchus bathybius deepwater cutthroat eel Avocettina infans blackline snipe eel Nemichthys scolopaceus slender snipe eel Alosa sapidissima American shad Clupea pallasii Pacific herring 1 This appendix lists the vertebrate species of Alaska, but it does not include subspecies, even though some of those are featured in the CWCS.
    [Show full text]
  • Fish Bulletin 161. California Marine Fish Landings for 1972 and Designated Common Names of Certain Marine Organisms of California
    UC San Diego Fish Bulletin Title Fish Bulletin 161. California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California Permalink https://escholarship.org/uc/item/93g734v0 Authors Pinkas, Leo Gates, Doyle E Frey, Herbert W Publication Date 1974 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF FISH AND GAME FISH BULLETIN 161 California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California By Leo Pinkas Marine Resources Region and By Doyle E. Gates and Herbert W. Frey > Marine Resources Region 1974 1 Figure 1. Geographical areas used to summarize California Fisheries statistics. 2 3 1. CALIFORNIA MARINE FISH LANDINGS FOR 1972 LEO PINKAS Marine Resources Region 1.1. INTRODUCTION The protection, propagation, and wise utilization of California's living marine resources (established as common property by statute, Section 1600, Fish and Game Code) is dependent upon the welding of biological, environment- al, economic, and sociological factors. Fundamental to each of these factors, as well as the entire management pro- cess, are harvest records. The California Department of Fish and Game began gathering commercial fisheries land- ing data in 1916. Commercial fish catches were first published in 1929 for the years 1926 and 1927. This report, the 32nd in the landing series, is for the calendar year 1972. It summarizes commercial fishing activities in marine as well as fresh waters and includes the catches of the sportfishing partyboat fleet. Preliminary landing data are published annually in the circular series which also enumerates certain fishery products produced from the catch.
    [Show full text]