Pacific, Northeast
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Beringraja Binoculata) and Longnose Skate (Raja Rhina)
Bomb Dating and Age Estimates of Big Skate (Beringraja binoculata) and Longnose Skate (Raja rhina) Jacquelynne King, Fisheries and Oceans Canada David Ebert, Moss Landing Marine Laboratories Craig Kastelle, Alaska Fisheries Science Center Thomas Helser, Alaska Fisheries Science Center Christopher Gburski, Alaska Fisheries Science Center Gregor Cailliet, Moss Landing Marine Laboratories ABSTRACT MATERIALS AND METHODS RESULTS Age and growth curve estimates have been produced for big skate Bomb radiocarbon analyses Big skate (Beringraja binoculata [formerly Raja binoculata]) and longnose skate 1. Big skate (n=12) and longnose skate (n=33) vertebrae were collected • the estimated birth years ranged from 1965-1970 (Raja rhina) populations in the Gulf of Alaska, British Columbia and during the early 1980s off California. These fishes were estimated to • there were no low ∆14C values for big skate California. Age estimation for these two skate species relies on growth be alive during the atmospheric testing of atomic bombs which resulted Longnose skate band counts of sectioned vertebrae. However these studies have not in the rapid increase in oceanic radiocarbon (14C). • the ∆14C values for longnose skate overlapped with mid to top portion of the produced similar results for either species, highlighting the need for age 2. Vertebrae where thin (0.7-1.0 mm) sectioned and mounted on ∆14C reference curve for Petrale sole (Fig. 3) validation. Archived large specimens of big skate and longnose skate microscope slides. • these skate were not as old as originally estimated but there were early collected in 1980 and 1981 had minimum age estimates old enough to 3. Ages were estimated based on vertebral band counts (Fig. -
Stomach Content Analysis of Short-Finned Pilot Whales
f MARCH 1986 STOMACH CONTENT ANALYSIS OF SHORT-FINNED PILOT WHALES h (Globicephala macrorhynchus) AND NORTHERN ELEPHANT SEALS (Mirounga angustirostris) FROM THE SOUTHERN CALIFORNIA BIGHT by Elizabeth S. Hacker ADMINISTRATIVE REPORT LJ-86-08C f This Administrative Report is issued as an informal document to ensure prompt dissemination of preliminary results, interim reports and special studies. We recommend that it not be abstracted or cited. STOMACH CONTENT ANALYSIS OF SHORT-FINNED PILOT WHALES (GLOBICEPHALA MACRORHYNCHUS) AND NORTHERN ELEPHANT SEALS (MIROUNGA ANGUSTIROSTRIS) FROM THE SOUTHERN CALIFORNIA BIGHT Elizabeth S. Hacker College of Oceanography Oregon State University Corvallis, Oregon 97331 March 1986 S H i I , LIBRARY >66 MAR 0 2 2007 ‘ National uooarac & Atmospheric Administration U.S. Dept, of Commerce This report was prepared by Elizabeth S. Hacker under contract No. 84-ABA-02592 for the National Marine Fisheries Service, Southwest Fisheries Center, La Jolla, California. The statements, findings, conclusions and recommendations herein are those of the author and do not necessarily reflect the views of the National Marine Fisheries Service. Charles W. Oliver of the Southwest Fisheries Center served as Contract Officer's Technical Representative for this contract. ADMINISTRATIVE REPORT LJ-86-08C CONTENTS PAGE INTRODUCTION.................. 1 METHODS....................... 2 Sample Collection........ 2 Sample Identification.... 2 Sample Analysis.......... 3 RESULTS....................... 3 Globicephala macrorhynchus 3 Mirounga angustirostris... 4 DISCUSSION.................... 6 ACKNOWLEDGEMENTS.............. 11 REFERENCES.............. 12 i LIST OF TABLES TABLE PAGE 1 Collection data for Globicephala macrorhynchus examined from the Southern California Bight........ 19 2 Collection data for Mirounga angustirostris examined from the Southern California Bight........ 20 3 Stomach contents of Globicephala macrorhynchus examined from the Southern California Bight....... -
Pleuronectidae
FAMILY Pleuronectidae Rafinesque, 1815 - righteye flounders [=Heterosomes, Pleronetti, Pleuronectia, Diplochiria, Poissons plats, Leptosomata, Diprosopa, Asymmetrici, Platessoideae, Hippoglossoidinae, Psettichthyini, Isopsettini] Notes: Hétérosomes Duméril, 1805:132 [ref. 1151] (family) ? Pleuronectes [latinized to Heterosomi by Jarocki 1822:133, 284 [ref. 4984]; no stem of the type genus, not available, Article 11.7.1.1] Pleronetti Rafinesque, 1810b:14 [ref. 3595] (ordine) ? Pleuronectes [published not in latinized form before 1900; not available, Article 11.7.2] Pleuronectia Rafinesque, 1815:83 [ref. 3584] (family) Pleuronectes [senior objective synonym of Platessoideae Richardson, 1836; family name sometimes seen as Pleuronectiidae] Diplochiria Rafinesque, 1815:83 [ref. 3584] (subfamily) ? Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Poissons plats Cuvier, 1816:218 [ref. 993] (family) Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Leptosomata Goldfuss, 1820:VIII, 72 [ref. 1829] (family) ? Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Diprosopa Latreille, 1825:126 [ref. 31889] (family) Platessa [no stem of the type genus, not available, Article 11.7.1.1] Asymmetrici Minding, 1832:VI, 89 [ref. 3022] (family) ? Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Platessoideae Richardson, 1836:255 [ref. 3731] (family) Platessa [junior objective synonym of Pleuronectia Rafinesque, 1815, invalid, Article 61.3.2 Hippoglossoidinae Cooper & Chapleau, 1998:696, 706 [ref. 26711] (subfamily) Hippoglossoides Psettichthyini Cooper & Chapleau, 1998:708 [ref. 26711] (tribe) Psettichthys Isopsettini Cooper & Chapleau, 1998:709 [ref. 26711] (tribe) Isopsetta SUBFAMILY Atheresthinae Vinnikov et al., 2018 - righteye flounders GENUS Atheresthes Jordan & Gilbert, 1880 - righteye flounders [=Atheresthes Jordan [D. -
Stock Assessment and Fishery Evaluation of Skate Species (Rajidae)
16. Gulf of Alaska Skates by Sarah Gaichas1, Nick Sagalkin2, Chris Gburski1, Duane Stevenson1, and Rob Swanson3 1NMFS Alaska Fisheries Science Center, Seattle WA 2ADF&G Commercial Fisheries Division, Kodiak AK 3NMFS Alaska Fisheries Science Center, Kodiak AK Executive Summary Summary of Major Changes Changes in the input data: 1. Total catch weight for GOA skates is updated with 2004 and partial 2005 data. 2. Biomass estimates from the 2005 GOA bottom trawl survey are incorporated. 3. Life history information has been updated with recent research results. 4. Information on the position of skates within the GOA ecosystem and the potential ecosystem effects of skate removals are included. Changes in assessment methodology: There are no changes to the Tier 5 assessment methodology. Changes in assessment results: No directed fishing for skates in the GOA is recommended, due to high incidental catch in groundfish and halibut fisheries. Skate biomass changed between the last NMFS GOA trawl survey in 2003 and the most recent survey in 2005, which changes the Tier 5 assessment results based on survey biomass. The recommendations for 2005 based on the three most recent survey biomass estimates for skates and M=0.10 are: Western Central GOA Eastern GOA GOA (610) (620, 630) (640, 650) Bathyraja skates Gulfwide Big skate ABC 695 2,250 599 ABC 1,617 OFL 927 3,001 798 OFL 2,156 Longnose skate ABC 65 1,969 861 OFL 87 2,625 1,148 Responses to SSC Comments SSC comments specific to the GOA Skates assessment: From the December, 2004 SSC minutes: The SSC is grateful to samplers with ADF&G who collected catch data and biological samples for Kodiak landings. -
Humboldt Bay Fishes
Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar -
Methodology of the Pacific Marine Ecological Classification System and Its Application to the Northern and Southern Shelf Bioregions
Canadian Science Advisory Secretariat (CSAS) Research Document 2016/035 Pacific Region Methodology of the Pacific Marine Ecological Classification System and its Application to the Northern and Southern Shelf Bioregions Emily Rubidge1, Katie S. P. Gale1, Janelle M. R. Curtis2, Erin McClelland3, Laura Feyrer4, Karin Bodtker5, Carrie Robb5 1Institute of Ocean Sciences Fisheries & Oceans Canada P.O. Box 6000 Sidney, BC V8L 4B2 2Pacific Biological Station Fisheries & Oceans Canada 3190 Hammond Bay Rd Nanaimo, BC V9T 1K6 3EKM Scientific Consulting 4BC Ministry of Environment P.O. Box 9335 STN PROV GOVT Victoria, BC V8W 9M1 5Living Oceans Society 204-343 Railway St. Vancouver, BC V6A 1A4 May 2016 Foreword This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations. Research documents are produced in the official language in which they are provided to the Secretariat. Published by: Fisheries and Oceans Canada Canadian Science Advisory Secretariat 200 Kent Street Ottawa ON K1A 0E6 http://www.dfo-mpo.gc.ca/csas-sccs/ [email protected] © Her Majesty the Queen in Right of Canada, 2016 ISSN 1919-5044 Correct citation for this publication: Rubidge, E., Gale, K.S.P., Curtis, J.M.R., McClelland, E., Feyrer, L., Bodtker, K., and Robb, C. 2016. Methodology of the Pacific Marine Ecological Classification System and its Application to the Northern and Southern Shelf Bioregions. -
Recent Contributions to the Knowledge of the Skates of Alaska by Duane E
FEATURE Recent Contributions to the Knowledge of the Skates of Alaska by Duane E. Stevenson and James W. Orr Figure 1. Raja binoculata (big skate). Photo by Duane Stevenson. he fish family Rajidae, commonly known imately 30 species worldwide and a North Pacific as the skates, includes about 280 species of assemblage of 6 species ranging from the Gulf of primarily benthic fishes found throughout California to the Bering Sea and into the western Tthe world’s oceans from tropical to cold temperate North Pacific. This North Pacific Assemblage is latitudes. The fishes of Alaska (Mecklenburg et al., thought to be a cluster of closely related species and 2002), the most recent inventory of Alaska’s fishes, will probably be recognized as a separate genus in lists 12 species of skates known to occur in the Gulf the future. The genus Bathyraja, also known as the of Alaska, Aleutian Islands, and Bering Sea from “soft-snout” skates due to their flexible rostral car- the intertidal zone to depths of over 1500 m, and tilage, includes over 40 species distributed through- at least 2 other species have been discovered in the out the world’s oceans. Bathyraja is the most broadly region since the publication of that volume as de- distributed as well as the most diverse of all the scribed in Bathyraja mariposa: a new species of skate skate genera, and the greatest diversity of Bathyraja (Rajidae: Arhynchobatinae) from the Aleutian Islands occurs in the North Pacific. The majority of Alaska’s (Stevenson et al., 2004a) and New records of two deep- skate species are included in this genus, although water skate species from the Bering Sea (Stevenson and some authors include one or two of the species in Orr, submitted). -
Flounders, Halibuts, Soles Capture Production by Species, Fishing Areas
95 Flounders, halibuts, soles Capture production by species, fishing areas and countries or areas B-31 Flets, flétans, soles Captures par espèces, zones de pêche et pays ou zones Platijas, halibuts, lenguados Capturas por especies, áreas de pesca y países o áreas Species, Fishing area Espèce, Zone de pêche 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 Especie, Área de pesca t t t t t t t t t t Leopard flounder Rombou léopard Lenguado leopardo Bothus pantherinus 1,83(01)018,05 OUN 51 Bahrain ... ... ... ... 3 5 0 0 2 2 Saudi Arabia 84 65 84 96 67 86 124 91 91 93 51 Fishing area total 84 65 84 96 70 91 124 91 93 95 Species total 84 65 84 96 70 91 124 91 93 95 Lefteye flounders nei Arnoglosses, rombous nca Rodaballos, rombos, etc. nep Bothidae 1,83(01)XXX,XX LEF 27 Germany 370 290 292 280 385 262 321 24 1 - Portugal 117 107 106 162 224 202 189 117 106 136 Spain ... ... ... ... 49 92 68 63 106 134 27 Fishing area total 487 397 398 442 658 556 578 204 213 270 31 Korea Rep 2 - - - - - - - - - 31 Fishing area total 2 - - - - - - - - - 34 Cameroon 0 - - - - - - - - - Korea Rep 15 - - - - 5 - - - - Portugal 2 12 11 17 7 - - - 15 15 34 Fishing area total 17 12 11 17 7 5 - - 15 15 41 Estonia - - 1 - - - - - - - Korea Rep - 20 - - - - - - - - 41 Fishing area total - 20 1 - - - - - - - 48 UK 0 - - - - - - - - - 48 Fishing area total 0 - - - - - - - - - 51 Eritrea 119 125 69 49 77 20 85 1 0 15 Korea Rep 10 - 19 24 1 - - - 1 - 51 Fishing area total 129 125 88 73 78 20 85 1 1 15 71 Korea Rep 8 10 1 - - - - - - - 71 Fishing area total 8 10 1 - - - -
Flounders, Halibuts, Soles Capture Production by Species, Fishing Areas
101 Flounders, halibuts, soles Capture production by species, fishing areas and countries or areas B-31 Flets, flétans, soles Captures par espèces, zones de pêche et pays ou zones Platijas, halibuts, lenguados Capturas por especies, áreas de pesca y países o áreas Species, Fishing area Espèce, Zone de pêche 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Especie, Área de pesca t t t t t t t t t t Mediterranean scaldfish Arnoglosse de Méditerranée Serrandell Arnoglossus laterna 1,83(01)001,01 MSF 34 Italy - - - - - - - 57 223 123 34 Fishing area total - - - - - - - 57 223 123 37 Italy ... ... ... ... ... ... 447 479 169 403 37 Fishing area total ... ... ... ... ... ... 447 479 169 403 Species total ... ... ... ... ... ... 447 536 392 526 Leopard flounder Rombou léopard Lenguado leopardo Bothus pantherinus 1,83(01)018,05 OUN 51 Bahrain 2 - - 1 1 4 4 F 4 F 4 F 4 F Saudi Arabia 77 80 77 75 74 83 71 79 80 F 74 51 Fishing area total 79 80 77 76 75 87 75 F 83 F 84 F 78 F Species total 79 80 77 76 75 87 75 F 83 F 84 F 78 F Lefteye flounders nei Arnoglosses, rombous nca Rodaballos, rombos, etc. nep Bothidae 1,83(01)XXX,XX LEF 21 USA 1 087 774 566 747 992 759 545 406 633 409 21 Fishing area total 1 087 774 566 747 992 759 545 406 633 409 27 Germany - - - - - - - - 0 - Portugal 136 103 143 125 105 102 87 76 84 105 Spain 134 116 96 56 29 8 12 12 6 5 27 Fishing area total 270 219 239 181 134 110 99 88 90 110 31 USA 59 38 71 45 41 128 117 133 99 102 31 Fishing area total 59 38 71 45 41 128 117 133 99 102 34 Greece - - - - - - - 71 45 - Portugal 15 46 .. -
A Review of Longnose Skates Zearaja Chilensisand Dipturus Trachyderma (Rajiformes: Rajidae)
Univ. Sci. 2015, Vol. 20 (3): 321-359 doi: 10.11144/Javeriana.SC20-3.arol Freely available on line REVIEW ARTICLE A review of longnose skates Zearaja chilensis and Dipturus trachyderma (Rajiformes: Rajidae) Carolina Vargas-Caro1 , Carlos Bustamante1, Julio Lamilla2 , Michael B. Bennett1 Abstract Longnose skates may have a high intrinsic vulnerability among fishes due to their large body size, slow growth rates and relatively low fecundity, and their exploitation as fisheries target-species places their populations under considerable pressure. These skates are found circumglobally in subtropical and temperate coastal waters. Although longnose skates have been recorded for over 150 years in South America, the ability to assess the status of these species is still compromised by critical knowledge gaps. Based on a review of 185 publications, a comparative synthesis of the biology and ecology was conducted on two commercially important elasmobranchs in South American waters, the yellownose skate Zearaja chilensis and the roughskin skate Dipturus trachyderma; in order to examine and compare their taxonomy, distribution, fisheries, feeding habitats, reproduction, growth and longevity. There has been a marked increase in the number of published studies for both species since 2000, and especially after 2005, although some research topics remain poorly understood. Considering the external morphological similarities of longnose skates, especially when juvenile, and the potential niche overlap in both, depth and latitude it is recommended that reproductive seasonality, connectivity and population structure be assessed to ensure their long-term sustainability. Keywords: conservation biology; fishery; roughskin skate; South America; yellownose skate Introduction Edited by Juan Carlos Salcedo-Reyes & Andrés Felipe Navia Global threats to sharks, skates and rays have been 1. -
Spawning Characteristics and Artificial Hatching of Female Mottled Skate, Beringraja Pulchra in the West Coast of Korea
Dev. Reprod. Vol. 17, No. 3, 247~255, September, 2013 ttp://dx.doi.org/10.12717/DR.2013.17.3.247 ISSN 1226-6752 (Print) ․ ISSN 2287-7967 (Online) Spawning Characteristics and Artificial Hatching of Female Mottled Skate, Beringraja pulchra in the West Coast of Korea † Hee-Woong Kang, Yeong-Rok Jo, Duk-Yong Kang, Gyeong-Suk Jeong and Hyun-Su Jo West Sea Fisheries Research Institute, Incheon 400-420, Republic of Korea ABSTRACT : The gonadsomatic index (GSI) of mottled skate was the highest in April, GSI and HSI showed a reverse phase for its reproductive cycle. The fish had one pair of egg capsules, having 1 to 7 fertilized eggs, and spawned all the year round. When surveying the reproductive characteristics of females over 63 ㎝ in disc width, we found the spawning peak was between April to June, and the appearance ratio of egg capsules was the highest in May (32.1%). The eggs were hatched at 8℃, 13℃, 18℃, water temperature (12.8 to 24.2℃), and the best hatching temperature was 18℃. The number of fish hatched was 4 to 5 fish/egg capsules, and the hatching rate was 100%. The sex ratios of hatching larvae were 45.5% female and 54.5% male. Therefore this study will provide fundamental data and information for artificial reproduction of the mottled skate. Key words : Beringraja pulchra, Closed season, Egg capsule, Hatching, Spawning INTRODUCTION skate is one of the most expensive fish on the market at a hundred thousand Korean won per fish. Currently to The mottled skate (Beringraja pulchra) is a species of avoid over-exploitation, there is regulatory control for a big skate, family Rajidae, in the Rajiformes order. -
Skates and Rays of British Columbia
Skates and Rays of British Columbia Fisheries and Oceans Canada is committed to developing the highest standard of bycatch data, and to the conservation of skate species in British Columbia waters. The information in this guide is designed to assist the Department to monitor bycatch, and fish harvesters to correctly identify bycatch and to enter it in logbooks. Drawings are not to scale. A B C BIG SKATE Common LONGNOSE Common BROAD Rare SKATE SKATE D E F G CALIFORNIA Rare SANDPAPER Common ALEUTIAN Infrequent ALASKA Rare SKATE SKATE SKATE SKATE I H J ROUGHTAIL Infrequent STARRY Rare SKATE DEEP SEA Rare SKATE SKATE N L M PELAGIC Rare K PACIFIC COMMANDER Rare Rare STINGRAY WHITEBROW Rare SKATE TORPEDO RAY SKATE Fisheries and Oceans Pêches et Océans Canada Canada Skates and Rays of British Columbia Eyespot Claspers (male) A BIG SKATE Beringraja binoculata • Depths 3 to 800 m; usually less than 200 m Dorsal fins • Total length to 200 cm Snout • Brown to gray with darker mottling; prominent eyespots • Ventral surface white to muddy white Pelvic fin • Snout: stiff and short Nuchal thorns • No scapular thorns; one nuchal thorn Notch • Continuous row of thorns, pelvic region to first dorsal fin Scapular thorns • Pelvic fin shallowly notched B LONGNOSE SKATE Raja rhina H STARRY SKATE Raja stellulata • Depths 20 to 660 m; usually less than 350 m • Depths 20 to 730 m • Total length to 140 cm • Total length to 75 cm • Dark brown with faint dark and light blotches; sometimes pale-centered • Gray-brown with numerous dark spots; sometimes with black