Beringraja Binoculata) and Longnose Skate (Raja Rhina)

Total Page:16

File Type:pdf, Size:1020Kb

Beringraja Binoculata) and Longnose Skate (Raja Rhina) Bomb Dating and Age Estimates of Big Skate (Beringraja binoculata) and Longnose Skate (Raja rhina) Jacquelynne King, Fisheries and Oceans Canada David Ebert, Moss Landing Marine Laboratories Craig Kastelle, Alaska Fisheries Science Center Thomas Helser, Alaska Fisheries Science Center Christopher Gburski, Alaska Fisheries Science Center Gregor Cailliet, Moss Landing Marine Laboratories ABSTRACT MATERIALS AND METHODS RESULTS Age and growth curve estimates have been produced for big skate Bomb radiocarbon analyses Big skate (Beringraja binoculata [formerly Raja binoculata]) and longnose skate 1. Big skate (n=12) and longnose skate (n=33) vertebrae were collected • the estimated birth years ranged from 1965-1970 (Raja rhina) populations in the Gulf of Alaska, British Columbia and during the early 1980s off California. These fishes were estimated to • there were no low ∆14C values for big skate California. Age estimation for these two skate species relies on growth be alive during the atmospheric testing of atomic bombs which resulted Longnose skate band counts of sectioned vertebrae. However these studies have not in the rapid increase in oceanic radiocarbon (14C). • the ∆14C values for longnose skate overlapped with mid to top portion of the produced similar results for either species, highlighting the need for age 2. Vertebrae where thin (0.7-1.0 mm) sectioned and mounted on ∆14C reference curve for Petrale sole (Fig. 3) validation. Archived large specimens of big skate and longnose skate microscope slides. • these skate were not as old as originally estimated but there were early collected in 1980 and 1981 had minimum age estimates old enough to 3. Ages were estimated based on vertebral band counts (Fig. 2) and birth bomb signal specimens 14 suggest that radiocarbon ( C) signals from bomb testing conducted in the years assigned based on date of capture and age. 80 late-1960s could be used to establish dates of growth band formation (Fig. 4. The distances of INSIDE bands (first 3 grouping) and OUTSIDE bands 60 1). Accelerator mass spectrometry provided measures of Δ14C associated (last 3 grouping) along the corpus calcarea were measured (Fig. 2). 40 with a year of growth band formation based on skate age estimates. We • INSIDE = assumed pre-bomb signal (low 14C values) used Bayesian statistics to compare these values to reference Δ14C a • OUTSIDE = assumed post-bomb signal (high 14C values) C) 20 14 marine teleost otolith chronology produced that exists for California. 5. INSIDE and OUTSIDE bands were milled with a high-resolution micro- Δ 0 milling system (Carpenter Systems CM-2). Each band grouping had a -20 target of 5-15 mg per specimen. -40 Captured in 1981 at 22 years of age 14 14 6. Assays of C were be completed using an accelerator mass OUTSIDE bands are post-bomb signal HIGH Δ C values -60 spectrometry. ( Radiocarbon -80 Petrale sole Age estimation and vertebrae preparation method Longnose skate 7. Additional vertebrae of the same specimens were thin (0.3-0.4 mm) -100 Petrale pulse function Skate pulse function sectioned and mounted on microscope slides with 1-one section -120 unstained (as in Fig. 1) and 2-one section stained with the histological 1950 1955 1960 1965 1970 1975 1980 1985 stain Harris hematoxylin (Fig. 2). Deposition year 8. Bias and precision between readers were assessed with bias plots and Figure 3. ∆14C values for longnose skate (diamonds) compared to published reference the average percent error index (APE) respectively. curve for Petrale sole (circles). 14 Age validation • age estimates for longnose skate (∆ C deposition year) based on vertebral 9. We used Bayesian statistics to compare the values of 14C to published band counts appeared to be accurate (Fig. 4) Petrale sole reference ∆14C data to estimate time of band formation. • low inter-reader bias (Fig. 5) and improved precision (APE=5.99 versus 10.These Bayesian estimates of time of band formation were compared to APE=10.17 for stained) between readers were obtained for the unstained the two sets of age estimates (unstained and stained). vertebrae Born in 1959 INSIDE bands are pre-bomb signal LOW Δ14C values 15 10 Figure 1. Longnose skate vertebral thin section, aged at 22 years. This fish was captured in 1981, and estimated to have been born in 1959 before the nuclear bomb testing marine signal. The INSIDE bands should be pre-bomb signal and have low 5 Δ14C values. The OUTSIDE bands should be post-bomb signal and have elevated, high Δ14C values. This section is unstained. SELECTED REFERENCES Campana, S., L. Natanson, & S. Myklevoll. 2002. Bomb dating and age determination of large pelagic sharks. Can. Counts Band 2 Reader 0 J. Fish. Aquat. Sci. 59: 450-455. 0 5 10 15 Gburski, C., Gaichas, S.K. & Kimura, D.K. 2007. Age and growth of big skate (Raja binoculata) and longnose skate Figure 4. Bayesian posterior distribution of Reader 1 Band Counts estimated ages compared to ∆14C-derived (R. rhina) in the Gulf of Alaska. Environ. Biol. Fish. 80: 337-349. Figure 5. Inter-reader bias plot for Haltuch, M., Hamel, O., Piner, K., McDonald, P., Kastelle, C., & Field, J. 2013. A California Current bomb true ages (i.e. Bias). Distribution centered longnose skate for Reader 1 vs. Reader radiocarbon reference chronology and petrale sole (Eopsetta jordani) age validation. Can. J. Fish. Aquat. Sci. 70: around zero suggests age estimation 2, unstained (blue diamonds) and 22-31. accuracy. There is indication of a higher McFarlane, G.A. & King, J.R. 2006. Age and growth of big skate (Raja binoculata) and longnose skate (Raja rhina) in stained (orange squares). The diagonal probability to underestimate ages. British Columbia waters. Fish. Res. 78:169-178. line is equivalence line. Natanson, L.J., J.A. Sulikowski, J.R. Kneebone & P.C. Tsang. 2007. Age and growth estimates for the smooth skate, Malacoraja senta, in the Gulf of Maine. Environ Biol. Fish. 80:293-308. Zeiner, S.J. & Wolf, P.G. 1993. Growth characteristics and estimates of age at maturity of two species of skates (Raja CONCLUSIONS binoculata and Raja rhina) from Monterey Bay, California. In S. Branstetter (Editor) Conservation biology of • the archived big skate were born post-bomb signal and the age methodology elasmobranchs, pp. 87-99. US. Dept. Comm., NOAA Technical Report, NMFS 115. for big skate cannot be validated with this approach and samples ACKNOWLEDGEMENTS We would like to thank Sandra Zeiner and Patricia Wolfe for collecting the big and longnose skate vertebrae in Figure 2. The same specimen as in Figure 1, but this vertebral thin section is • can now refine the ageing criteria for longnose skate 1980-1981 to make this research possible with these historical samples and the North Pacific Research Board stained with Harris hematoxylin in an attempt to enhance band visibility. • the age methodology for longnose skate is now validated for funding and support (NPRB Project 1202). • the most suitable vertebrae preparation is unstained The recommendations and general content presented in this poster do not necessarily represent the views or official position of the Department of Commerce, the National Oceanic and Atmospheric Administration, or the National Marine Fisheries Service. .
Recommended publications
  • Stomach Content Analysis of Short-Finned Pilot Whales
    f MARCH 1986 STOMACH CONTENT ANALYSIS OF SHORT-FINNED PILOT WHALES h (Globicephala macrorhynchus) AND NORTHERN ELEPHANT SEALS (Mirounga angustirostris) FROM THE SOUTHERN CALIFORNIA BIGHT by Elizabeth S. Hacker ADMINISTRATIVE REPORT LJ-86-08C f This Administrative Report is issued as an informal document to ensure prompt dissemination of preliminary results, interim reports and special studies. We recommend that it not be abstracted or cited. STOMACH CONTENT ANALYSIS OF SHORT-FINNED PILOT WHALES (GLOBICEPHALA MACRORHYNCHUS) AND NORTHERN ELEPHANT SEALS (MIROUNGA ANGUSTIROSTRIS) FROM THE SOUTHERN CALIFORNIA BIGHT Elizabeth S. Hacker College of Oceanography Oregon State University Corvallis, Oregon 97331 March 1986 S H i I , LIBRARY >66 MAR 0 2 2007 ‘ National uooarac & Atmospheric Administration U.S. Dept, of Commerce This report was prepared by Elizabeth S. Hacker under contract No. 84-ABA-02592 for the National Marine Fisheries Service, Southwest Fisheries Center, La Jolla, California. The statements, findings, conclusions and recommendations herein are those of the author and do not necessarily reflect the views of the National Marine Fisheries Service. Charles W. Oliver of the Southwest Fisheries Center served as Contract Officer's Technical Representative for this contract. ADMINISTRATIVE REPORT LJ-86-08C CONTENTS PAGE INTRODUCTION.................. 1 METHODS....................... 2 Sample Collection........ 2 Sample Identification.... 2 Sample Analysis.......... 3 RESULTS....................... 3 Globicephala macrorhynchus 3 Mirounga angustirostris... 4 DISCUSSION.................... 6 ACKNOWLEDGEMENTS.............. 11 REFERENCES.............. 12 i LIST OF TABLES TABLE PAGE 1 Collection data for Globicephala macrorhynchus examined from the Southern California Bight........ 19 2 Collection data for Mirounga angustirostris examined from the Southern California Bight........ 20 3 Stomach contents of Globicephala macrorhynchus examined from the Southern California Bight.......
    [Show full text]
  • Stock Assessment and Fishery Evaluation of Skate Species (Rajidae)
    16. Gulf of Alaska Skates by Sarah Gaichas1, Nick Sagalkin2, Chris Gburski1, Duane Stevenson1, and Rob Swanson3 1NMFS Alaska Fisheries Science Center, Seattle WA 2ADF&G Commercial Fisheries Division, Kodiak AK 3NMFS Alaska Fisheries Science Center, Kodiak AK Executive Summary Summary of Major Changes Changes in the input data: 1. Total catch weight for GOA skates is updated with 2004 and partial 2005 data. 2. Biomass estimates from the 2005 GOA bottom trawl survey are incorporated. 3. Life history information has been updated with recent research results. 4. Information on the position of skates within the GOA ecosystem and the potential ecosystem effects of skate removals are included. Changes in assessment methodology: There are no changes to the Tier 5 assessment methodology. Changes in assessment results: No directed fishing for skates in the GOA is recommended, due to high incidental catch in groundfish and halibut fisheries. Skate biomass changed between the last NMFS GOA trawl survey in 2003 and the most recent survey in 2005, which changes the Tier 5 assessment results based on survey biomass. The recommendations for 2005 based on the three most recent survey biomass estimates for skates and M=0.10 are: Western Central GOA Eastern GOA GOA (610) (620, 630) (640, 650) Bathyraja skates Gulfwide Big skate ABC 695 2,250 599 ABC 1,617 OFL 927 3,001 798 OFL 2,156 Longnose skate ABC 65 1,969 861 OFL 87 2,625 1,148 Responses to SSC Comments SSC comments specific to the GOA Skates assessment: From the December, 2004 SSC minutes: The SSC is grateful to samplers with ADF&G who collected catch data and biological samples for Kodiak landings.
    [Show full text]
  • Pacific, Northeast
    536 Fish, crustaceans, molluscs, etc Capture production by species items Pacific, Northeast C-67 Poissons, crustacés, mollusques, etc Captures par catégories d'espèces Pacifique, nord-est (a) Peces, crustáceos, moluscos, etc Capturas por categorías de especies Pacífico, nordeste English name Scientific name Species group Nom anglais Nom scientifique Groupe d'espèces 2012 2013 2014 2015 2016 2017 2018 Nombre inglés Nombre científico Grupo de especies t t t t t t t White sturgeon Acipenser transmontanus 21 76 64 27 21 23 36 26 Pink(=Humpback) salmon Oncorhynchus gorbuscha 23 107 935 327 085 146 932 278 246 62 659 228 336 61 591 Chum(=Keta=Dog) salmon Oncorhynchus keta 23 74 254 78 418 44 746 68 310 61 935 86 782 62 944 Sockeye(=Red) salmon Oncorhynchus nerka 23 100 038 81 848 141 311 135 474 132 554 132 610 120 341 Chinook(=Spring=King) salmon Oncorhynchus tshawytscha 23 7 543 9 067 11 894 9 582 6 991 5 251 3 203 Coho(=Silver) salmon Oncorhynchus kisutch 23 11 470 19 716 23 167 12 241 14 699 17 170 13 100 Pacific salmons nei Oncorhynchus spp 23 ... ... ... ... ... ... 17 586 Eulachon Thaleichthys pacificus 23 - - 9 6 2 1 ... Smelts nei Osmerus spp, Hypomesus spp 23 335 213 280 261 162 162 159 Salmonoids nei Salmonoidei 23 1 1 0 1 1 - 1 American shad Alosa sapidissima 24 152 23 52 51 94 95 179 Pacific halibut Hippoglossus stenolepis 31 19 048 17 312 14 098 14 718 15 033 15 707 13 207 English sole Pleuronectes vetulus 31 202 367 295 319 393 204 304 Greenland halibut Reinhardtius hippoglossoides 31 4 621 1 394 1 397 2 084 2 156 2 733 1 760
    [Show full text]
  • Humboldt Bay Fishes
    Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar
    [Show full text]
  • Recent Contributions to the Knowledge of the Skates of Alaska by Duane E
    FEATURE Recent Contributions to the Knowledge of the Skates of Alaska by Duane E. Stevenson and James W. Orr Figure 1. Raja binoculata (big skate). Photo by Duane Stevenson. he fish family Rajidae, commonly known imately 30 species worldwide and a North Pacific as the skates, includes about 280 species of assemblage of 6 species ranging from the Gulf of primarily benthic fishes found throughout California to the Bering Sea and into the western Tthe world’s oceans from tropical to cold temperate North Pacific. This North Pacific Assemblage is latitudes. The fishes of Alaska (Mecklenburg et al., thought to be a cluster of closely related species and 2002), the most recent inventory of Alaska’s fishes, will probably be recognized as a separate genus in lists 12 species of skates known to occur in the Gulf the future. The genus Bathyraja, also known as the of Alaska, Aleutian Islands, and Bering Sea from “soft-snout” skates due to their flexible rostral car- the intertidal zone to depths of over 1500 m, and tilage, includes over 40 species distributed through- at least 2 other species have been discovered in the out the world’s oceans. Bathyraja is the most broadly region since the publication of that volume as de- distributed as well as the most diverse of all the scribed in Bathyraja mariposa: a new species of skate skate genera, and the greatest diversity of Bathyraja (Rajidae: Arhynchobatinae) from the Aleutian Islands occurs in the North Pacific. The majority of Alaska’s (Stevenson et al., 2004a) and New records of two deep- skate species are included in this genus, although water skate species from the Bering Sea (Stevenson and some authors include one or two of the species in Orr, submitted).
    [Show full text]
  • A Review of Longnose Skates Zearaja Chilensisand Dipturus Trachyderma (Rajiformes: Rajidae)
    Univ. Sci. 2015, Vol. 20 (3): 321-359 doi: 10.11144/Javeriana.SC20-3.arol Freely available on line REVIEW ARTICLE A review of longnose skates Zearaja chilensis and Dipturus trachyderma (Rajiformes: Rajidae) Carolina Vargas-Caro1 , Carlos Bustamante1, Julio Lamilla2 , Michael B. Bennett1 Abstract Longnose skates may have a high intrinsic vulnerability among fishes due to their large body size, slow growth rates and relatively low fecundity, and their exploitation as fisheries target-species places their populations under considerable pressure. These skates are found circumglobally in subtropical and temperate coastal waters. Although longnose skates have been recorded for over 150 years in South America, the ability to assess the status of these species is still compromised by critical knowledge gaps. Based on a review of 185 publications, a comparative synthesis of the biology and ecology was conducted on two commercially important elasmobranchs in South American waters, the yellownose skate Zearaja chilensis and the roughskin skate Dipturus trachyderma; in order to examine and compare their taxonomy, distribution, fisheries, feeding habitats, reproduction, growth and longevity. There has been a marked increase in the number of published studies for both species since 2000, and especially after 2005, although some research topics remain poorly understood. Considering the external morphological similarities of longnose skates, especially when juvenile, and the potential niche overlap in both, depth and latitude it is recommended that reproductive seasonality, connectivity and population structure be assessed to ensure their long-term sustainability. Keywords: conservation biology; fishery; roughskin skate; South America; yellownose skate Introduction Edited by Juan Carlos Salcedo-Reyes & Andrés Felipe Navia Global threats to sharks, skates and rays have been 1.
    [Show full text]
  • Spawning Characteristics and Artificial Hatching of Female Mottled Skate, Beringraja Pulchra in the West Coast of Korea
    Dev. Reprod. Vol. 17, No. 3, 247~255, September, 2013 ttp://dx.doi.org/10.12717/DR.2013.17.3.247 ISSN 1226-6752 (Print) ․ ISSN 2287-7967 (Online) Spawning Characteristics and Artificial Hatching of Female Mottled Skate, Beringraja pulchra in the West Coast of Korea † Hee-Woong Kang, Yeong-Rok Jo, Duk-Yong Kang, Gyeong-Suk Jeong and Hyun-Su Jo West Sea Fisheries Research Institute, Incheon 400-420, Republic of Korea ABSTRACT : The gonadsomatic index (GSI) of mottled skate was the highest in April, GSI and HSI showed a reverse phase for its reproductive cycle. The fish had one pair of egg capsules, having 1 to 7 fertilized eggs, and spawned all the year round. When surveying the reproductive characteristics of females over 63 ㎝ in disc width, we found the spawning peak was between April to June, and the appearance ratio of egg capsules was the highest in May (32.1%). The eggs were hatched at 8℃, 13℃, 18℃, water temperature (12.8 to 24.2℃), and the best hatching temperature was 18℃. The number of fish hatched was 4 to 5 fish/egg capsules, and the hatching rate was 100%. The sex ratios of hatching larvae were 45.5% female and 54.5% male. Therefore this study will provide fundamental data and information for artificial reproduction of the mottled skate. Key words : Beringraja pulchra, Closed season, Egg capsule, Hatching, Spawning INTRODUCTION skate is one of the most expensive fish on the market at a hundred thousand Korean won per fish. Currently to The mottled skate (Beringraja pulchra) is a species of avoid over-exploitation, there is regulatory control for a big skate, family Rajidae, in the Rajiformes order.
    [Show full text]
  • Skates and Rays of British Columbia
    Skates and Rays of British Columbia Fisheries and Oceans Canada is committed to developing the highest standard of bycatch data, and to the conservation of skate species in British Columbia waters. The information in this guide is designed to assist the Department to monitor bycatch, and fish harvesters to correctly identify bycatch and to enter it in logbooks. Drawings are not to scale. A B C BIG SKATE Common LONGNOSE Common BROAD Rare SKATE SKATE D E F G CALIFORNIA Rare SANDPAPER Common ALEUTIAN Infrequent ALASKA Rare SKATE SKATE SKATE SKATE I H J ROUGHTAIL Infrequent STARRY Rare SKATE DEEP SEA Rare SKATE SKATE N L M PELAGIC Rare K PACIFIC COMMANDER Rare Rare STINGRAY WHITEBROW Rare SKATE TORPEDO RAY SKATE Fisheries and Oceans Pêches et Océans Canada Canada Skates and Rays of British Columbia Eyespot Claspers (male) A BIG SKATE Beringraja binoculata • Depths 3 to 800 m; usually less than 200 m Dorsal fins • Total length to 200 cm Snout • Brown to gray with darker mottling; prominent eyespots • Ventral surface white to muddy white Pelvic fin • Snout: stiff and short Nuchal thorns • No scapular thorns; one nuchal thorn Notch • Continuous row of thorns, pelvic region to first dorsal fin Scapular thorns • Pelvic fin shallowly notched B LONGNOSE SKATE Raja rhina H STARRY SKATE Raja stellulata • Depths 20 to 660 m; usually less than 350 m • Depths 20 to 730 m • Total length to 140 cm • Total length to 75 cm • Dark brown with faint dark and light blotches; sometimes pale-centered • Gray-brown with numerous dark spots; sometimes with black
    [Show full text]
  • Redalyc.A Review of Longnose Skates Zearaja Chilensis and Dipturus Trachyderma (Rajiformes: Rajidae)
    Universitas Scientiarum ISSN: 0122-7483 [email protected] Pontificia Universidad Javeriana Colombia Vargas-Caro, Carolina; Bustamante, Carlos; Lamilla, Julio; Bennett, Michael B. A review of longnose skates Zearaja chilensis and Dipturus trachyderma (Rajiformes: Rajidae) Universitas Scientiarum, vol. 20, núm. 3, 2015, pp. 321-359 Pontificia Universidad Javeriana Bogotá, Colombia Available in: http://www.redalyc.org/articulo.oa?id=49941379004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Univ. Sci. 2015, Vol. 20 (3): 321-359 doi: 10.11144/Javeriana.SC20-3.arol Freely available on line REVIEW ARTICLE A review of longnose skates Zearaja chilensis and Dipturus trachyderma (Rajiformes: Rajidae) Carolina Vargas-Caro1 , Carlos Bustamante1, Julio Lamilla2 , Michael B. Bennett1 Abstract Longnose skates may have a high intrinsic vulnerability among fishes due to their large body size, slow growth rates and relatively low fecundity, and their exploitation as fisheries target-species places their populations under considerable pressure. These skates are found circumglobally in subtropical and temperate coastal waters. Although longnose skates have been recorded for over 150 years in South America, the ability to assess the status of these species is still compromised by critical knowledge gaps. Based on a review of 185 publications, a comparative synthesis of the biology and ecology was conducted on two commercially important elasmobranchs in South American waters, the yellownose skate Zearaja chilensis and the roughskin skate Dipturus trachyderma; in order to examine and compare their taxonomy, distribution, fisheries, feeding habitats, reproduction, growth and longevity.
    [Show full text]
  • Common Sea Life of Southeastern Alaska a Field Guide by Aaron Baldwin & Paul Norwood
    Common Sea Life of Southeastern Alaska A field guide by Aaron Baldwin & Paul Norwood All pictures taken by Aaron Baldwin Last update 08/15/2015 unless otherwise noted. [email protected] Table of Contents Introduction ….............................................................…...2 Acknowledgements Exploring SE Beaches …………………………….….. …...3 It would be next to impossible to thanks everyone who has helped with Sponges ………………………………………….…….. …...4 this project. Probably the single-most important contribution that has been made comes from the people who have encouraged it along throughout Cnidarians (Jellyfish, hydroids, corals, the process. That is why new editions keep being completed! sea pens, and sea anemones) ……..........................…....8 First and foremost I want to thanks Rich Mattson of the DIPAC Macaulay Flatworms ………………………….………………….. …..21 salmon hatchery. He has made this project possible through assistance in obtaining specimens for photographs and for offering encouragement from Parasitic worms …………………………………………….22 the very beginning. Dr. David Cowles of Walla Walla University has Nemertea (Ribbon worms) ………………….………... ….23 generously donated many photos to this project. Dr. William Bechtol read Annelid (Segmented worms) …………………………. ….25 through the previous version of this, and made several important suggestions that have vastly improved this book. Dr. Robert Armstrong Mollusks ………………………………..………………. ….38 hosts the most recent edition on his website so it would be available to a Polyplacophora (Chitons) …………………….
    [Show full text]
  • AN OVERVIEW of MAJOR SHARK TRADERS CATCHERS and SPECIES Nicola Okes Glenn Sant TRAFFIC REPORT an Overview of Major Global Shark* Traders, Catchers and Species
    SEPTEMBER 2019 AN OVERVIEW OF MAJOR SHARK TRADERS CATCHERS AND SPECIES Nicola Okes Glenn Sant TRAFFIC REPORT An overview of major global shark* traders, catchers and species TRAFFIC is a leading non-governmental organisation working globally on trade in wild animals and plants in the context of both biodiversity conservation and sustainable development. Reprod uction of material appearing in this report requires written permission from the publisher. The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of the authors or their supporting organisations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Published by: TRAFFIC International, Cambridge, United Kingdom. ISBN: 978-1-911646-14-3 Suggested citation: Okes, N. and Sant, G. (2019). An overview of major shark traders, catchers and species. TRAFFIC, Cambridge, UK. © TRAFFIC 2019. Copyright of material published in this report is vested in TRAFFIC. UK Registered Charity No. 1076722 Design by Marcus Cornthwaite * Throughout this report, unless otherwise specified, the term “sharks” refers to all species of sharks, skates, rays and chimaeras (Class Chondrichthyes). CONTENTS 1 Introduction 1 2 Catch data 2 Trade data 8 3 Overview 9 Meat 9 Fins 11 CITES-listed species 16 4 Risk of overexploitation 21 Conclusions and recommendations 22 5 References 24 Annex I 26 Image credits 32 ACKNOWLEDGEMENTS The preparation, development and production of this publication was made possible with funding from a number of sources including the German Federal Agency for Nature Conservation (Bundesamt für Naturschutz, BfN).
    [Show full text]
  • Reproductive Strategies of the Big Skate (Beringraja Binoculata) with Evidence of Multiple Paternity
    California State University, Monterey Bay Digital Commons @ CSUMB Capstone Projects and Master's Theses Capstone Projects and Master's Theses Summer 2019 Reproductive Strategies of the Big Skate (Beringraja Binoculata) with Evidence of Multiple Paternity Jessica Ja-Jei Jang California State University, Monterey Bay Follow this and additional works at: https://digitalcommons.csumb.edu/caps_thes_all Recommended Citation Jang, Jessica Ja-Jei, "Reproductive Strategies of the Big Skate (Beringraja Binoculata) with Evidence of Multiple Paternity" (2019). Capstone Projects and Master's Theses. 727. https://digitalcommons.csumb.edu/caps_thes_all/727 This Master's Thesis (Open Access) is brought to you for free and open access by the Capstone Projects and Master's Theses at Digital Commons @ CSUMB. It has been accepted for inclusion in Capstone Projects and Master's Theses by an authorized administrator of Digital Commons @ CSUMB. For more information, please contact [email protected]. REPRODUCTIVE STRATEGIES OF THE BIG SKATE (BERINGRAJA BINOCULATA) WITH EVIDENCE OF MULTIPLE PATERNITY _______________ A Thesis Presented to the Faculty of the School of Natural Sciences California State University Monterey Bay _______________ In Partial Fulfillment of the Requirements for the Degree Master of Science in Master of Science _______________ by Jessica Ja-Jei Jang Summer 2019 CALIFORNIA STATE UNIVERSITY MONTEREY BAY 1 The Undersigned Faculty Committee Approves the Thesis of Jessica Ja-Jei Jang: REPRODUCTIVE STRATEGIES OF THE BIG SKATE (BERINGRAJA
    [Show full text]