Rathayibacter Tritici Authors

Total Page:16

File Type:pdf, Size:1020Kb

Rathayibacter Tritici Authors Compendium of Actinobacteria from Dr. Joachim M. Wink, University of Braunschweig Name: Rathayibacter tritici Authors: (Carlson and Vidaver 1982) Zgurskaya et al. 1993 Status: New Combination Literature: Int. J. Syst. Bacteriol. 43:146 Risk group: 1 (German classification) Type strain: ATCC 11403, DSM 7486, NCPPB 1857 Synonyms: Corynebacterium tritici (basonym), Clavibacter tritici (basonym) Author(s) Carlsson, R. R., Vidaver, A. K. Title Taxonomy of Corynebacterium plant pathogens, including a new pathogen of wheat, based on polyacrylamide gel electrophoresis of cellular proteins. Journal Int. J. Syst. Bacteriol. Volume 32 Page(s) 315-326 Year 1982 Author(s) Zgurskaya, H. I., Evtushenko, L. I., Akimov, V. N., Kalakoutskii, L. V. Title Rathayibacter gen. nov., including the species Rathayibacter rathayi comb. nov., Rathayibacter tritici comb. nov., Rathayibacter iranicus comb. nov., and six strains from annual grasses. Journal Int. J. Syst. Bacteriol. Volume 43 Page(s) 143-149 Year 1993 Copyright: PD Dr. Joachim M. Wink, HZI - Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany, Mail: [email protected]. Compendium of Actinobacteria from Dr. Joachim M. Wink, University of Braunschweig Genus: Rathayibacter FH 6072 Species: tritici Numbers in other collections: DSM 7486 Morphology: G R ISP 2 good golden yellow A SP none none G R 5006 good golden yellow A SP none none G R 5425 good golden yellow A SP none none G R 5428 none golden yellow A SP none none G R 5530 good golden yellow A SP none none Spore chains: Spore surface: Sporangia: Fragmentation: Melanoid pigment: - - - - NaCl resistance: 5 % Lysozyme resistance: pH: Value- Optimum- Temperature : Value- Optimum- Carbon utilization: Glu Ara Suc Xyl Ino Man Fru Rha Raf Cel nd. Enzymes: Gel Cit Ure Arg Onp Trp Lys Odc VP Ind H2S - + + - - - - - + - - 2- 3- 4+ 5- 6+ 7+ 8- 9- 10- 11+ 12+ 13- 14- 15- 16+ 17(+) 18- 19- 20- Nit Pyz Pyr Pal βGur βGal αGlu βNag Esc Ure Gel + - - - - - + - - + - Glu Rib Xyl Man Mal Lac Sac Glyg - - - - - - - - Comments: Copyright: PD Dr. Joachim M. Wink, HZI - Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany, Mail: [email protected]. Compendium of Actinobacteria from Dr. Joachim M. Wink, University of Braunschweig Rathayibacter tritici A and B – Agar plates medium 5006, 5265, 5425, 5428 and 5530 Copyright: PD Dr. Joachim M. Wink, HZI - Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany, Mail: [email protected]. .
Recommended publications
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Rathayibacter Rathayi Comb , Nov,, Rathayibacter Tritici Comb , Nov,, Rathayibacter Iranicus Comb, Nov., and Six Strains from Annual Grasses H
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1993, p. 143-149 Vol. 43, No. 1 0020-7713/93/010143-07$02.00/0 Copyright 0 1993, International Union of Microbiological Societies Rathayibacter gen, nov., Including the Species Rathayibacter rathayi comb , nov,, Rathayibacter tritici comb , nov,, Rathayibacter iranicus comb, nov., and Six Strains from Annual Grasses H. I. ZGURSKAYA, L. I. EVTUSHENKO," V. N. AKIMOV, AND L. V. KALAKOUTSKII All-Russian Collection of Microorganisms, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia A new genus, Ruthuyibucter, is proposed to accommodate three species of gram-positive, aerobic, coryneform bacteria previously placed in the genus Clavibucter (Ruthuyibucter ruthuyi comb. nov., Ruthuyibucter tritici comb. nov., and Ruthuyibucter irunicus comb. nov.), as well as six strains that were isolated from annual cereal grasses, may be responsible for ryegrass toxicity, and are very similar to the recently described organism Chvibacter toxicus sp. nov. (I. T. Riley and K. M. Ophel, Int. J. Syst. Bacteriol. 42:64-68, 1992). The properties of members of the genus Ruthuyibacter include coryneform morphology, peptidoglycan based on 2,4-diaminobutyric acid (type B2y), predominant menaquinones of the MK-10 type, and phosphatidylglycerol and diphosphatidylglycerol as basic polar lipids. The DNA base compositions range from 63 to 72 mol% G+C. The members of the new genus form a phenetic cluster distinct from Clavibucter spp. at a level
    [Show full text]
  • To Obtain Approval for Projects to Develop Genetically Modified Organisms in Containment
    APPLICATION FORM Containment – GMO Project To obtain approval for projects to develop genetically modified organisms in containment Send to Environmental Protection Authority preferably by email ([email protected]) or alternatively by post (Private Bag 63002, Wellington 6140) Payment must accompany final application; see our fees and charges schedule for details. Application Number APP203205 Date 02/10/2017 www.epa.govt.nz 2 Application Form Approval for projects to develop genetically modified organisms in containment Completing this application form 1. This form has been approved under section 42A of the Hazardous Substances and New Organisms (HSNO) Act 1996. It only covers projects for development (production, fermentation or regeneration) of genetically modified organisms in containment. This application form may be used to seek approvals for a range of new organisms, if the organisms are part of a defined project and meet the criteria for low risk modifications. Low risk genetic modification is defined in the HSNO (Low Risk Genetic Modification) Regulations: http://www.legislation.govt.nz/regulation/public/2003/0152/latest/DLM195215.html. 2. If you wish to make an application for another type of approval or for another use (such as an emergency, special emergency or release), a different form will have to be used. All forms are available on our website. 3. It is recommended that you contact an Advisor at the Environmental Protection Authority (EPA) as early in the application process as possible. An Advisor can assist you with any questions you have during the preparation of your application. 4. Unless otherwise indicated, all sections of this form must be completed for the application to be formally received and assessed.
    [Show full text]
  • Curriculum Vitae
    Faculty of Sciences Department of Biochemistry and Microbiology Laboratory of Microbiology Diagnostics for quarantine plant pathogenic Clavibacter and relatives: molecular characterization, identification and epidemiological studies Joanna Załuga Promoter: Prof. Dr. Paul De Vos Co-promoter: Prof. Dr. Martine Maes Dissertation submitted in fulfillment of the requirements for the degree of Doctor (Ph.D.) in Sciences, Biotechnology Joanna Załuga – Diagnostics for quarantine plant pathogenic Clavibacter and relatives: molecular characterization, identification and epidemiological studies Copyright ©2013 Joanna Załuga ISBN-number: No part of this thesis protected by its copyright notice may be reproduced or utilized in any form, or by any means, electronic or mechanical, including photocopying, recording or by any information storage or retrieval system without written permission of the author and promoters. Printed by University Press | www.universitypress.be Ph.D. thesis, Faculty of Sciences, Ghent University, Ghent, Belgium. This Ph.D. work was financially supported by a QBOL (Quarantine Barcoding Of Life) project KBBE- 2008-1-4-01 nr 226482 funded under the Seventh Framework Program (FP 7) of the European Union. Publicly defended in Ghent, Belgium, October 11th, 2013 ii Examination Committee Prof. Dr. Savvas Savvides (Chairman) L-Probe: Laboratory for protein Biochemistry and Biomolecular Engineering Faculty of Sciences, Ghent University, Belgium Prof. Dr. Paul De Vos (Promoter) LM-UGent: Laboratory of Microbiology, Faculty of Science, Ghent University, Belgium BCCM-LMG Bacteria Collection, Ghent, Belgium Prof. Dr. Martine Maes (Co-promoter) Plant Sciences Unit – Crop Protection Institute for Agricultural and Fisheries Research (ILVO), Merelbeke, Belgium Dr. Peter Bonants Plant Research International (PRI) Business Unit Biointeractions & Plant Health, Wageningen, The Netherlands Ir.
    [Show full text]
  • Rathayibacter Iranicus Authors: (Carlson and Vidaver 1982)
    Compendium of Actinobacteria from Dr. Joachim M. Wink, University of Braunschweig Name: Rathayibacter iranicus Authors: (Carlson and Vidaver 1982) Zgurskaya et al. 1993 Status: New Combination Literature: Int. J. Syst. Bacteriol. 43:146 Risk group: 1 (German classification) Type strain: DSM 7484, NCPPB 2253 Synonyms: Corynebacterium iranicum (basonym), Clavibacter iranicus (basonym) Author(s) Carlsson, R. R., Vidaver, A. K. Title Taxonomy of Corynebacterium plant pathogens, including a new pathogen of wheat, based on polyacrylamide gel electrophoresis of cellular proteins. Journal Int. J. Syst. Bacteriol. Volume 32 Page(s) 315-326 Year 1982 Author(s) Zgurskaya, H. I., Evtushenko, L. I., Akimov, V. N., Kalakoutskii, L. V. Title Rathayibacter gen. nov., including the species Rathayibacter rathayi comb. nov., Rathayibacter tritici comb. nov., Rathayibacter iranicus comb. nov., and six strains from annual grasses. Journal Int. J. Syst. Bacteriol. Volume 43 Page(s) 143-149 Year 1993 Copyright: PD Dr. Joachim M. Wink, HZI - Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany, Mail: [email protected]. Compendium of Actinobacteria from Dr. Joachim M. Wink, University of Braunschweig Genus: Rathayibacter FH 6070 Species: iranicus Numbers in other collections: DSM 7484 Morphology: G R ISP 2 good cream A SP none none G R 5006 good cream A SP none none G R 5425 good cream A SP none none G R 5428 none cream A SP none none G R 5530 sparse cream A SP none none Spore chains: Spore surface: Sporangia: Fragmentation: Melanoid pigment: - - - - NaCl resistance: 5 % Lysozyme resistance: pH: Value- Optimum- Temperature : Value- Optimum- Carbon utilization: Glu Ara Suc Xyl Ino Man Fru Rha Raf Cel nd.
    [Show full text]
  • Rathayibacter Caricis Sp. Nov. and Rathayibacter Festucae Sp. Nov., Isolated from the Phyllosphere of Carex Sp. and the Leaf
    International Journal of Systematic and Evolutionary Microbiology (2002), 52, 1917–1923 DOI: 10.1099/ijs.0.02164-0 Rathayibacter caricis sp. nov. and Rathayibacter NOTE festucae sp. nov., isolated from the phyllosphere of Carex sp. and the leaf gall induced by the nematode Anguina graminis on Festuca rubra L., respectively 1 VKM, All-Russian Lubov V. Dorofeeva,1 Lyudmila I. Evtushenko,1,2 Valentina I. Krausova,1 Collection of 1,2 3 4 Microorganisms, G. K. Alexander V. Karpov, Sergey A. Subbotin and James M. Tiedje Skryabin Institute of Biochemistry and Physiology of Author for correspondence: Lyudmila I. Evtushenko. Tel: j7 095 925 7448. Fax: j7 095 956 3370. Microorganisms, Russian e-mail: evtushenko!ibpm.serpukhov.su Academy of Sciences, Pushchino, Moscow Region 142290, Russia Two novel species, Rathayibacter caricis sp. nov. (type strain VKM Ac-1799T l 2 Pushchino State University, UCM Ac-618T) and Rathayibacter festucae sp. nov. (type strain VKM Ac-1390T l Pushchino, Moscow Region UCM Ac-619T), are proposed for two coryneform actinomycetes found in the 142290, Russia phyllosphere of Carex sp. and in the leaf gall induced by the plant-parasitic 3 Institute of Parasitology, nematode Anguina graminis on Festuca rubra L., respectively. The strains of Russian Academy of Sciences, Leninskii the novel species are typical of the genus Rathayibacter in their prospect, 33, Moscow chemotaxonomic characteristics and fall into the Rathayibacter 16S rDNA 117071, Russia phylogenetic cluster. They belong to two separate genomic species and differ 4 Center for Microbial markedly from current validly described species of Rathayibacter at the Ecology, Michigan State phenotypic level.
    [Show full text]
  • Colonization Studies of Clavibacter Michiganensis in Fruit and Xylem of Diverse Solanum Species
    Colonization studies of Clavibacter michiganensis in fruit and xylem of diverse Solanum species A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Franklin Christopher Peritore May 2020 © 2020 Franklin Christopher Peritore Colonization studies of Clavibacter michiganensis in fruit and xylem of diverse Solanum species Franklin Christopher Peritore, Ph. D. Cornell University 2020 Bacterial canker of tomato is an economically devastating disease with a worldwide distribution caused by the gram-positive pathogen Clavibacter michiganensis. The seedborne pathogen systemically colonizes the tomato xylem, causing unilateral leaflet wilt, stem and petiole cankers, marginal leaf necrosis, and plant death. Splash dispersal of the bacterium onto fruit exteriors causes bird’s-eye lesions, which are characterized as necrotic centers surrounded by white halos. The pathogen can colonize developing seeds systemically through the xylem and through penetration of fruit tissues from the exterior. There are no commercially available resistant tomato cultivars, and copper-based bactericides have limited efficacy for controlling the disease once the pathogen is in the xylem. This dissertation describes differences in pathogen colonization of xylem and fruit between tolerant and susceptible Solanum species, demonstrating that C. michiganensis is impeded in systemic and intravascular spread in the xylem, and is capable of causing bird’s-eye lesions on wild tomato fruit. The size at which S. lycopersicum fruit inoculated with C. michiganensis and two additional bacterial pathogens begins developing lesions, peaks in susceptibility, and ceases developing lesions was determined in wildtype and ethylene-responsive mutants. Changes in chemical composition of xylem sap from susceptible S.
    [Show full text]
  • Rathayibacter Toxicus, Other Rathayibacter Species Inducing
    Phytopathology • 2017 • 107:804-815 • http://dx.doi.org/10.1094/PHYTO-02-17-0047-RVW Rathayibacter toxicus,OtherRathayibacter Species Inducing Bacterial Head Blight of Grasses, and the Potential for Livestock Poisonings Timothy D. Murray, Brenda K. Schroeder, William L. Schneider, Douglas G. Luster, Aaron Sechler, Elizabeth E. Rogers, and Sergei A. Subbotin First author: Department of Plant Pathology, Washington State University, Pullman, WA 99164; second author: Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844; third, fourth, fifth, and sixth authors: U.S. Department of Agriculture, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Ft. Detrick, MD 21702; and seventh author: California Department of Food and Agriculture, 3294, Meadowview Road, Sacramento, CA 95832-1448. Accepted for publication 8 April 2017. ABSTRACT Rathayibacter toxicus, a Select Agent in the United States, is one of six recognized species in the genus Rathayibacter and the best known due to its association with annual ryegrass toxicity, which occurs only in parts of Australia. The Rathayibacter species are unusual among phytopathogenic bacteria in that they are transmitted by anguinid seed gall nematodes and produce extracellular polysaccharides in infected plants resulting in bacteriosis diseases with common names such as yellow slime and bacterial head blight. R. toxicus is distinguished from the other species by producing corynetoxins in infected plants; toxin production is associated with infection by a bacteriophage. These toxins cause grazing animals feeding on infected plants to develop convulsions and abnormal gate, which is referred to as “staggers,” and often results in death of affected animals. R. toxicus is the only recognized Rathayibacter species to produce toxin, although reports of livestock deaths in the United States suggest a closely related toxigenic species may be present.
    [Show full text]
  • Comprehensive List of Names of Plant Pathogenic Bacteria, 1980-2007
    001_JPP_Letter_551 16-11-2010 14:12 Pagina 551 Journal of Plant Pathology (2010), 92 (3), 551-592 Edizioni ETS Pisa, 2010 551 LETTER TO THE EDITOR COMPREHENSIVE LIST OF NAMES OF PLANT PATHOGENIC BACTERIA, 1980-2007 C.T. Bull1, S.H. De Boer2, T.P. Denny3, G. Firrao4, M. Fischer-Le Saux5, G.S. Saddler6, M. Scortichini7, D.E. Stead8 and Y. Takikawa9 1United States Department of Agriculture, 1636 E. Alisal Street, Salinas, CA 93905, USA 2Canadian Food Inspection Agency, 93 Mount Edward Road, Charlottetown, PE C1A 5T1, Canada 3University of Georgia, Plant Pathology Department, Plant Science Building, Athens, GA 30602-7274, USA 4Dipartimento di Biologia Applicata alla Difesa delle Piante, Università degli Studi, Via Scienze 208, 33100 Udine, Italy 5UMR de Pathologie Végétale, INRA, BP 60057, 49071 Beaucouzé Cedex, France 6Science and Advice for Scottish Agriculture, Roddinglaw Road, Edinburgh EH12 9FJ, UK 7CRA. Centro di Ricerca per la Frutticoltura, Via di Fioranello 52, 00134 Roma, Italy 8Food and Environment Research Agency, Department for Environment, Food and Rural Affairs, Sand Hutton, York, YO41 1LZ, UK 9Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan SUMMARY INTRODUCTION The names of all plant pathogenic bacteria which The nomenclature of bacterial plant pathogens, like have been effectively and validly published in terms of that of many other life forms, is constantly changing in the International Code of Nomenclature of Bacteria and response to new insights and our understanding of rela- the Standards for Naming Pathovars are listed to pro- tionships among bacteria. For example, the taxonomy vide an authoritative register of names for use by au- of the family Enterobacteriaceae has been extensively re- thors, journal editors and others who require access to vised since the publication of the previous comprehen- currently correct nomenclature.
    [Show full text]
  • Rathayibacter Agropyri (Non O’Gara, 1916) Comb
    TAXONOMIC DESCRIPTION Schroeder et al., Int J Syst Evol Microbiol DOI 10.1099/ijsem.0.002708 Rathayibacter agropyri (non O’Gara, 1916) comb. nov., nom. rev., isolated from western wheatgrass (Pascopyrum smithii) Brenda K. Schroeder,1 William L. Schneider,2 Douglas G. Luster,2 Aaron Sechler2 and Timothy D. Murray3,* Abstract Aplanobacter agropyri was first described in 1915 by O’Gara and later transferred to the genus Corynebacterium by Burkholder in 1948 but it was not included in the Approved Lists of Bacterial Names in 1980 and, consequently, is not recognized as a validly published species. In the 1980s, bacteria resembling Corynebacterium agropyri were isolated from plant samples stored at the Washington State Mycological Herbarium and from a diseased wheatgrass plant collected in Cardwell, Montana, USA. In the framework of this study, eight additional isolates were recovered from the same herbarium plant samples in 2011. The isolates are slow-growing, yellow-pigmented, Gram-stain-positive and coryneform. The peptidoglycan is type B2g containing diaminobutyric acid, alanine, glycine and glutamic acid, the cell-wall sugars are rhamnose and mannose, the major respiratory quinone is MK-10, and the major fatty acids are anteiso-15 : 0, anteiso 17 : 0 and iso-16 : 0, all of which are typical of the genus Rathayibacter. Phylogenetic analysis of 16S rRNA gene sequences placed the strains in the genus Rathayibacter and distinguished them from the six other described species of Rathayibacter. DNA– DNA hybridization confirmed that the strains were members of a novel species. Based on phenotypic, chemotaxonomic and phylogenetic characterization, it appears that strains CA-1 to CA-12 represent a novel species, and the name Rathayibacter agropyri (non O’Gara, 1916) comb.
    [Show full text]
  • A4163 - Waller - Plant - All.Vp Monday, October 29, 2001 4:37:45 PM Color Profile: Disabled Composite Default Screen
    Color profile: Disabled Composite Default screen Plant Pathologist’s Pocketbook 3rd Edition 1 Z:\Customer\CABI\A4084 - Waller - Plant Pathologists Pocketbook\A4163 - Waller - Plant - All.vp Monday, October 29, 2001 4:37:45 PM Color profile: Disabled Composite Default screen 2 Z:\Customer\CABI\A4084 - Waller - Plant Pathologists Pocketbook\A4163 - Waller - Plant - All.vp Monday, October 29, 2001 4:37:45 PM Color profile: Disabled Composite Default screen Plant Pathologist’s Pocketbook 3rd Edition Edited by J.M. Waller, J.M. Lenné and S.J. Waller CABI Publishing 3 Z:\Customer\CABI\A4084 - Waller - Plant Pathologists Pocketbook\A4163 - Waller - Plant - All.vp Monday, October 29, 2001 4:37:46 PM Color profile: Disabled Composite Default screen CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 10 E 40th Street Wallingford Suite 3203 Oxon OX10 8DE New York, NY 10016 UK USA Tel: +44 (0)1491 832111 Tel: +1 212 481 7018 Fax: +44 (0)1491 833508 Fax: +1 212 686 7993 Email: [email protected] Email: [email protected] Web site: www.cabi-publishing.org ©CAB International 2002. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Plant pathologist’s pocketbook / edited by J.M. Waller, J.M. Lenné and S.J. Waller. --3rd ed. p. cm. Includes bibliographical references (p.
    [Show full text]
  • Potential Human and Plant Pathogenic Species in Airborne PM10 Samples and Relationships with Chemical Components and Meteorological Parameters
    atmosphere Article Potential Human and Plant Pathogenic Species in Airborne PM10 Samples and Relationships with Chemical Components and Meteorological Parameters Salvatore Romano 1,* , Mattia Fragola 1 , Pietro Alifano 2, Maria Rita Perrone 1 and Adelfia Talà 2 1 Department of Mathematics and Physics “E. De Giorgi”, University of Salento and I.N.F.N. (Unit of Lecce), 73100 Lecce, Italy; [email protected] (M.F.); [email protected] (M.R.P.) 2 Department of Environmental and Biological Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy; [email protected] (P.A.); adelfi[email protected] (A.T.) * Correspondence: [email protected]; Tel.: +39-0832-297-553 Abstract: A preliminary local database of potential (opportunistic) airborne human and plant pathogenic and non-pathogenic species detected in PM10 samples collected in winter and spring is provided, in addition to their seasonal dependence and relationships with meteorological parameters and PM10 chemical species. The PM10 samples, collected at a Central Mediterranean coastal site, were analyzed by the 16S rRNA gene metabarcoding approach, and Spearman correlation coefficients and redundancy discriminant analysis tri-plots were used to investigate the main relationships. The screening of 1187 detected species allowed for the detection of 76 and 27 potential (opportunistic) human and plant pathogens, respectively. The bacterial structure of both pathogenic and non- Citation: Romano, S.; Fragola, M.; pathogenic species varied from winter to spring and, consequently, the inter-species relationships Alifano, P.; Perrone, M.R.; Talà, A. among potential human pathogens, plant pathogens, and non-pathogenic species varied from winter Potential Human and Plant to spring.
    [Show full text]