Evolutionary Genomics of Conjugative Elements and Integrons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mobile Genetic Elements in Streptococci
Curr. Issues Mol. Biol. (2019) 32: 123-166. DOI: https://dx.doi.org/10.21775/cimb.032.123 Mobile Genetic Elements in Streptococci Miao Lu#, Tao Gong#, Anqi Zhang, Boyu Tang, Jiamin Chen, Zhong Zhang, Yuqing Li*, Xuedong Zhou* State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China. #Miao Lu and Tao Gong contributed equally to this work. *Address correspondence to: [email protected], [email protected] Abstract Streptococci are a group of Gram-positive bacteria belonging to the family Streptococcaceae, which are responsible of multiple diseases. Some of these species can cause invasive infection that may result in life-threatening illness. Moreover, antibiotic-resistant bacteria are considerably increasing, thus imposing a global consideration. One of the main causes of this resistance is the horizontal gene transfer (HGT), associated to gene transfer agents including transposons, integrons, plasmids and bacteriophages. These agents, which are called mobile genetic elements (MGEs), encode proteins able to mediate DNA movements. This review briefly describes MGEs in streptococci, focusing on their structure and properties related to HGT and antibiotic resistance. caister.com/cimb 123 Curr. Issues Mol. Biol. (2019) Vol. 32 Mobile Genetic Elements Lu et al Introduction Streptococci are a group of Gram-positive bacteria widely distributed across human and animals. Unlike the Staphylococcus species, streptococci are catalase negative and are subclassified into the three subspecies alpha, beta and gamma according to the partial, complete or absent hemolysis induced, respectively. The beta hemolytic streptococci species are further classified by the cell wall carbohydrate composition (Lancefield, 1933) and according to human diseases in Lancefield groups A, B, C and G. -
Epidemiological and Molecular Analysis of Virulence and Antibiotic Resistance in Acinetobacter Baumannii
UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA DEPARTAMENTO DE BIOQUÍMICA Y BIOLOGÍA MOLECULAR IV TESIS DOCTORAL Epidemiological and Molecular Analysis of Virulence and Antibiotic Resistance in Acinetobacter baumannii Análisis Epidemiológico y Molecular de la Virulencia y la Antibiorresistencia en Acinetobacter baumannii MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Elias Dahdouh DIRECTORA Mónica Suárez Rodríguez Madrid, 2017 © Elias Dahdouh, 2016 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA DEPARTAMENTO DE BIOQUIMICA Y BIOLOGIA MOLECULAR IV TESIS DOCTORAL Análisis Epidemiológico y Molecular de la Virulencia y la Antibiorresistencia en Acinetobacter baumannii Epidemiological and Molecular Analysis of Virulence and Antibiotic Resistance in Acinetobacter baumannii MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Elias Dahdouh Directora Mónica Suárez Rodríguez Madrid, 2016 UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE VETERINARIA Departamento de Bioquímica y Biología Molecular IV ANALYSIS EPIDEMIOLOGICO Y MOLECULAR DE LA VIRULENCIA Y LA ANTIBIORRESISTENCIA EN Acinetobacter baumannii EPIDEMIOLOGICAL AND MOLECULAR ANALYSIS OF VIRULENCE AND ANTIBIOTIC RESISTANCE IN Acinetobacter baumannii MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Elias Dahdouh Bajo la dirección de la doctora Mónica Suárez Rodríguez Madrid, Diciembre de 2016 First and foremost, I would like to thank God for the continued strength and determination that He has given me. I would also like to thank my father Abdo, my brother Charbel, my fiancée, Marisa, and all my friends for their endless support and for standing by me at all times. Moreover, I would like to thank Dra. Monica Suarez Rodriguez and Dr. Ziad Daoud for giving me the opportunity to complete this doctoral study and for their guidance, encouragement, and friendship. -
Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 2 Microalgae
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley, -
Multidrug Resistance and Integron Carriage in Clinical Isolates of Pseudomonas Aeruginosa in Tehran, Iran
Turkish Journal of Medical Sciences Turk J Med Sci (2015) 45: 789-793 http://journals.tubitak.gov.tr/medical/ © TÜBİTAK Research Article doi:10.3906/sag-1408-120 Multidrug resistance and integron carriage in clinical isolates of Pseudomonas aeruginosa in Tehran, Iran Somayeh MOAZAMI GOUDARZI, Fereshteh EFTEKHAR* Department of Microbiology, Faculty of Biological Sciences, Shahid Beheshti University, G.C., Tehran, Iran Received: 25.08.2014 Accepted/Published Online: 12.11.2014 Printed: 30.07.2015 Background/aim: Pseudomonas aeruginosa is the cause of 10% of hospital-acquired infections. The organisms are often multidrug- resistant, mediated mostly by antibiotic-resistant integrons. The aim of this research was to study integron carriage and its association with multidrug resistance in burn and nonburn clinical isolates of P. aeruginosa. Materials and methods: A total of 112 P. aeruginosa clinical isolates were collected from the Motahari and Shohadaye Tajrish hospitals in Tehran between July and December 2011. Antibiotic susceptibility to 13 antibiotics was determined by disk diffusion. Detection of integron classes 1 and 2 and amplifications of internal variable regions (IVRs) of class 1 integrons were carried out by PCR and specific primers. Results: Among the 112 isolates, 77 were from burn patients and 35 were nonburn isolates. Multidrug resistance and class 1 integron carriage were both significantly higher in the burn isolates compared to the nonburn strains (97.4% vs. 22.8% and 82.3% vs. 17.7%, respectively). Class 2 integron (2.7%) was only present in the burn isolates. Amplification of IVRs of class 1 integrons revealed 3 different fragment arrays. Conclusion: The significant association between multidrug resistance and integron carriage among P. -
Acinetobacter Baylyi Long-Term Stationary-Phase Protein Stip Is a Protease Required for Normal Cell Morphology and Resistance to Tellurite Blake Reichert, Amber J
726 ARTICLE Acinetobacter baylyi long-term stationary-phase protein StiP is a protease required for normal cell morphology and resistance to tellurite Blake Reichert, Amber J. Dornbusch, Joshua Arguello, Sarah E. Stanley, Kristine M. Lang, C. Phoebe Lostroh, and Margaret A. Daugherty Abstract: We investigated the Acinetobacter baylyi gene ACIAD1960, known from previous work to be expressed during long-term stationary phase. The protein encoded by this gene had been annotated as a Conserved Hypothetical Protein, surrounded by putative tellurite resistance (“Ter”) proteins. Sequence analysis suggested that the protein belongs to the DUF1796 putative papain-like protease family. Here, we show that the purified protein, subsequently named StiP, has cysteine protease activity. Deletion of stiP causes hypersensitivity to tellurite, altered population dynamics during long-term batch culture, and most strikingly, dramatic alteration of normal cell morphology. StiP and associated Ter proteins (the StiP–Ter cluster) are therefore important for regulating cell morphology, likely in response to oxidative damage or depletion of intracellular thiol pools, triggered artificially by tellurite exposure. Our finding has broad significance because while tellurite is an extremely rare compound in nature, oxidative damage, the need to maintain a particular balance of intracellular thiols, and the need to regulate cell morphology are ubiquitous. Key words: long-term stationary phase, tellurite resistance, DUF1796, Ter domain, cell division. Résumé : Nous avons fait l’étude du gène ACIAD1960 d’Acinetobacter baylyi, qui selon des travaux antérieurs serait exprimé au cours de la phase stationnaire prolongée. La protéine codée par ce gène a été libellée « protéine hypothétique conservée » et est entourée de protéines putatives de résistance a` la tellurite (« Ter »). -
The Evolutionary History of Chromosomal Super-Integrons Provides an Ancestry for Multiresistant Integrons
The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons Dean A. Rowe-Magnus*, Anne-Marie Guerout*, Pascaline Ploncard*, Broderick Dychinco†, Julian Davies†, and Didier Mazel*‡ *Unite´de Programmation Mole´culaire et Toxicologie Ge´ne´ tique, Centre National de la Recherche Scientifique Unite´de Recherche Associe´e 1444, De´partement des Biotechnologies, Institut Pasteur, 25 Rue du Dr. Roux, 75724 Paris, France; and †Department of Microbiology and Immunology, University of British Columbia, 6174 University Boulevard, Vancouver, BC, Canada V6T 1Z3 Communicated by Allan Campbell, Stanford University, Stanford, CA, November 2, 2000 (received for review August 1, 2000) Integrons are genetic elements that acquire and exchange exog- located downstream of a resident promoter internal to the intI enous DNA, known as gene cassettes, by a site-specific recombi- gene, drives expression of the encoded proteins (13). Most of the nation mechanism. Characterized gene cassettes consist of a target attC sites of the integron cassettes identified to date are unique. recombination sequence (attC site) usually associated with a single Their length and sequence vary considerably (from 57 to 141 bp) open reading frame coding for an antibiotic resistance determi- and their similarities are primarily restricted to their boundaries, nant. The affiliation of multiresistant integrons (MRIs), which which correspond to the inverse core site (RYYYAAC) and the contain various combinations of antibiotic resistance gene cas- core site [G2TTRRRY; 2, recombination point (11, 14)]. settes, with transferable elements underlies the rapid evolution of More than 60 different antibiotic-resistance genes, covering multidrug resistance among diverse Gram-negative bacteria. Yet most antimicrobials presently in use, have been characterized in the origin of MRIs remains unknown. -
Mapping the Diversity of Microbial Lignin Catabolism: Experiences from the Elignin Database
Applied Microbiology and Biotechnology (2019) 103:3979–4002 https://doi.org/10.1007/s00253-019-09692-4 MINI-REVIEW Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database Daniel P. Brink1 & Krithika Ravi2 & Gunnar Lidén2 & Marie F Gorwa-Grauslund1 Received: 22 December 2018 /Revised: 6 February 2019 /Accepted: 9 February 2019 /Published online: 8 April 2019 # The Author(s) 2019 Abstract Lignin is a heterogeneous aromatic biopolymer and a major constituent of lignocellulosic biomass, such as wood and agricultural residues. Despite the high amount of aromatic carbon present, the severe recalcitrance of the lignin macromolecule makes it difficult to convert into value-added products. In nature, lignin and lignin-derived aromatic compounds are catabolized by a consortia of microbes specialized at breaking down the natural lignin and its constituents. In an attempt to bridge the gap between the fundamental knowledge on microbial lignin catabolism, and the recently emerging field of applied biotechnology for lignin biovalorization, we have developed the eLignin Microbial Database (www.elignindatabase.com), an openly available database that indexes data from the lignin bibliome, such as microorganisms, aromatic substrates, and metabolic pathways. In the present contribution, we introduce the eLignin database, use its dataset to map the reported ecological and biochemical diversity of the lignin microbial niches, and discuss the findings. Keywords Lignin . Database . Aromatic metabolism . Catabolic pathways -
Dissemination and Persistence of Plasmid Located, Integron
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2016 Dissemination and Persistence of Plasmid Located, Integron Associated Antibiotic Resistant Genes in Wastewater Treatment Plant Effluent and Stream Water Bacteria _ Suhartono University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Environmental Microbiology and Microbial Ecology Commons, and the Water Resource Management Commons Recommended Citation Suhartono, _, "Dissemination and Persistence of Plasmid Located, Integron Associated Antibiotic Resistant Genes in Wastewater Treatment Plant Effluent and Stream Water Bacteria" (2016). Theses and Dissertations. 1538. http://scholarworks.uark.edu/etd/1538 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Dissemination and Persistence of Plasmid Located, Integron Associated Antibiotic Resistant Genes in Wastewater Treatment Plant Effluent and Stream Water Bacteria A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cell and Molecular Biology by Suhartono Bogor Agricultural University Bachelor of Science in Biology, 2005 University of Manchester Master of Science in Medical and Molecular Microbiology, 2008 May 2016 University of Arkansas This dissertation is approved for -
Identification, Molecular Epidemiology, and Antibiotic Resistance Characterization of Acinetobacter Spp
FACULTY OF HEALTH SCIENCES DEPARTMENT OF MEDICAL BIOLOGY UNIVERSITY HOSPITAL OF NORTH NORWAY DEPARTMENT OF MICROBIOLOGY AND INFECTION CONTROL REFERENCE CENTRE FOR DETECTION OF ANTIMICROBIAL RESISTANCE Identification, molecular epidemiology, and antibiotic resistance characterization of Acinetobacter spp. clinical isolates Nabil Karah A dissertation for the degree of Philosophiae Doctor June 2011 Acknowledgments The work presented in this thesis has been carried out between January 2009 and September 2011 at the Reference Centre for Detection of Antimicrobial Resistance (K-res), Department of Microbiology and Infection Control, University Hospital of North Norway (UNN); and the Research Group for Host–Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø (UIT), Tromsø, Norway. I would like to express my deep and truthful acknowledgment to my main supervisor Ørjan Samuelsen. His understanding and encouraging supervision played a major role in the success of every experiment of my PhD project. Dear Ørjan, I am certainly very thankful for your indispensible contribution in all the four manuscripts. I am also very grateful to your comments, suggestions, and corrections on the present thesis. I am sincerely grateful to my co-supervisor Arnfinn Sundsfjord for his important contribution not only in my MSc study and my PhD study but also in my entire career as a “Medical Microbiologist”. I would also thank you Arnfinn for your nonstop support during my stay in Tromsø at a personal level. My sincere thanks are due to co-supervisors Kristin Hegstad and Gunnar Skov Simonsen for the valuable advice, productive comments, and friendly support. I would like to thank co-authors Christian G. -
The Gospel According to LUCA (The Last Universal Common Ancestor)
UC San Diego UC San Diego Electronic Theses and Dissertations Title The gospel according to LUCA (the last universal common ancestor) Permalink https://escholarship.org/uc/item/6pw6n8xp Author Valas, Ruben Eliezer Meyer Publication Date 2010 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO The gospel according to LUCA (the last universal common ancestor) A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioinformatics by Ruben Eliezer Meyer Valas Committee in charge: Professor Philip E. Bourne, Chair Professor William F. Loomis, Co-Chair Professor Russell F. Doolittle Professor Richard D. Norris Professor Milton H. Saier Jr. 2010 The Dissertation of Ruben Eliezer Meyer Valas is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ ______________________________________________________________________ Co-chair ______________________________________________________________________ Chair University of California, San Diego 2010 iii DEDICATION I dedicate this work to Alexander “Sasha” Shulgin. Sasha is probably the wisest person I’ve met. He refuses to allow anything other than his own imagination dictates the rules of what is -
The Genetic Analysis of an Acinetobacter Johnsonii Clinical Strain Evidenced the Presence of Horizontal Genetic Transfer
RESEARCH ARTICLE The Genetic Analysis of an Acinetobacter johnsonii Clinical Strain Evidenced the Presence of Horizontal Genetic Transfer Sabrina Montaña1, Sareda T. J. Schramm2, German Matías Traglia1, Kevin Chiem1,2, Gisela Parmeciano Di Noto1, Marisa Almuzara3, Claudia Barberis3, Carlos Vay3, Cecilia Quiroga1, Marcelo E. Tolmasky2, Andrés Iriarte4, María Soledad Ramírez1,2* 1 Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Buenos Aires, Argentina, 2 Department of Biological Science, California State University Fullerton, Fullerton, CA, a11111 United States of America, 3 Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina, 4 Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, UdelaR, Montevideo, Uruguay * [email protected] OPEN ACCESS Abstract Citation: Montaña S, Schramm STJ, Traglia GM, Chiem K, Parmeciano Di Noto G, Almuzara M, et al. Acinetobacter johnsonii rarely causes human infections. While most A. johnsonii isolates are (2016) The Genetic Analysis of an Acinetobacter β johnsonii Clinical Strain Evidenced the Presence of susceptible to virtually all antibiotics, strains harboring a variety of -lactamases have Horizontal Genetic Transfer. PLoS ONE 11(8): recently been described. An A. johnsonii Aj2199 clinical strain recovered from a hospital in e0161528. doi:10.1371/journal.pone.0161528 Buenos Aires produces PER-2 and OXA-58. We decided to delve into its genome by obtain- Editor: Ruth Hall, University of Sydney, AUSTRALIA ing the whole genome sequence of the Aj2199 strain. Genome comparison studies on Received: March 23, 2016 Aj2199 revealed 240 unique genes and a close relation to strain WJ10621, isolated from the urine of a patient in China. -
PDF-Document
SUPPLEMENTARY DATA Characterization of microbial communities associated with ceramic raw materials as potential contributors for the improvement of ceramic rheological properties Angela M. Garcia-Sanchez 1, Bernardino Machado-Moreira 2, Mário Freire 3, Ricardo Santos 3, Sílvia Monteiro 3, Diamantino Dias 4, Orquídia Neves 2, Amélia Dionísio 2 and Ana Z. Miller 5* 1 Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville. Profesor García González 2, 41012 Seville, Spain; 2 CERENA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal; 3 Laboratorio de Análises do Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; 4 Rauschert Portuguesa, SA., Estrada Nacional 249-4, Trajouce, 2785-653 São Domingos de Rana, Portugal; 5 Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Sevilla, Spain; 6 HERCULES Laboratory, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal. * Correspondence: [email protected] The Supplementary data include: Figure S1. Rarefaction curves. Table S1. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 1A (74 sequences, 64 OTUs). Table S2. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 2B (69 sequences, 51 OTUs). Table S3. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 4D (80 sequences, 54 OTUs). Table S4. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 6F (86 sequences, 38 OTUs). Table S5. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 7G (79 sequences, 48 OTUs).