Breaking with Tradition: Redefining Measures for Diet Description with a Case Study of the Aleutian Skate Bathyraja Aleutica (Gilbert 1896)

Total Page:16

File Type:pdf, Size:1020Kb

Breaking with Tradition: Redefining Measures for Diet Description with a Case Study of the Aleutian Skate Bathyraja Aleutica (Gilbert 1896) Environ Biol Fish (2012) 95:3–20 DOI 10.1007/s10641-011-9959-z Breaking with tradition: redefining measures for diet description with a case study of the Aleutian skate Bathyraja aleutica (Gilbert 1896) Simon C. Brown & Joseph J. Bizzarro & Gregor M. Cailliet & David A. Ebert Received: 1 September 2010 /Accepted: 27 October 2011 /Published online: 16 November 2011 # Springer Science+Business Media B.V. 2011 Abstract Characterization of fish diets from stomach Aleutian skate Bathyraja aleutica from specimens content analysis commonly involves the calculation of collected from three ecoregions of the northern Gulf multiple relative measures of prey quantity (%N,%W,% of Alaska (GOA) continental shelf during June- FO), and their combination in the standardized Index of September 2005–2007. Aleutian skate were found to Relative Importance (%IRI). Examining the underlying primarily consume the commonly abundant benthic structure of dietary data matrices reveals interdependen- crustaceans, northern pink shrimp Pandalus eous and cies among diet measures, and obviates the advantageous Tanner crab Chionoecetes bairdi, and secondarily use of underused prey-specific measures to diet charac- consume various teleost fishes. Multivariate variance terization. With these interdependencies clearly realized partitioning by Redundancy Analysis revealed spa- as formal mathematical expressions, we proceed to tially driven differences in the diet to be as influential isolate algebraically, the inherent bias in %IRI, and as skate size, sex, and depth of capture. Euphausiids provide a correction for it by substituting traditional and other mid-water prey in the diet were strongly measures with prey-specific measures. The resultant new associated with the Shelikof Strait region during 2007 index, the Prey-Specific Index of Relative Importance (% that may be explained by atypical marine climate PSIRI), is introduced and recommended to replace %IRI conditions during that year. for its demonstrated more balanced treatment of the relative measures of prey quantity, and less erroneous Keywords Skate . Bathyraja aleutica . Diet . Gulf behavior across taxonomic levels of identified prey. As a of Alaska . Food habits . Index of relative importance case study, %PSIRI was used to examine the diet of the Introduction S. C. Brown (*) : J. J. Bizzarro : G. M. Cailliet : D. A. Ebert Pacific Shark Research Center, Diet information is crucial to our understanding of Moss Landing Marine Laboratories, species ecology, trophic interrelationships, food webs, 8272 Moss Landing Road, and ultimately, the flow of energy through ecosys- Moss Landing, CA 95039, USA e-mail: [email protected] tems. Stomach content analysis remains a universal technique for sampling the diets of fishes and these Present Address: studies contribute large amounts of species-specific J. J. Bizzarro diet data for potential use in trophic ecosystem School of Aquatic and Fishery Sciences, University of Washington, modeling that provide ecosystem-based fishery man- PO Box 355020, Seattle, WA 98195-5020, USA agement advice (Ainsworth et al. 2010). Although 4 Environ Biol Fish (2012) 95:3–20 there has been an arguably successful call (294 large skate, reaching a maximum size of 150 cm total citations in Web of Science) for consistency in length (TL). Diet data reported from the western reporting diet compositions of elasmobranchs with North Pacific and Aleutian Islands indicate that percent number (%N), percent weight (%W), frequency Aleutian skates consume primarily decapod crusta- of occurrence (%FO), and the standardized Index of ceans, with fishes and cephalopods also represented Relative Importance or %IRI (Cortès 1997), there (Orlov 1998; Yang 2007); however, scant dietary remain critical unresolved weaknesses in this widely information is available for the Aleutian skates in the used and accepted methodology (Cortès 1998; northern GOA. The findings of this study represent Hansson 1998). There are, in fact, not only weak- the first detailed trophic information on the Aleutian nesses, but also serious unrecognized mathematical skate population from the northern GOA shelf flaws in the presentation of diet data both graphically ecosystem. and by indices that have gone largely unnoticed in the To improve current data reporting methods for published literature. These methodological problems stomach contents analysis of elasmobranchs, our are a direct consequence of diet researchers’ incorrect objectives for this study are to: 1) define the structure mathematical understanding of diet measures. A of diet data; 2) elucidate mathematical relationships deeper understanding of the structure of dietary data between diet measures; 3) demonstrate how appropri- and the resulting mathematical relationships between ate operationalization of these relationships can diet measures not only resolves current methodolog- correct current flaws in compound diet indices and ical weaknesses, but also leads to increased extraction graphical displays and; 4) illustrate the application of of information about food habits in graphical displays this approach in reporting the diet composition on and diet composition tables. dietary data from the Aleutian skate. Additionally, we Proper metrics are necessary to characterize diets of provide an in-depth statistical analysis of ontogenetic, abundant, data-poor species, to avoid faulty or incom- regional, and interannual variation in the diet of the plete conclusions about their trophic roles. Skates as Aleutian skate from the northern GOA ecosystem abundant mesopredators (Ebert and Bizzarro 2007) during 2005–2007. likely play important trophic roles in demersal fish communities and may be able to overtake the resource The structure of diet data niche left open by depleted teleost stocks (Stevens et al. 2000; Link and Sosebee 2008). For large marine Stomach content analysis typically incorporates meas- ecosystems with large industrial fisheries, like the urements of numerical abundance (i.e. aggregate counts northern Gulf of Alaska (GOA) shelf, attaining of individual prey items in each designated prey trophic information on skates is beneficial for consid- category), gravimetric (or volumetric) abundance (i.e. eration in ecosystem based modeling and manage- aggregate weights or volumes of prey items in each ment. In the GOA, skates contribute substantially to designated prey category), and the frequency of occur- the bycatch (retained and discarded) of directed rence of prey categories among all stomach samples fisheries such as those for Pacific Halibut Hippo- (Hyslop 1980). The resulting diet data matrix, by glossus stenolepis and other commercially valuable numerical abundance or biomass, is composed of groundfish species (Ormseth and Matta 2009), but columns of prey categories (i) by rows of individual their ecology is poorly understood. stomach samples (j) standardized to proportion by Skates of the genus Bathyraja are widely distrib- total individual stomach content (i.e. by row): uted in the North Pacific. In the GOA the Aleutian skate Bathyraja aleutica (Gilbert 1896) is one of the 2 prey category ðiÞ 3 most abundant skate species (Ormseth and Matta 10 0 0 6 : : : 7 2009). The Aleutian skate ranges from the northern ð Þ 6 0025 0 5025 7 stomach sample j 4 : : 5 Sea of Japan into the Sea of Okhotsk and Bering Sea 000505 00:75 0 0:25 to the eastern GOA, but has been reported as far south as Cape Mendocino, California, U.S.A. (Hoff 2002), typically occupying shelf and slope depths of 100– This stomach sample by prey item diet matrix 800 m (Mecklenburg et al. 2002). It is a relatively is well-suited for multivariate statistical analysis Environ Biol Fish (2012) 95:3–20 5 (de Crespin de Billy et al. 2000), but also conve- of %N or %W cannot exceed its corresponding %FO niently serves in calculation of diet measures. The value for any prey category. The determined value of % average percent number (%N) and average percent FO represents an upper limit to %N and %W values weight (%W) for each prey item are column averages because discrete absences are averaged into all of this matrix and are additive, meaning that they sum measures, this creates a mathematical dependence to 100% for all different prey items of a prey between diet measures whose strength increases with category. For example, in the dietary data matrix the increasing frequency of zero values in a diet data provided above, the average percent value for each matrix. Amundsen et al. (1996), fully realizing this prey category (i.e. each column) is 25%, and the graphical limitation of diet measures in constructing aggregate values for all prey categories sum to 100%. feeding strategy diagrams (Costello 1990), proposed a The Percent Frequency of Occurrence (%FO) can new measure termed prey-specific abundance. Prey- be calculated as the column averages from the same specific abundance is defined as the percent numerical diet matrix, but translated to discrete conditions of abundance of a prey item averaged over the stomach presence/absence (i.e. binary data). From the example samples in which it occurs (i.e. excluding zero diet matrix above, the %FO for each prey category values). Like %FO, the value of the prey-specific (from left to right) is: 25%, 50%, 50%, and 75% and abundance for a prey item may take any value >0% to sums to an indeterminate value which, is 200% in this 100% independent of the values for all other prey example. Because different prey categories occur items. For example, from the diet data matrix
Recommended publications
  • XIV. Appendices
    Appendix 1, Page 1 XIV. Appendices Appendix 1. Vertebrate Species of Alaska1 * Threatened/Endangered Fishes Scientific Name Common Name Eptatretus deani black hagfish Lampetra tridentata Pacific lamprey Lampetra camtschatica Arctic lamprey Lampetra alaskense Alaskan brook lamprey Lampetra ayresii river lamprey Lampetra richardsoni western brook lamprey Hydrolagus colliei spotted ratfish Prionace glauca blue shark Apristurus brunneus brown cat shark Lamna ditropis salmon shark Carcharodon carcharias white shark Cetorhinus maximus basking shark Hexanchus griseus bluntnose sixgill shark Somniosus pacificus Pacific sleeper shark Squalus acanthias spiny dogfish Raja binoculata big skate Raja rhina longnose skate Bathyraja parmifera Alaska skate Bathyraja aleutica Aleutian skate Bathyraja interrupta sandpaper skate Bathyraja lindbergi Commander skate Bathyraja abyssicola deepsea skate Bathyraja maculata whiteblotched skate Bathyraja minispinosa whitebrow skate Bathyraja trachura roughtail skate Bathyraja taranetzi mud skate Bathyraja violacea Okhotsk skate Acipenser medirostris green sturgeon Acipenser transmontanus white sturgeon Polyacanthonotus challengeri longnose tapirfish Synaphobranchus affinis slope cutthroat eel Histiobranchus bathybius deepwater cutthroat eel Avocettina infans blackline snipe eel Nemichthys scolopaceus slender snipe eel Alosa sapidissima American shad Clupea pallasii Pacific herring 1 This appendix lists the vertebrate species of Alaska, but it does not include subspecies, even though some of those are featured in the CWCS.
    [Show full text]
  • Range Extensions and New Records from Alaska and British Columbia
    Range Extensions and New Records from Alaska and British Columbia for Two Skates, Bathyraja Spinosissima and Bathyraja Microtrachys Authors: James W Orr, Duane E Stevenson, Gavin Hanke, Ingrid B Spies, James A Boutillier, et. al. Source: Northwestern Naturalist, 100(1) : 37-47 Published By: Society for Northwestern Vertebrate Biology URL: https://doi.org/10.1898/NWN18-21 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Northwestern-Naturalist on 24 Jul 2019 Terms of Use: https://bioone.org/terms-of-use Access provided by National Oceanic and Atmospheric Administration Central Library GENERAL NOTES NORTHWESTERN NATURALIST 100:37–47 SPRING 2019 RANGE EXTENSIONS AND NEW RECORDS FROM ALASKA AND BRITISH COLUMBIA FOR TWO SKATES, BATHYRAJA SPINOSISSIMA AND BATHYRAJA MICROTRACHYS JAMES WORR,DUANE ESTEVENSON,GAVIN HANKE,INGRID BSPIES,JAMES A BOUTILLIER, AND GERALD RHOFF ABSTRACT—Recent deep-water surveys of the conti- identified 10 species of skates in 4 genera (Ebert nental slope in the Bering Sea and the eastern North 2003; Pietsch and Orr 2015; King and others in Pacific, conducted by the US National Marine Fisheries press; Table 1).
    [Show full text]
  • Recent Contributions to the Knowledge of the Skates of Alaska by Duane E
    FEATURE Recent Contributions to the Knowledge of the Skates of Alaska by Duane E. Stevenson and James W. Orr Figure 1. Raja binoculata (big skate). Photo by Duane Stevenson. he fish family Rajidae, commonly known imately 30 species worldwide and a North Pacific as the skates, includes about 280 species of assemblage of 6 species ranging from the Gulf of primarily benthic fishes found throughout California to the Bering Sea and into the western Tthe world’s oceans from tropical to cold temperate North Pacific. This North Pacific Assemblage is latitudes. The fishes of Alaska (Mecklenburg et al., thought to be a cluster of closely related species and 2002), the most recent inventory of Alaska’s fishes, will probably be recognized as a separate genus in lists 12 species of skates known to occur in the Gulf the future. The genus Bathyraja, also known as the of Alaska, Aleutian Islands, and Bering Sea from “soft-snout” skates due to their flexible rostral car- the intertidal zone to depths of over 1500 m, and tilage, includes over 40 species distributed through- at least 2 other species have been discovered in the out the world’s oceans. Bathyraja is the most broadly region since the publication of that volume as de- distributed as well as the most diverse of all the scribed in Bathyraja mariposa: a new species of skate skate genera, and the greatest diversity of Bathyraja (Rajidae: Arhynchobatinae) from the Aleutian Islands occurs in the North Pacific. The majority of Alaska’s (Stevenson et al., 2004a) and New records of two deep- skate species are included in this genus, although water skate species from the Bering Sea (Stevenson and some authors include one or two of the species in Orr, submitted).
    [Show full text]
  • Diet of an Underappreciated Benthic Intertidal Fish, Cryptacanthodes Maculatus (Cryptacanthodidae), in Eastern Maine, USA
    AIMS Environmental Science, 3(3): 488-508. DOI: 10.3934/environsci.2016.3.488 Received: 29 April 2016 Accepted: 05 August 2016 Published: 10 August 2016 http://www.aimspress.com/journal/environmental Research article Diet of an underappreciated benthic intertidal fish, Cryptacanthodes maculatus (Cryptacanthodidae), in eastern Maine, USA Brian F. Beal1,*, Summer D. Meredith1, Cody B. Jourdet2 and Kyle E. Pepperman2 1 University of Maine at Machias, 116 O’Brien Avenue, Machias, ME 04654, USA 2 Downeast Institute for Applied Marine Research & Education, 39 Wildflower Lane, Beals, ME 04611, USA * Correspondence: Email: [email protected]; Tel: +1-207-255-1314. Abstract: We discovered through gut-content analysis over a 20-month period (June 2009–March 2011) that a little-known benthic fish, the wrymouth, Cryptacanthodes maculatus, preyed upon soft-bottom fauna from 8 phyla, 10 classes, and 28 genera in the lower intertidal/ shallow subtidal zone in Cobscook Bay (eastern Maine, USA). Wrymouth (N = 42; total length = 30–50 cm) live infaunally in extensive subterranean burrows, and consumed mainly polychaetes and amphipods that occurred in 80% and 75% of stomachs, respectively. The two most common polychaetes, Alitta virens and Harmothoe imbricata, were found in 60% and 25% of stomachs, respectively. Gammarideans Leptocheirus pinguis and Ampelisca abdita were the two most common amphipods occurring in 40% and 33% of stomachs, respectively. Benthic core samples taken from the mid- and low shore were ambiguous in helping to understand where wrymouth forage. Wrymouth likely contribute to trophic linkages between the intertidal and subtidal zones in soft-bottoms; however, its relative role in regulating benthic community structure, aspects of its reproductive behavior, and early life-history is unknown due in part to its cryptic lifestyle.
    [Show full text]
  • Guide to the Parasites of Fishes of Canada Part V: Nematoda
    Wilfrid Laurier University Scholars Commons @ Laurier Biology Faculty Publications Biology 2016 ZOOTAXA: Guide to the Parasites of Fishes of Canada Part V: Nematoda Hisao P. Arai Pacific Biological Station John W. Smith Wilfrid Laurier University Follow this and additional works at: https://scholars.wlu.ca/biol_faculty Part of the Biology Commons, and the Marine Biology Commons Recommended Citation Arai, Hisao P., and John W. Smith. Zootaxa: Guide to the Parasites of Fishes of Canada Part V: Nematoda. Magnolia Press, 2016. This Book is brought to you for free and open access by the Biology at Scholars Commons @ Laurier. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact [email protected]. Zootaxa 4185 (1): 001–274 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4185.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:0D054EDD-9CDC-4D16-A8B2-F1EBBDAD6E09 ZOOTAXA 4185 Guide to the Parasites of Fishes of Canada Part V: Nematoda HISAO P. ARAI3, 5 & JOHN W. SMITH4 3Pacific Biological Station, Nanaimo, British Columbia V9R 5K6 4Department of Biology, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5. E-mail: [email protected] 5Deceased Magnolia Press Auckland, New Zealand Accepted by K. DAVIES (Initially edited by M.D.B. BURT & D.F. McALPINE): 5 Apr. 2016; published: 8 Nov. 2016 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 HISAO P. ARAI & JOHN W.
    [Show full text]
  • Conclusions GRS 1 3 5 6 8 9 10 12 16 18 20 21 31 35 36 38 40 42 45 GREENLAND SEA
    a a b c d e a) b) c) d) e) Lynghammar University of Tromsø, Norway, A., Christiansen University of Washington,, J. USAS., Gallucci Murmansk Marine, V. BiologicalF., Karamushko Institute, Russia California, O. V., AcademyMecklenburg of Sciences, USA, C. Natural W. History& Møller Museum ,of P. Denmark R. Contact: [email protected] introduction The sea ice cover decreases and human activity increases in Arctic waters. Fisheries (by-catch issues), shipping and petroleum exploita- tion (pollution issues) make it imperative to establish biological base- OCCURRENCE OF lines for the marine fishes inhabiting the Arctic Ocean and adjacent seas (AOAS). As a first step towards credible conservation actions for the Arctic marine fish faunae, we examine the species-richness of chondrich- thyan fishes (class Chondrichthyes) pertaining to 16 regions within the AOAS: chimaeras, sharks and skates. CHONDRICHTHYAN materials and methods • Voucher specimens from Natural History Collections IN THE ARCTIC OCEAN • Annotated checklists (see selected references) • The CAFF Database on Arctic marine fishes (Christiansen et al., in AND ADJACENT SEAS progress) FISHES Only presence and absence data are considered, as reliable abundance data lack for most species. Occurrences known only from floating or beach-cast carcasses, such as Pacific sleeper shark (no. 17) and Alaska skate (no. 29) in the Chukchi Sea, are not considered conclusive evidence of presence and are not included. CHIMAERIFORMES HEXANCHIFORMES RAJIFORMES Chimaeridae - ratfishes Chlamydoselachidae
    [Show full text]
  • Full Text in Pdf Format
    Vol. 669: 121–138, 2021 MARINE ECOLOGY PROGRESS SERIES Published July 8 https://doi.org/10.3354/meps13736 Mar Ecol Prog Ser OPEN ACCESS Skate egg nursery areas support genetic diversity of Alaska and Aleutian skates in the Bering Sea Ingrid Spies1,*, James W. Orr2, Duane E. Stevenson2, Pamela Goddard2, Gerald Hoff2, Jared Guthridge3, Myles Hollowed1, Christopher Rooper2,4 1Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, WA 98115, USA 2Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, WA 98115, USA 3Alaska Sea Life Center, PO Box 1329, 301 Railway Ave, Seward, AK 99664, USA 4Present address: Stock Assessment and Research Division, Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Road, Nanaimo, British Columbia V9T 6N7, Canada ABSTRACT: Skate egg case nursery sites are specific locations on the ocean floor where some species of skates deposit egg cases to incubate for up to 5 yr until hatching. We examined genetic diversity within and among skate egg nursery sites of the Alaska skate Bathyraja parmifera and the Aleutian skate B. aleutica in the eastern Bering Sea to gain a better understanding of how skates utilize these areas. Restriction-site associated DNA (RAD) sequencing libraries were used to obtain single nucleotide polymorphism (SNP) datasets for B. parmifera (5285 SNPs) and B. aleu- tica (3309 SNPs). We found evidence for significant genetic differentiation among all B. parmifera and B. aleutica nursery areas, with 1 exception. B. parmifera from the spatially proximate Pribilof and Bering Canyons were genetically similar, suggesting that this may represent a large contigu- ous nursery area.
    [Show full text]
  • Amblyraja, Bathyrajaandraja: Rajidae
    Journal of Fish Biology (2006) 69 (Supplement B), 283–292 #doi:10.1111/j.1095-8649.2006.01286.x, available online at http://www.blackwell-synergy.com DNA-based identification of Alaska skates (Amblyraja, Bathyraja and Raja: Rajidae) using cytochrome c oxidase subunit I (coI) variation I. B. SPIES,S.GAICHAS,D.E.STEVENSON,J.W.ORR AND M. F. CANINO* NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, WA 98115, U.S.A. (Received 13 February 2006, Accepted 4 August 2006) Variation at the mitochondrial cytochrome c oxidase subunit I (mt-COI) gene was examined in 15 species of North Pacific skates. Thirteen species had unique sequences, indicating that a DNA-based barcoding approach may be useful for species identification. Journal compilation # 2006 The Fisheries Society of the British Isles No claim to original US government works Key words: coI; cytochrome c oxidase subunit I; DNA barcode; mitochondrial DNA; species identification; skates. The skates of the North Pacific Ocean and Bering Sea (family Rajidae) are represented by a complex of 15 species in three genera, Raja L., Amblyraja Malm, 1877 and Bathyraja Ishiyama, 1958 (Mecklenburg et al., 2002; Stevenson et al., 2004; Stevenson & Orr, 2005). The genus Raja, known as ‘stiff-snout’ skates due to a robust rostral cartilage, is represented by two spe- cies (Raja rhina Jordan and Gilbert, 1880 and Raja binoculata Girard, 1855). Twelve species are presently recognized in Bathyraja, the genus of ‘soft-snout’ skates possessing a flexible rostral cartilage (Table I). A third genus repre- sented by the deepwater species Amblyraja badia (Garman, 1899) was recently discovered in Alaska (Stevenson & Orr, 2005).
    [Show full text]
  • Full Text in Pdf Format
    Vol. 670: 155–166, 2021 MARINE ECOLOGY PROGRESS SERIES Published July 22 https://doi.org/10.3354/meps13768 Mar Ecol Prog Ser OPEN ACCESS Genetic evidence from embryos suggests a new species of skate related to Bathyraja parmifera (Rajiformes: Arhynchobatidae) in the Bering Sea Ingrid Spies1,*, James W. Orr2, Duane E. Stevenson2, Pamela Goddard2, Gerald R. Hoff2, Jared Guthridge3, Christopher N. Rooper4 1Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, WA 98115, USA 2Resource Assessment and Conservation Engineering Division, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, WA 98115, USA 3Alaska SeaLife Center, PO Box 1329, 301 Railway Ave, Seward, AK 99664, USA 4Stock Assessment and Research Division, Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada ABSTRACT: Several new species of oviparous skates of the genus Bathyraja have been identified over the past 2 decades, yet it is possible that a complete understanding of species diversity among this group has not been achieved. We used genetics and morphology to screen for the presence of species-level differentiation among embryos from nursery areas in the eastern Bering Sea that were initially identified as the Alaska skate B. parmifera. A sample of 57 embryos from Pervenets Canyon differed significantly at single nucleotide polymorphism loci from 297 other B. parmifera samples, and differences were on the order of those observed between B. parmifera and the leopard skate B. panthera. This sample of embryos was similar to B. parmifera at the cyto - chrome c oxidase subunit I (COI) mitochondrial locus.
    [Show full text]
  • 1 CWU Comparative Osteology Collection, List of Specimens
    CWU Comparative Osteology Collection, List of Specimens List updated November 2019 0-CWU-Collection-List.docx Specimens collected primarily from North American mid-continent and coastal Alaska for zooarchaeological research and teaching purposes. Curated at the Zooarchaeology Laboratory, Department of Anthropology, Central Washington University, under the direction of Dr. Pat Lubinski, [email protected]. Facility is located in Dean Hall Room 222 at CWU’s campus in Ellensburg, Washington. Numbers on right margin provide a count of complete or near-complete specimens in the collection. Specimens on loan from other institutions are not listed. There may also be a listing of mount (commercially mounted articulated skeletons), part (partial skeletons), skull (skulls), or * (in freezer but not yet processed). Vertebrate specimens in taxonomic order, then invertebrates. Taxonomy follows the Integrated Taxonomic Information System online (www.itis.gov) as of June 2016 unless otherwise noted. VERTEBRATES: Phylum Chordata, Class Petromyzontida (lampreys) Order Petromyzontiformes Family Petromyzontidae: Pacific lamprey ............................................................. Entosphenus tridentatus.................................... 1 Phylum Chordata, Class Chondrichthyes (cartilaginous fishes) unidentified shark teeth ........................................................ ........................................................................... 3 Order Squaliformes Family Squalidae Spiny dogfish ........................................................
    [Show full text]
  • Fishes-Of-The-Salish-Sea-Pp18.Pdf
    NOAA Professional Paper NMFS 18 Fishes of the Salish Sea: a compilation and distributional analysis Theodore W. Pietsch James W. Orr September 2015 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce Papers NMFS National Oceanic and Atmospheric Administration Kathryn D. Sullivan Scientifi c Editor Administrator Richard Langton National Marine Fisheries Service National Marine Northeast Fisheries Science Center Fisheries Service Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Offi ce of Science and Technology Fisheries Research and Monitoring Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientifi c Publications Offi ce 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service - The NOAA Professional Paper NMFS (ISSN 1931-4590) series is published by the Scientifi c Publications Offi ce, National Marine Fisheries Service, The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original NOAA, 7600 Sand Point Way NE, research reports, taxonomic keys, species synopses, fl ora and fauna studies, and data- Seattle, WA 98115. intensive reports on investigations in fi shery science, engineering, and economics. The Secretary of Commerce has Copies of the NOAA Professional Paper NMFS series are available free in limited determined that the publication of numbers to government agencies, both federal and state. They are also available in this series is necessary in the transac- exchange for other scientifi c and technical publications in the marine sciences.
    [Show full text]
  • 2010 Aleutian Islands Bottom Trawl Survey
    NOAA Technical Memorandum NMFS-AFSC-215 Data Report: 2010 Aleutian Islands Bottom Trawl Survey by P.G. von Szalay, C.N. Rooper, N.W. Raring, and M.H. Martin U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center February 2011 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: von Szalay, P. G., C.N. Rooper, N.W. Raring, and M.H. Martin. 2011. Data Report: 2010 Aleutian Islands bottom trawl survey. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-215, 153 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-215 Data Report: 2010 Aleutian Islands Bottom Trawl Survey by P.G. von Szalay, C.N. Rooper, N.W. Raring, and M.H. Martin Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle, WA 98115 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Gary F. Locke, Secretary National Oceanic and Atmospheric Administration Jane Lubchenco, Under Secretary and Administrator National Marine Fisheries Service Eric C.
    [Show full text]