Curriculum Vitae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Corynebacterium Sp.|NML98-0116
1 Limnochorda_pilosa~GCF_001544015.1@NZ_AP014924=Bacteria-Firmicutes-Limnochordia-Limnochordales-Limnochordaceae-Limnochorda-Limnochorda_pilosa 0,9635 Ammonifex_degensii|KC4~GCF_000024605.1@NC_013385=Bacteria-Firmicutes-Clostridia-Thermoanaerobacterales-Thermoanaerobacteraceae-Ammonifex-Ammonifex_degensii 0,985 Symbiobacterium_thermophilum|IAM14863~GCF_000009905.1@NC_006177=Bacteria-Firmicutes-Clostridia-Clostridiales-Symbiobacteriaceae-Symbiobacterium-Symbiobacterium_thermophilum Varibaculum_timonense~GCF_900169515.1@NZ_LT827020=Bacteria-Actinobacteria-Actinobacteria-Actinomycetales-Actinomycetaceae-Varibaculum-Varibaculum_timonense 1 Rubrobacter_aplysinae~GCF_001029505.1@NZ_LEKH01000003=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_aplysinae 0,975 Rubrobacter_xylanophilus|DSM9941~GCF_000014185.1@NC_008148=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_xylanophilus 1 Rubrobacter_radiotolerans~GCF_000661895.1@NZ_CP007514=Bacteria-Actinobacteria-Rubrobacteria-Rubrobacterales-Rubrobacteraceae-Rubrobacter-Rubrobacter_radiotolerans Actinobacteria_bacterium_rbg_16_64_13~GCA_001768675.1@MELN01000053=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_rbg_16_64_13 1 Actinobacteria_bacterium_13_2_20cm_68_14~GCA_001914705.1@MNDB01000040=Bacteria-Actinobacteria-unknown_class-unknown_order-unknown_family-unknown_genus-Actinobacteria_bacterium_13_2_20cm_68_14 1 0,9803 Thermoleophilum_album~GCF_900108055.1@NZ_FNWJ01000001=Bacteria-Actinobacteria-Thermoleophilia-Thermoleophilales-Thermoleophilaceae-Thermoleophilum-Thermoleophilum_album -
Evolutionary Genomics of Conjugative Elements and Integrons
Université Paris Descartes École doctorale Interdisciplinaire Européenne 474 Frontières du Vivant Microbial Evolutionary Genomic, Pasteur Institute Evolutionary genomics of conjugative elements and integrons Thèse de doctorat en Biologie Interdisciplinaire Présentée par Jean Cury Pour obtenir le grade de Docteur de l’Université Paris Descartes Sous la direction de Eduardo Rocha Soutenue publiquement le 17 Novembre 2017, devant un jury composé de: Claudine MÉDIGUE Rapporteure CNRS, Genoscope, Évry Marie-Cécile PLOY Rapporteure Université de Limoges Érick DENAMUR Examinateur Université Paris Diderot, Paris Philippe LOPEZ Examinateur Université Pierre et Marie Curie, Paris Alan GROSSMAN Examinateur MIT, Cambdridge, USA Eduardo ROCHA Directeur de thèse CNRS, Institut Pasteur, Paris ِ عمحمود ُبدرويش َالنرد َم ْن انا ِٔ َقول ُلك ْم ما ا ُقول ُلك ْم ؟ وانا لم أ ُك ْن َ َج ًرا َص َق َل ْت ُه ُالمياه َفأ ْص َب َح ِوهاً و َق َصباً َثق َب ْت ُه ُالرياح َفأ ْص َب َح ًنايا ... انا ِع ُب َالن ْرد ، ا َرب ُح يناً وا َس ُر يناً انا ِم ُثل ُك ْم ا وا قل قليً ... The dice player Mahmoud Darwish Who am I to say to you what I am saying to you? I was not a stone polished by water and became a face nor was I a cane punctured by the wind and became a lute… I am a dice player, Sometimes I win and sometimes I lose I am like you or slightly less… Contents Acknowledgments 7 Preamble 9 I Introduction 11 1 Background for friends and family . 13 2 Horizontal Gene Transfer (HGT) . 16 2.1 Mechanisms of horizontal gene transfer . -
Epidemiological and Molecular Analysis of Virulence and Antibiotic Resistance in Acinetobacter Baumannii
UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA DEPARTAMENTO DE BIOQUÍMICA Y BIOLOGÍA MOLECULAR IV TESIS DOCTORAL Epidemiological and Molecular Analysis of Virulence and Antibiotic Resistance in Acinetobacter baumannii Análisis Epidemiológico y Molecular de la Virulencia y la Antibiorresistencia en Acinetobacter baumannii MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Elias Dahdouh DIRECTORA Mónica Suárez Rodríguez Madrid, 2017 © Elias Dahdouh, 2016 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA DEPARTAMENTO DE BIOQUIMICA Y BIOLOGIA MOLECULAR IV TESIS DOCTORAL Análisis Epidemiológico y Molecular de la Virulencia y la Antibiorresistencia en Acinetobacter baumannii Epidemiological and Molecular Analysis of Virulence and Antibiotic Resistance in Acinetobacter baumannii MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Elias Dahdouh Directora Mónica Suárez Rodríguez Madrid, 2016 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA Departamento de Bioquímica y Biología Molecular IV ANALYSIS EPIDEMIOLOGICO Y MOLECULAR DE LA VIRULENCIA Y LA ANTIBIORRESISTENCIA EN Acinetobacter baumannii EPIDEMIOLOGICAL AND MOLECULAR ANALYSIS OF VIRULENCE AND ANTIBIOTIC RESISTANCE IN Acinetobacter baumannii MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Elias Dahdouh Bajo la dirección de la doctora Mónica Suárez Rodríguez Madrid, Diciembre de 2016 First and foremost, I would like to thank God for the continued strength and determination that He has given me. I would also like to thank my father Abdo, my brother Charbel, my fiancée, Marisa, and all my friends for their endless support and for standing by me at all times. Moreover, I would like to thank Dra. Monica Suarez Rodriguez and Dr. Ziad Daoud for giving me the opportunity to complete this doctoral study and for their guidance, encouragement, and friendship. -
High-Quality Draft Genome Sequence of Curtobacterium Sp. Strain Ferrero
PROKARYOTES crossm High-Quality Draft Genome Sequence of Curtobacterium sp. Strain Ferrero Ebrahim Osdaghi,a,b Natalia Forero Serna,a* Stephanie Bolot,c,d Marion Fischer-Le Saux,e Marie-Agnès Jacques,e Perrine Portier,e,f Sébastien Carrère,c,d Ralf Koebnika Downloaded from IRD, Cirad, Université de Montpellier, IPME, Montpellier, Francea; Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iranb; INRA, Laboratoire des Interactions Plantes Micro-Organismes (LIPM), UMR 441, Castanet-Tolosan, Francec; CNRS, Laboratoire des Interactions Plantes Micro-Organismes (LIPM), UMR 2594, Castanet-Tolosan, Franced; INRA, Institut de Recherche en Horticulture et Semences (IRHS), UMR 1345 SFR 4207 QUASAV, Beaucouzé, Francee; CIRM-CFBP, French Collection for Plant-Associated Bacteria, INRA, IRHS, Angers, Francef ABSTRACT Here, we present the high-quality draft genome sequence of Curto- bacterium sp. strain Ferrero, an actinobacterium belonging to a novel species iso- Received 3 November 2017 Accepted 6 http://mra.asm.org/ November 2017 Published 30 November lated as an environmental contaminant in a bacterial cell culture. The assembled 2017 genome of 3,694,888 bp in 49 contigs has a GϩC content of 71.6% and contains Citation Osdaghi E, Forero Serna N, Bolot S, 3,516 predicted genes. Fischer-Le Saux M, Jacques M-A, Portier P, Carrère S, Koebnik R. 2017. High-quality draft genome sequence of Curtobacterium sp. strain Ferrero. Genome Announc 5:e01378-17. he genus Curtobacterium comprises Gram-positive aerobic corynebacteria (family https://doi.org/10.1128/genomeA.01378-17. TMicrobacteriaceae, order Actinomycetales), including at least 11 well-defined species Copyright © 2017 Osdaghi et al. -
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
Adaptive Differentiation and Rapid Evolution of a Soil Bacterium Along a Climate Gradient
Adaptive differentiation and rapid evolution of a soil bacterium along a climate gradient Alexander B. Chasea,b,1, Claudia Weihea, and Jennifer B. H. Martinya aDepartment of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697; and bCenter for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093 Edited by James M. Tiedje, Michigan State University, East Lansing, MI, and approved March 30, 2021 (received for review January 29, 2021) Microbial community responses to environmental change are largely shifts are due to adaptive differentiation among taxa as a result associated with ecological processes; however, the potential for of past evolutionary divergence. Concurrently, the same selective microbes to rapidly evolve and adapt remains relatively unexplored forces can also shift the abundance of conspecific strains and in natural environments. To assess how ecological and evolutionary alter the allele frequencies of preexisting genetic variation, which processes simultaneously alter the genetic diversity of a microbiome, at this genetic scale is defined as an evolutionary process (14). we conducted two concurrent experiments in the leaf litter layer of Finally, evolution through de novo mutation can provide a new soil over 18 mo across a climate gradient in Southern California. In the source of genetic variation that may allow for further adaptation first experiment, we reciprocally transplanted microbial communities to environmental change. from five sites to test whether ecological shifts in ecotypes of the In this study, we aimed to capture this continuum of ecological abundant bacterium, Curtobacterium, corresponded to past adaptive and evolutionary processes that together produce the response differentiation. -
Supplement of Screening of Cloud Microorganisms Isolated at the Puy De Dôme (France) Station for the Production of Biosurfactants
Supplement of Atmos. Chem. Phys., 16, 12347–12358, 2016 http://www.atmos-chem-phys.net/16/12347/2016/ doi:10.5194/acp-16-12347-2016-supplement © Author(s) 2016. CC Attribution 3.0 License. Supplement of Screening of cloud microorganisms isolated at the Puy de Dôme (France) station for the production of biosurfactants Pascal Renard et al. Correspondence to: Anne-Marie Delort ([email protected]) The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence. Table S1. Strains are isolated during 39 cloud events (from 2004 to 2014) gathered in four categories according to the physicochemical characteristics of the cloud waters (Blue: marine, purple: highly marine, green: continental and black: polluted) as described by Deguillaume et al. (2014). Cloud Nb of Ions (µM) Composition Date pH 2- - - + + 2+ + 2+ Event strains SO 4 NO 3 Cl Acetate Formate Oxalate Succinate Malonate Na NH 4 Mg K Ca 21 Marine 2 2004-01 5.6 NA NA NA NA NA NA NA NA NA NA NA NA NA 23 Polluted 2 2004-02 3.1 NA NA NA NA NA NA NA NA NA NA NA NA NA 29 Marine 1 2004-07 5.5 NA NA NA NA NA NA NA NA NA NA NA NA NA 30 Marine 3 2004-09 7.6 3.8 6.5 12.0 6.0 6.0 0.5 0.1 0.16 19.4 54.9 4.9 4.1 12.0 32 Continental 1 2004-12 5.5 72.1 95.8 31.5 0.0 0.3 0.3 0.1 0.17 74.4 132.4 7.6 9.0 73.7 42 Continental 25 2007-12 4.7 39.7 198.4 20.2 10.2 5.8 2.9 0.6 0.58 19.1 148.2 3.5 11.9 58.0 43 Highly marine 25 2008-01 5.9 9.4 21.4 81.4 11.4 6.7 1.2 0.2 0.28 315.7 35.9 11.8 13.7 26.0 44 Continental 14 2008-02 5.2 24.6 65.9 17.2 26.8 18.0 1.3 0.5 0.39 -
Soil Ecotypes Along a Climate Gradient
Emergence of Soil Bacterial Ecotypes Along a Climate Gradient Alexander B. Chase1#, Zulema Gomez-Lunar2, Alberto E. Lopez1, Junhui Li2, Steven D. Allison1,2, Adam C. Martiny1,2, and Jennifer B.H. Martiny1 1Department of Ecology and Evolutionary Biology, University of California, Irvine, California 2Department of Earth System Sciences, University of California, Irvine, California #Address correspondence to: Alexander B. Chase, [email protected] 3300 Biological Sciences III Department of Ecology and Evolutionary Biology University of California Irvine, CA 92697 Running Title: Soil ecotypes along a climate gradient Article Accepted Thi s article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/1462-2920.14405 This article is protected by copyright. All rights reserved. Originality-Significance Statement Microbial community analyses typically rely on delineating operational taxonomic units; however, a great deal of genomic and phenotypic diversity occurs within these taxonomic groupings. Previous work in closely-related marine bacteria demonstrates that fine-scale genetic variation is linked to variation in ecological niches. In this study, we present similar evidence for soil bacteria. We find that an abundant and widespread soil taxon encompasses distinct ecological populations, or ecotypes, as defined by their phenotypic traits. We further validated that differences in these soil ecotypes correspond to variation in their distribution across a regional climate gradient. Thus, there exists genomic and phenotypic diversity within this soil taxon that contributes to niche differentiation. -
Rathayibacter Rathayi Comb , Nov,, Rathayibacter Tritici Comb , Nov,, Rathayibacter Iranicus Comb, Nov., and Six Strains from Annual Grasses H
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1993, p. 143-149 Vol. 43, No. 1 0020-7713/93/010143-07$02.00/0 Copyright 0 1993, International Union of Microbiological Societies Rathayibacter gen, nov., Including the Species Rathayibacter rathayi comb , nov,, Rathayibacter tritici comb , nov,, Rathayibacter iranicus comb, nov., and Six Strains from Annual Grasses H. I. ZGURSKAYA, L. I. EVTUSHENKO," V. N. AKIMOV, AND L. V. KALAKOUTSKII All-Russian Collection of Microorganisms, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia A new genus, Ruthuyibucter, is proposed to accommodate three species of gram-positive, aerobic, coryneform bacteria previously placed in the genus Clavibucter (Ruthuyibucter ruthuyi comb. nov., Ruthuyibucter tritici comb. nov., and Ruthuyibucter irunicus comb. nov.), as well as six strains that were isolated from annual cereal grasses, may be responsible for ryegrass toxicity, and are very similar to the recently described organism Chvibacter toxicus sp. nov. (I. T. Riley and K. M. Ophel, Int. J. Syst. Bacteriol. 42:64-68, 1992). The properties of members of the genus Ruthuyibacter include coryneform morphology, peptidoglycan based on 2,4-diaminobutyric acid (type B2y), predominant menaquinones of the MK-10 type, and phosphatidylglycerol and diphosphatidylglycerol as basic polar lipids. The DNA base compositions range from 63 to 72 mol% G+C. The members of the new genus form a phenetic cluster distinct from Clavibucter spp. at a level -
Coffee Microbiota and Its Potential Use in Sustainable Crop Management. a Review Duong Benoit, Marraccini Pierre, Jean Luc Maeght, Philippe Vaast, Robin Duponnois
Coffee Microbiota and Its Potential Use in Sustainable Crop Management. A Review Duong Benoit, Marraccini Pierre, Jean Luc Maeght, Philippe Vaast, Robin Duponnois To cite this version: Duong Benoit, Marraccini Pierre, Jean Luc Maeght, Philippe Vaast, Robin Duponnois. Coffee Mi- crobiota and Its Potential Use in Sustainable Crop Management. A Review. Frontiers in Sustainable Food Systems, Frontiers Media, 2020, 4, 10.3389/fsufs.2020.607935. hal-03045648 HAL Id: hal-03045648 https://hal.inrae.fr/hal-03045648 Submitted on 8 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License REVIEW published: 03 December 2020 doi: 10.3389/fsufs.2020.607935 Coffee Microbiota and Its Potential Use in Sustainable Crop Management. A Review Benoit Duong 1,2, Pierre Marraccini 2,3, Jean-Luc Maeght 4,5, Philippe Vaast 6, Michel Lebrun 1,2 and Robin Duponnois 1* 1 LSTM, Univ. Montpellier, IRD, CIRAD, INRAE, SupAgro, Montpellier, France, 2 LMI RICE-2, Univ. Montpellier, IRD, CIRAD, AGI, USTH, Hanoi, Vietnam, 3 IPME, Univ. Montpellier, CIRAD, IRD, Montpellier, France, 4 AMAP, Univ. Montpellier, IRD, CIRAD, INRAE, CNRS, Montpellier, France, 5 Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d’Écologie et des Sciences de l’Environnement, IESS, Bondy, France, 6 Eco&Sols, Univ. -
Curtobacterium Flaccumfaciens Pv. Flaccumfaciens Not Detected No
European and Mediterranean Plant Protection Organization PM 7/102 (1) Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes Diagnostics Diagnostic Curtobacterium flaccumfaciens pv. flaccumfaciens Specific scope Specific approval and amendment This standard describes a diagnostic protocol for Curtobacterium Approved in 2011-09. flaccumfaciens pv. flaccumfaciens.1 of pathogenicity. A flow diagram describing the procedure is Introduction giveninFig.1. Curtobacterium flaccumfaciens pv. flaccumfaciens is the causal agent of the bacterial wilt disease of Phaseolus spp. and is a sys- Identity temic bacterium. The disease was first discovered in the United States (South Dakota) in the 1920s on Phaseolus vulgaris and sub- Name: Curtobacterium flaccumfaciens pv. flaccumfaciens sequently recorded in Australia, Canada, Mexico, South America (Hedges) Collins & Jones. and Tunisia. It has a restricted distributioninRomaniaandRussia. Synonyms:ex-Corynebacterium flaccumfaciens subsp. flaccum- Although it has been recorded in Belgium, Bulgaria, Greece, Hun- faciens (Hedges) Dowson. gary, Poland, Turkey and Ukraine, it has not established and is Taxonomic position: Actinobacteria, Actinomycetales, now considered absent from these countries. It has recently been Microbacteriaceae, Curtobacterium. reported in few fields in South-Eastern Spain (Gonza´lez et al., Notes on taxonomy and nomenclature: In addition to Curto- 2005). Apart from this record, there are few recent records of bacterium flaccumfaciens pv. flaccumfaciens and according to C. flaccumfaciens pv. flaccumfaciens in the EPPO region. the most recent classification (Collins & Jones, 1984; Young No effective chemical methods are known against this disease; et al., 1996, 2004), the species C. flaccumfaciens includes the as C. flaccumfaciens pv. flaccumfaciens is a seed-borne bacte- following pathovars: betae (Cfb), oortii (Cfo), poinsettiae (Cfp) rium, current control methods are based mainly on the use of and ilicis (Cfi). -
Identification, Molecular Epidemiology, and Antibiotic Resistance Characterization of Acinetobacter Spp
FACULTY OF HEALTH SCIENCES DEPARTMENT OF MEDICAL BIOLOGY UNIVERSITY HOSPITAL OF NORTH NORWAY DEPARTMENT OF MICROBIOLOGY AND INFECTION CONTROL REFERENCE CENTRE FOR DETECTION OF ANTIMICROBIAL RESISTANCE Identification, molecular epidemiology, and antibiotic resistance characterization of Acinetobacter spp. clinical isolates Nabil Karah A dissertation for the degree of Philosophiae Doctor June 2011 Acknowledgments The work presented in this thesis has been carried out between January 2009 and September 2011 at the Reference Centre for Detection of Antimicrobial Resistance (K-res), Department of Microbiology and Infection Control, University Hospital of North Norway (UNN); and the Research Group for Host–Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø (UIT), Tromsø, Norway. I would like to express my deep and truthful acknowledgment to my main supervisor Ørjan Samuelsen. His understanding and encouraging supervision played a major role in the success of every experiment of my PhD project. Dear Ørjan, I am certainly very thankful for your indispensible contribution in all the four manuscripts. I am also very grateful to your comments, suggestions, and corrections on the present thesis. I am sincerely grateful to my co-supervisor Arnfinn Sundsfjord for his important contribution not only in my MSc study and my PhD study but also in my entire career as a “Medical Microbiologist”. I would also thank you Arnfinn for your nonstop support during my stay in Tromsø at a personal level. My sincere thanks are due to co-supervisors Kristin Hegstad and Gunnar Skov Simonsen for the valuable advice, productive comments, and friendly support. I would like to thank co-authors Christian G.