Analysis of the Agarase System and Protein Localization

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of the Agarase System and Protein Localization ABSTRACT Title of Document: THE AGARASE SYSTEM OF SACCHAROPHAGUS DEGRADANS STRAIN 2-40: ANALYSIS OF THE AGARASE SYSTEM AND PROTEIN LOCALIZATION Nathan A. Ekborg, Doctor of Philosophy, 2005 Directed By: Professor Emeritus Ronald M. Weiner, Department of Cell Biology and Molecular Genetics and Professor Steven W. Hutcheson, Department of Cell Biology and Molecular Genetics Saccharophagus degradans (formerly “Microbulbifer degradans”) strain 2-40 is a Gram- negative marine bacterium isolated from the Chesapeake Bay. Analysis of 16s rDNA sequence indicated that S. degradans is related to a group of marine proteobacteria adept at degrading complex polysaccharides (CPs). S. degradans can depolymerize at least ten CPs including agarose. Agarose, an algal galactan, is degraded by few organisms. The agarase system of S. degradans was shown to be composed of five enzymes AgaA, AgaB, AgaC, AgaD and AgaE. These proteins contain glycoside hydrolase domains GH16, GH50 and GH86. S. degradans is the only organism known to collectively encode agarases with at least one of these domains. Unusual for agarases, AgaB and AgaE also contain multiple type-six carbohydrate binding modules. Furthermore, AgaE contains four thrombospondin type-three repeats whose function in prokaryotic proteins were unknown. The predicted agarases were characterized using a variety of methods including genomics, biochemical assays, proteomics and a newly described mutagenic technique. Agar degradation by S. degradans includes two depolymerases, AgaB and AgaC, a β-agarase II (AgaE) and a possible α-neoagarobiose hydrolase (AgaA). AgaB was found to be freely secreted while AgaC and AgaE were surface associated. AgaC is a predicted lipoprotein while AgaE did not have domains characteristic of surface localization. The Tsp-3 repeats, which are similar to repeats found on other cell surface enzymes, are the proposed cell surface anchoring sequences of AgaE. THE AGARASE SYSTEM OF SACCHAROPHAGUS DEGRADANS STRAIN 2-40: ANALYSIS OF THE AGARASE SYSTEM AND PROTEIN LOCALIZATION. By Nathan A. Ekborg Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2005 Advisory Committee: Professor Emeritus Ronald M. Weiner Co-Chair Professor Steven W. Hutcheson Co-Chair Assistant Professor Jocelyn DiRuggiero Associate Professor Richard C. Stewart Professor Emeritus J. Norman Hansen (Dean’s Representative) © Copyright by Nathan A. Ekborg 2005 Dedication This work is dedicated to my wife Kristin. Her love and constant patience is my guide. ii Table of Contents Dedication……………………………………………………………………………..ii Table of Contents.........................................................................................................iii List of Tables ................................................................................................................ v List of Figures.............................................................................................................. vi Chapter 1: Introduction................................................................................................. 1 Marine strain 2-40..................................................................................................... 1 Complex Polysaccharide Degradation...................................................................... 2 Strategies of Complex Polysaccharide Degradation................................................. 4 Cell Surface Enzyme Attachment in Bacteria .......................................................... 5 Agars and Agarose.................................................................................................... 8 Agarolytic Organisms ............................................................................................. 10 Agarases.................................................................................................................. 11 Modular Structure of Agarases ............................................................................... 16 Uses of Agar and Agarases..................................................................................... 17 The 2-40 Agarase System ....................................................................................... 19 Cell Surface Agarase Activity in strain 2-40 .......................................................... 20 Statement of Purpose .............................................................................................. 22 Chapter 2: Saccharophagus degradans gen. nov., sp. nov., a Versatile, Marine Degrader of Complex Polysaccharides....................................................................................... 23 Introduction............................................................................................................. 23 Materials and Methods............................................................................................ 25 Results..................................................................................................................... 26 Discussion............................................................................................................... 34 Chapter 3: Characterization of the Agarase System of S. degradans......................... 36 Materials and Methods............................................................................................ 38 Results..................................................................................................................... 47 Development of an S. degradans Genomic Library ............................................... 47 Identification of agaA and agaB............................................................................. 48 Genomic Sequence of S. degradans ....................................................................... 49 Identification of candidate agarases in the S. degradans genomic sequence ......... 52 Genomic arrangement of agarase genes encoded by S. degradans ........................ 53 Identification of domains present in the agarases encoded by S. degradans .......... 59 Biochemical Activity of the Predicted Agarases .................................................... 65 Detection AgaB, AgaC, and AgaE by mass spectrometry...................................... 76 Construction of null mutations in S. degradans...................................................... 79 Discussion............................................................................................................... 87 Chapter 4: Surface Localization of a β-agarase II in Saccharophagus degradans..... 93 Introduction............................................................................................................. 93 Materials and Methods............................................................................................ 96 iii Results................................................................................................................... 101 Biochemical Evidence of Membrane Associated Agarase Activity................. 101 Antibody tools to probe AgaE and AgaB ......................................................... 102 Expression and localization of AgaE and AgaB during the growth cycle........ 106 Immuno-epifluorescence indicates AgaE is cell associated ............................. 114 Cellular localization of AgaE and AgaB by immunogold electron microscopy114 Immunogold electron microscopy of thin sections shows exocellular arrangements of AgaE ............................................................................................................. 118 Discussion............................................................................................................. 127 Chapter 5: Future Directions and Proposed Experiments..................................... 135 Background........................................................................................................... 135 Proposed Research................................................................................................ 138 Conclusions........................................................................................................... 147 Appendices................................................................................................................ 149 Appendix I ............................................................................................................ 149 Phenotypic Instability of E. coli EPI300 (pNE10)................................................ 149 Appendix II ........................................................................................................... 155 Variability of the molecular weight of AgaB ....................................................... 155 iv List of Tables Table 1.1 Characterized agarases………………………………….15 Table 2.1 Pair-wise alignments of related 16s rDNA sequences….31 Table 2.2 Distinguishing characteristics of strain 2-40 as compared to Microbulbifer spp. and T. turnerae………...33 Table 3.1 Strains and plasmids used……………………………….44 Table 3.2 Oligonucleotides primers used…………………………..45 Table 3.3 Predicted agarases identified in S. degradans……………54 Table 3.4 Proteins identified in culture supernatants of S. degradans………………………………………………78 Table 3.5 Frequency of recombination………………………..……86 Table 4.1 Agarases identified in culture and cell fractions of S. degradans………………………………105 Table 4.2 Frequency and density of labeling observed in immuno-electron
Recommended publications
  • Restriction Endonucleases
    Molecular Biology Problem Solver: A Laboratory Guide. Edited by Alan S. Gerstein Copyright © 2001 by Wiley-Liss, Inc. ISBNs: 0-471-37972-7 (Paper); 0-471-22390-5 (Electronic) 9 Restriction Endonucleases Derek Robinson, Paul R. Walsh, and Joseph A. Bonventre Background Information . 226 Which Restriction Enzymes Are Commercially Available? . 226 Why Are Some Enzymes More Expensive Than Others? . 227 What Can You Do to Reduce the Cost of Working with Restriction Enzymes? . 228 If You Could Select among Several Restriction Enzymes for Your Application, What Criteria Should You Consider to Make the Most Appropriate Choice? . 229 What Are the General Properties of Restriction Endonucleases? . 232 What Insight Is Provided by a Restriction Enzyme’s Quality Control Data? . 233 How Stable Are Restriction Enzymes? . 236 How Stable Are Diluted Restriction Enzymes? . 236 Simple Digests . 236 How Should You Set up a Simple Restriction Digest? . 236 Is It Wise to Modify the Suggested Reaction Conditions? . 237 Complex Restriction Digestions . 239 How Can a Substrate Affect the Restriction Digest? . 239 Should You Alter the Reaction Volume and DNA Concentration? . 241 Double Digests: Simultaneous or Sequential? . 242 225 Genomic Digests . 244 When Preparing Genomic DNA for Southern Blotting, How Can You Determine If Complete Digestion Has Been Obtained? . 244 What Are Your Options If You Must Create Additional Rare or Unique Restriction Sites? . 247 Troubleshooting . 255 What Can Cause a Simple Restriction Digest to Fail? . 255 The Volume of Enzyme in the Vial Appears Very Low. Did Leakage Occur during Shipment? . 259 The Enzyme Shipment Sat on the Shipping Dock for Two Days.
    [Show full text]
  • Pdf 258.73 K
    Iran J Biotech. 2015 December;13(4): e1175 DOI:10.15171/ijb.1175 Research Article An Alternative Bacterial Expression System Using Bacillus pumilus SG2 Chitinase Promoter Kambiz Morabbi Heravi 1, Garshasb Rigi 2, Maryam Rezaei Arjomand 3, Amin Rostami 3, Gholamreza Ahmadian 3,* 1Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany 2Department of Biology, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran 3Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran *Corresponding author: Gholamreza Ahmadian, Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran. Tel: +98-2144787301-10, Fax: +98-2144787399, E-mail: [email protected] Received: April 27, 2015; Revised: September 20, 2015; Accepted: October 03, 2015 Background: Chitin is an abundant natural polysaccharide found in fungi, algae, and exoskeleton of insects. Several bac- terial species are capable of utilizing chitin as their carbon source. These bacteria produce chitinases for degradation of chitin into N-acetyl-D-glucosamine. So far, regulation of the chitinase encoding genes has been studied in different bacte- rial species. Among Bacillus species, B. pumilus strain SG2 encodes two chitinases, ChiS and ChiL. The promoter region of chiSL genes (PchiS) is mainly regulated by the general carbon catabolite repression (CCR) system in B. subtilis due to the presence of a catabolite responsive element (cre). Objectives: Use of PchiS in constructing an inducible expression system in B. subtilis was investigated. Materials and Methods: In the first step, complete and shortened versions of PchiS were inserted upstream of the lacZ on a pBS72/pUC18 shuttle plasmid.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips Et Al
    USOO598.1835A United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips et al. (45) Date of Patent: Nov. 9, 1999 54) TRANSGENIC PLANTS AS AN Brown and Atanassov (1985), Role of genetic background in ALTERNATIVE SOURCE OF Somatic embryogenesis in Medicago. Plant Cell Tissue LIGNOCELLULOSC-DEGRADING Organ Culture 4:107-114. ENZYMES Carrer et al. (1993), Kanamycin resistance as a Selectable marker for plastid transformation in tobacco. Mol. Gen. 75 Inventors: Sandra Austin-Phillips; Richard R. Genet. 241:49-56. Burgess, both of Madison; Thomas L. Castillo et al. (1994), Rapid production of fertile transgenic German, Hollandale; Thomas plants of Rye. Bio/Technology 12:1366–1371. Ziegelhoffer, Madison, all of Wis. Comai et al. (1990), Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS 73 Assignee: Wisconsin Alumni Research elements. Plant Mol. Biol. 15:373-381. Foundation, Madison, Wis. Coughlan, M.P. (1988), Staining Techniques for the Detec tion of the Individual Components of Cellulolytic Enzyme 21 Appl. No.: 08/883,495 Systems. Methods in Enzymology 160:135-144. de Castro Silva Filho et al. (1996), Mitochondrial and 22 Filed: Jun. 26, 1997 chloroplast targeting Sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. Related U.S. Application Data 30:769-78O. 60 Provisional application No. 60/028,718, Oct. 17, 1996. Divne et al. (1994), The three-dimensional crystal structure 51 Int. Cl. ............................. C12N 15/82; C12N 5/04; of the catalytic core of cellobiohydrolase I from Tricho AO1H 5/00 derma reesei. Science 265:524-528.
    [Show full text]
  • Characterization of a Chitinase and an Endo-Β-1,3-Glucanase from Trichoderma Harzianum Rifai T24 Involved in Control of the Phytopathogen Sclerotium Rolfsii
    Appl Microbiol Biotechnol (2001) 56:137–143 DOI 10.1007/s002530100646 ORIGINAL PAPER M.H. El-Katatny · M. Gudelj · K.-H. Robra M.A. Elnaghy · G.M. Gübitz Characterization of a chitinase and an endo-β-1,3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii Received: 23 November 2000 / Received revision: 26 January 2001 / Accepted: 26 January 2001 / Published online: 19 May 2001 © Springer-Verlag 2001 Abstract Of 24 Trichoderma isolates, T. harzianum causes disease in over 500 plant species. Recently, the Rifai (T24) showed a potential for control of the phyto- fungus has also been found in Europe on different hosts, pathogenic basidiomycete Sclerotium rolfsii. When T24 including juglans and sunflowers (Belisario and Corazza was grown on different carbon sources, growth inhibi- 1996; Infantino et al. 1997). Mycoparasitic fungi have tion of S. rolfsii by the T24 culture filtrate correlated been shown to have a potential for the control of plant with the activity of extracellular chitinase and β-1,3- diseases caused by S. rolfsii (Maoa et al. 2000). Lectins glucanase. The 43-kilodalton (kDa) chitinase and the of S. rolfsii were found to be the recognition signal initi- 74-kDa β-1,3-glucanase were purified from the T24 cul- ating the coiling process in Trichoderma harzianum ture filtrate in two and three steps, respectively, using (Inbar and Chet 1995) (Fig. 1), while it has been sug- ammonium sulphate precipitation followed by hydropho- gested that constitutive carbohydrolases of T. harzianum bic interaction chromatography (phenyl-Sepharose) and release oligosaccharides from Rhizoctonia solani cell β gel filtration ( -1,3-glucanase).
    [Show full text]
  • Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications
    Hindawi Publishing Corporation Enzyme Research Volume 2012, Article ID 921362, 14 pages doi:10.1155/2012/921362 Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications Siew Ling Hii,1 Joo Shun Tan,2 Tau Chuan Ling,3 and Arbakariya Bin Ariff4 1 Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia 2 Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 3 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia 4 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia Correspondence should be addressed to Arbakariya Bin Ariff, [email protected] Received 26 March 2012; Revised 12 June 2012; Accepted 12 June 2012 Academic Editor: Joaquim Cabral Copyright © 2012 Siew Ling Hii et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The use of pullulanase (EC 3.2.1.41) has recently been the subject of increased applications in starch-based industries especially those aimed for glucose production. Pullulanase, an important debranching enzyme, has been widely utilised to hydrolyse the α-1,6 glucosidic linkages in starch, amylopectin, pullulan, and related oligosaccharides, which enables a complete and efficient conversion of the branched polysaccharides into small fermentable sugars during saccharification process. The industrial manufacturing of glucose involves two successive enzymatic steps: liquefaction, carried out after gelatinisation by the action of α- amylase; saccharification, which results in further transformation of maltodextrins into glucose.
    [Show full text]
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • GRAS Notice 975, Maltogenic Alpha-Amylase Enzyme Preparation
    GRAS Notice (GRN) No. 975 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory novozyme~ Rethink Tomorrow A Maltogenic Alpha-Amylase from Geobacillus stearothermophilus Produced by Bacillus licheniformis Janet Oesterling, Regulatory Affairs, Novozymes North America, Inc., USA October 2020 novozyme~ Reth in k Tomorrow PART 2 - IDENTITY, METHOD OF MANUFACTURE, SPECIFICATIONS AND PHYSICAL OR TECHNICAL EFFECT OF THE NOTIFIED SUBSTANCE ..................................................................... 4 2.1 IDENTITY OF THE NOTIFIED SUBSTANCE ................................................................................ 4 2.2 IDENTITY OF THE SOURCE ......................................................................................................... 4 2.2(a) Production Strain .................................................................................................. 4 2.2(b) Recipient Strain ..................................................................................................... 4 2.2(c) Maltogenic Alpha-Amylase Expression Plasmid ................................................... 5 2.2(d) Construction of the Recombinant Microorganism ................................................. 5 2.2(e) Stability of the Introduced Genetic Sequences .................................................... 5 2.2(f) Antibiotic Resistance Gene .................................................................................. 5 2.2(g) Absence of Production Organism in Product ......................................................
    [Show full text]
  • Thèse Morgane Wartel
    Faculté des Sciences - Aix-Marseille Université Laboratoire de Chimie Bactérienne 163 Avenue de Luminy - Case 901 31 Chemin Joseph Aiguier 13288 Marseille 13009 Marseille Thèse En vue d’obtenir le grade de Docteur d’Aix-Marseille Université Biologie, spécialité Microbiologie Présentée et soutenue publiquement par Morgane Wartel Le Mercredi 18 Décembre 2013 A novel class of bacterial motors involved in the directional transport of a sugar at the bacterial surface: The machineries of motility and sporulation in Myxococcus xanthus. Une nouvelle classe de moteurs bactériens impliqués dans le transport de macromolécules à la surface bactérienne: Les machineries de motilité et de sporulation de Myxococcus xanthus. Membres du Jury : Dr. Christophe Grangeasse Rapporteur Dr. Patrick Viollier Rapporteur Pr. Pascale Cossart Examinateur Dr. Francis-André Wollman Examinateur Dr. Tâm Mignot Directeur de Thèse Pr. Frédéric Barras Président du Jury Faculté des Sciences - Aix-Marseille Université Laboratoire de Chimie Bactérienne 163 Avenue de Luminy - Case 901 31 Chemin Joseph Aiguier 13288 Marseille 13009 Marseille Thèse En vue d’obtenir le grade de Docteur d’Aix-Marseille Université Biologie, spécialité Microbiologie Présentée et soutenue publiquement par Morgane Wartel Le Mercredi 18 Décembre 2013 A novel class of bacterial motors involved in the directional transport of a sugar at the bacterial surface: The machineries of motility and sporulation in Myxococcus xanthus. Une nouvelle classe de moteurs bactériens impliqués dans le transport de macromolécules à la surface bactérienne: Les machineries de motilité et de sporulation de Myxococcus xanthus. Membres du Jury : Dr. Christophe Grangeasse Rapporteur Dr. Patrick Viollier Rapporteur Pr. Pascale Cossart Examinateur Dr. Francis-André Wollman Examinateur Dr.
    [Show full text]
  • Alpha-Agarases Define a New Family of Glycoside Hydrolases, Distinct from Beta-Agarase Families
    Alpha-agarases define a new family of glycoside hydrolases, distinct from beta-agarase families Didier Flament, Tristan Barbeyron, Murielle Jam, Philippe Potin, Mirjam Czjzek, Bernard Kloareg, Gurvan Michel To cite this version: Didier Flament, Tristan Barbeyron, Murielle Jam, Philippe Potin, Mirjam Czjzek, et al.. Alpha- agarases define a new family of glycoside hydrolases, distinct from beta-agarase families. Applied and Environmental Microbiology, American Society for Microbiology, 2007, 73 (14), pp.4691-4694. 10.1128/AEM.00496-07. hal-00616725 HAL Id: hal-00616725 https://hal.univ-brest.fr/hal-00616725 Submitted on 5 Sep 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Short communication 2 3 Alpha-agarases define a new family of glycoside hydrolases, distinct from 4 beta-agarase families 5 6 Didier FLAMENT §, Tristan BARBEYRON, Murielle JAM, Philippe POTIN, Mirjam 7 CZJZEK, Bernard KLOAREG and Gurvan MICHEL* 8 9 Centre National de la Recherche Scientifique; Université Pierre et Marie Curie-Paris6, Unité 10 Mixte de Recherche 7139 "Marine
    [Show full text]
  • Application A1204 Βeta-Amylase from Soybean (Glycine Max)
    OFFICIAL 27 October 2020 [139-20] Supporting document 1 Risk and Technical assessment – Application A1204 Βeta-amylase from soybean (Glycine max) as a processing aid (enzyme) Executive summary The purpose of the application is to amend Schedule 18 – Processing Aids of the Australia New Zealand Food Standards Code (the Code) to include the enzyme beta-amylase (β- amylase) (EC 3.2.1.2) produced from soybeans (Glycine max). β-Amylase is proposed as a processing aid in starch processing for the production of maltose syrup. The evidence presented to support the proposed use of the enzyme provides adequate assurance that the enzyme, in the quantity and form proposed to be used, is technologically justified and has been demonstrated to be effective in achieving its stated purpose. The enzyme meets international identity and purity specifications. β-Amylase from soybean is derived from the edible parts of the Glycine max plant, for which a history of safe use over generations is well known. FSANZ considers that soybean β-amylase is unlikely to pose an allergenicity concern. Bioinformatic analysis identified a degree of amino acid sequence homology between β- amylase from soybean and an allergenic protein from wheat, but FSANZ does not consider β-amylase to be of allergenic concern in wheat allergic individuals given the likely very low exposure and that the enzyme is likely to be digested in the stomach like other dietary proteins. The WHO/IUIS Allergen Nomenclature Database lists seven soy proteins that are food allergens. β-amylase from soybean is not one of these seven allergenic soy proteins and is not an allergen to individuals with soybean food allergy.
    [Show full text]
  • Isolation and Characterization of an Antarctic Flavobacterium Strain with Agarase and Alginate Lyase Activities
    vol. 37, no. 3, pp. 403–419, 2016 doi: 10.1515/popore-2016-0021 Isolation and characterization of an Antarctic Flavobacterium strain with agarase and alginate lyase activities Paris LAVÍN1*, Cristian ATALA2, Jorge GALLARDO-CERDA1, Marcelo GONZALEZ-ARAVENA1, Rodrigo DE LA IGLESIA3, Rómulo OSES4, Cristian TORRES-DÍAZ5, Nicole TREFAULT6, Marco A. MOLINA-MONTENEGRO4,7 and H. Dail LAUGHINGHOUSE IV8 1 Departamento Científico, Instituto Antártico Chileno (INACH), Punta Arenas, Chile 2 Laboratorio de Anatomía y Ecología Funcional de Plantas, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile <[email protected]> 3 Departamento de Genética Molecular y Microbiología. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile 4 Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile 5 Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Chillán, Chile 6 Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile 7 Instituto de Ciencias Biológicas, Universidad de Talca, Avda. Lircay s/n, Talca, Chile 8 Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD, USA * Corresponding author Abstract: Several bacteria that are associated with macroalgae can use phycocolloids as a carbon source. Strain INACH002, isolated from decomposing Porphyra (Rhodo- phyta), in King George Island, Antarctica, was screened and characterized for the ability to produce agarase and alginate-lyase enzymatic activities. Our strain INACH002 was identified as a member of the genus Flavobacterium, closely related to Flavobacterium faecale, using 16S rRNA gene analysis. The INACH002 strain was characterized as psy- chrotrophic due to its optimal temperature (17 ºC) and maximum temperature (20°C) of growth.
    [Show full text]
  • Characterization of Starch Debranching Enzymes of Maize Endosperm Afroza Rahman Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1998 Characterization of starch debranching enzymes of maize endosperm Afroza Rahman Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons, Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Rahman, Afroza, "Characterization of starch debranching enzymes of maize endosperm " (1998). Retrospective Theses and Dissertations. 12519. https://lib.dr.iastate.edu/rtd/12519 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]