Potential Human and Plant Pathogenic Species in Airborne PM10 Samples and Relationships with Chemical Components and Meteorological Parameters
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae -
Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341 -
The Microbiota Continuum Along the Female Reproductive Tract and Its Relation to Uterine-Related Diseases
ARTICLE DOI: 10.1038/s41467-017-00901-0 OPEN The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases Chen Chen1,2, Xiaolei Song1,3, Weixia Wei4,5, Huanzi Zhong 1,2,6, Juanjuan Dai4,5, Zhou Lan1, Fei Li1,2,3, Xinlei Yu1,2, Qiang Feng1,7, Zirong Wang1, Hailiang Xie1, Xiaomin Chen1, Chunwei Zeng1, Bo Wen1,2, Liping Zeng4,5, Hui Du4,5, Huiru Tang4,5, Changlu Xu1,8, Yan Xia1,3, Huihua Xia1,2,9, Huanming Yang1,10, Jian Wang1,10, Jun Wang1,11, Lise Madsen 1,6,12, Susanne Brix 13, Karsten Kristiansen1,6, Xun Xu1,2, Junhua Li 1,2,9,14, Ruifang Wu4,5 & Huijue Jia 1,2,9,11 Reports on bacteria detected in maternal fluids during pregnancy are typically associated with adverse consequences, and whether the female reproductive tract harbours distinct microbial communities beyond the vagina has been a matter of debate. Here we systematically sample the microbiota within the female reproductive tract in 110 women of reproductive age, and examine the nature of colonisation by 16S rRNA gene amplicon sequencing and cultivation. We find distinct microbial communities in cervical canal, uterus, fallopian tubes and perito- neal fluid, differing from that of the vagina. The results reflect a microbiota continuum along the female reproductive tract, indicative of a non-sterile environment. We also identify microbial taxa and potential functions that correlate with the menstrual cycle or are over- represented in subjects with adenomyosis or infertility due to endometriosis. The study provides insight into the nature of the vagino-uterine microbiome, and suggests that sur- veying the vaginal or cervical microbiota might be useful for detection of common diseases in the upper reproductive tract. -
Presence Absence Polymorphism for Alternative Pathogenicity Islands In
Presence͞absence polymorphism for alternative pathogenicity islands in Pseudomonas viridiflava, a pathogen of Arabidopsis Hitoshi Araki†‡, Dacheng Tian§, Erica M. Goss†, Katrin Jakob†, Solveig S. Halldorsdottir†, Martin Kreitman†, and Joy Bergelson†¶ †Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637; and §Department of Biology, Nanjing University, Nanjing 210093, Republic of China Communicated by Tomoko Ohta, National Institute of Genetics, Mishima, Japan, March 1, 2006 (received for review January 25, 2006) The contribution of arms race dynamics to plant–pathogen coevo- pathogens are defined and differentiated from close relatives by lution has been called into question by the presence of balanced horizontally acquired virulence factors (12). However, a survey polymorphisms in resistance genes of Arabidopsis thaliana, but of effectors in Pseudomonas syringae finds effectors that have less is known about the pathogen side of the interaction. Here we been acquired recently and others that have been transmitted investigate structural polymorphism in pathogenicity islands (PAIs) predominantly by descent, indicating that pathogenicity may in Pseudomonas viridiflava, a prevalent bacterial pathogen of A. evolve in both genomic contexts (13). thaliana. PAIs encode the type III secretion system along with its In this study, we investigated PAIs in P. viridiflava, which is a effectors and are essential for pathogen recognition in plants. P. prevalent bacterial pathogen of wild A. thaliana populations viridiflava harbors two structurally distinct and highly diverged PAI (14). P. viridiflava is in the P. syringae group (15). Although P. paralogs (T- and S-PAI) that are integrated in different chromo- syringae is intensively studied as a bacterial plant pathogen (13, some locations in the P. -
Rathayibacter Rathayi Comb , Nov,, Rathayibacter Tritici Comb , Nov,, Rathayibacter Iranicus Comb, Nov., and Six Strains from Annual Grasses H
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1993, p. 143-149 Vol. 43, No. 1 0020-7713/93/010143-07$02.00/0 Copyright 0 1993, International Union of Microbiological Societies Rathayibacter gen, nov., Including the Species Rathayibacter rathayi comb , nov,, Rathayibacter tritici comb , nov,, Rathayibacter iranicus comb, nov., and Six Strains from Annual Grasses H. I. ZGURSKAYA, L. I. EVTUSHENKO," V. N. AKIMOV, AND L. V. KALAKOUTSKII All-Russian Collection of Microorganisms, Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia A new genus, Ruthuyibucter, is proposed to accommodate three species of gram-positive, aerobic, coryneform bacteria previously placed in the genus Clavibucter (Ruthuyibucter ruthuyi comb. nov., Ruthuyibucter tritici comb. nov., and Ruthuyibucter irunicus comb. nov.), as well as six strains that were isolated from annual cereal grasses, may be responsible for ryegrass toxicity, and are very similar to the recently described organism Chvibacter toxicus sp. nov. (I. T. Riley and K. M. Ophel, Int. J. Syst. Bacteriol. 42:64-68, 1992). The properties of members of the genus Ruthuyibacter include coryneform morphology, peptidoglycan based on 2,4-diaminobutyric acid (type B2y), predominant menaquinones of the MK-10 type, and phosphatidylglycerol and diphosphatidylglycerol as basic polar lipids. The DNA base compositions range from 63 to 72 mol% G+C. The members of the new genus form a phenetic cluster distinct from Clavibucter spp. at a level -
Bacteria Occurring in Onion (Allium Cepa L.) Foliage in Puerto Rico1-2 Juan Calle-Bellido3, Lydia I
Bacteria occurring in onion (Allium cepa L.) foliage in Puerto Rico1-2 Juan Calle-Bellido3, Lydia I. Rivera-Vargas4, Myrna Alameda4 and Irma Cabrera5 J. Agrie. Univ. P.R. 96(3-4):199-219 (2012) ABSTRACT Bacteria associated with foliar symptoms of onion (Allium cepa L.) were examined in the southern region of Puerto Rico from January through April 2004. Different symptoms were observed in onion foliage of cultivars 'Mercedes' and 'Excalibur' at Juana Díaz and Santa Isabel, Puerto Rico. Ellipsoidal sunken lesions with soft rot and disruption of tissue were the most common symptoms observed in onion foliage in field conditions. From a total of 39 bacterial strains isolated from diverse symptoms in onion foliage, 38% were isolated from soft rotting lesions. Ninety-two percent of the bacteria isolated from onion foliage was Gram negative. Pantoea spp. with 25%, was the most frequently isolated genus, followed by Pasteurella spp. and Serratia rubidae with 10% each. Fifty- six percent of the strains held plant pathogenic potential; these strains belong to the genera Acidovorax sp., Burkholderia sp., Clavibacter sp., Curtobacterium sp., Enterobacter sp., Pantoea spp., Pseudomonas spp., and Xanthomonas spp. Pathogenicity tests showed that seven out of eight tested bacterial strains evaluated under field conditions caused symptoms in onion foliage for both cultivars. Acidovorax avenae subsp. citrulli, Burkholderia glumae, Pantoea agglomerans, P. dispersa, Pseudomonas sp., Xanthomonas sp., and Xanthomonas-Wke sp. were pathogenic to leaf tissues. Clavibacter michiganensis was not pathogenic to leaf tissues. Other bacteria identified as associated with onion leaf tissue were Curtobacterium flaccumfaciens, Cytophaga sp., Enterobacter cloacae, Flavimonas oryzihabitans, Mannheimia haemolytica, Pantoea stewartii, Pasteurella anatis, P. -
Microbial Mediated Deterioration of Reinforced Concrete Structures
International Biodeterioration & Biodegradation 64 (2010) 748e754 Contents lists available at ScienceDirect International Biodeterioration & Biodegradation journal homepage: www.elsevier.com/locate/ibiod Microbial mediated deterioration of reinforced concrete structures Shiping Wei a,b,*, Mauricio Sanchez c, David Trejo d,**, Chris Gillis b a School of Ocean Sciences, China University of Geosciences, Beijing, China b Department of Plant Pathology and Microbiology, Texas A&M University, USA c Department of Civil and Environmental Engineering, Universidad de Los Andes, Bogota, Colombia d School of Civil and Construction Engineering, Oregon State University, Corvallis, OR, USA article info abstract Article history: Biogenic sulfuric acid corrosion is often a problem in sewer pipelines, compromising the structural Received 15 February 2010 integrity by degrading the pipeline’s concrete components. We investigated the microbial populations in Received in revised form deteriorated bridge concrete, with samples taken from bridge concrete both above the water level and in 5 September 2010 adjacent soils. Total counts of microbial cells indicated a range of 5.3 Æ 0.9 Â 106 to 3.6 Æ 0.3 Â 107 per Accepted 6 September 2010 gram of concrete. These values represent the range from slightly to severely deteriorated concrete. From Available online 28 September 2010 severely deteriorated concrete samples, we successfully enriched and isolated one sulfur-oxidizing bacterium, designated strain CBC3. This strain exhibited strong acid-producing properties. The pH of the Keywords: Concrete deterioration pure culture of CBC3 reached as low as 2.0 when thiosulfate was used as the sole energy source. 16S rDNA Bridge supports sequence analysis revealed that the isolated strain CBC3 was close to members of Thiomonas perometablis Thiomonas perometabolis with 99.3% identity. -
Bacteria Associated with Vascular Wilt of Poplar
Bacteria associated with vascular wilt of poplar Hanna Kwasna ( [email protected] ) Poznan University of Life Sciences: Uniwersytet Przyrodniczy w Poznaniu https://orcid.org/0000-0001- 6135-4126 Wojciech Szewczyk Poznan University of Life Sciences: Uniwersytet Przyrodniczy w Poznaniu Marlena Baranowska Poznan University of Life Sciences: Uniwersytet Przyrodniczy w Poznaniu Jolanta Behnke-Borowczyk Poznan University of Life Sciences: Uniwersytet Przyrodniczy w Poznaniu Research Article Keywords: Bacteria, Pathogens, Plantation, Poplar hybrids, Vascular wilt Posted Date: May 27th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-250846/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/30 Abstract In 2017, the 560-ha area of hybrid poplar plantation in northern Poland showed symptoms of tree decline. Leaves appeared smaller, turned yellow-brown, and were shed prematurely. Twigs and smaller branches died. Bark was sunken and discolored, often loosened and split. Trunks decayed from the base. Phloem and xylem showed brown necrosis. Ten per cent of trees died in 1–2 months. None of these symptoms was typical for known poplar diseases. Bacteria in soil and the necrotic base of poplar trunk were analysed with Illumina sequencing. Soil and wood were colonized by at least 615 and 249 taxa. The majority of bacteria were common to soil and wood. The most common taxa in soil were: Acidobacteria (14.757%), Actinobacteria (14.583%), Proteobacteria (36.872) with Betaproteobacteria (6.516%), Burkholderiales (6.102%), Comamonadaceae (2.786%), and Verrucomicrobia (5.307%).The most common taxa in wood were: Bacteroidetes (22.722%) including Chryseobacterium (5.074%), Flavobacteriales (10.873%), Sphingobacteriales (9.396%) with Pedobacter cryoconitis (7.306%), Proteobacteria (73.785%) with Enterobacteriales (33.247%) including Serratia (15.303%) and Sodalis (6.524%), Pseudomonadales (9.829%) including Pseudomonas (9.017%), Rhizobiales (6.826%), Sphingomonadales (5.646%), and Xanthomonadales (11.194%). -
To Obtain Approval for Projects to Develop Genetically Modified Organisms in Containment
APPLICATION FORM Containment – GMO Project To obtain approval for projects to develop genetically modified organisms in containment Send to Environmental Protection Authority preferably by email ([email protected]) or alternatively by post (Private Bag 63002, Wellington 6140) Payment must accompany final application; see our fees and charges schedule for details. Application Number APP203205 Date 02/10/2017 www.epa.govt.nz 2 Application Form Approval for projects to develop genetically modified organisms in containment Completing this application form 1. This form has been approved under section 42A of the Hazardous Substances and New Organisms (HSNO) Act 1996. It only covers projects for development (production, fermentation or regeneration) of genetically modified organisms in containment. This application form may be used to seek approvals for a range of new organisms, if the organisms are part of a defined project and meet the criteria for low risk modifications. Low risk genetic modification is defined in the HSNO (Low Risk Genetic Modification) Regulations: http://www.legislation.govt.nz/regulation/public/2003/0152/latest/DLM195215.html. 2. If you wish to make an application for another type of approval or for another use (such as an emergency, special emergency or release), a different form will have to be used. All forms are available on our website. 3. It is recommended that you contact an Advisor at the Environmental Protection Authority (EPA) as early in the application process as possible. An Advisor can assist you with any questions you have during the preparation of your application. 4. Unless otherwise indicated, all sections of this form must be completed for the application to be formally received and assessed. -
Characterisation of Pseudomonas Spp. Isolated from Foods
07.QXD 9-03-2007 15:08 Pagina 39 Annals of Microbiology, 57 (1) 39-47 (2007) Characterisation of Pseudomonas spp. isolated from foods Laura FRANZETTI*, Mauro SCARPELLINI Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, sezione Microbiologia Agraria Alimentare Ecologica, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy Received 30 June 2006 / Accepted 27 December 2006 Abstract - Putative Pseudomonas spp. (102 isolates) from different foods were first characterised by API 20NE and then tested for some enzymatic activities (lipase and lecithinase production, starch hydrolysis and proteolytic activity). However subsequent molecular tests did not always confirm the results obtained, thus highlighting the limits of API 20NE. Instead RFLP ITS1 and the sequencing of 16S rRNA gene grouped the isolates into 6 clusters: Pseudomonas fluorescens (cluster I), Pseudomonas fragi (cluster II and V) Pseudomonas migulae (cluster III), Pseudomonas aeruginosa (cluster IV) and Pseudomonas chicorii (cluster VI). The pectinolytic activity was typical of species isolated from vegetable products, especially Pseudomonas fluorescens. Instead Pseudomonas fragi, predominantly isolated from meat was characterised by proteolytic and lipolytic activities. Key words: Pseudomonas fluorescens, enzymatic activity, ITS1. INTRODUCTION the most frequently found species, however the species dis- tribution within the food ecosystem remains relatively The genus Pseudomonas is the most heterogeneous and unknown (Arnaut-Rollier et al., 1999). The principal micro- ecologically significant group of known bacteria, and bial population of many vegetables in the field consists of includes Gram-negative motile aerobic rods that are wide- species of the genus Pseudomonas, especially the fluores- spread throughout nature and characterised by elevated cent forms. -
Microbial Genomic Sequencing Perspectives of the American Phytopathological Society (Revised 2008)
Microbial Genomic Sequencing Perspectives of the American Phytopathological Society (Revised 2008) The American Phytopathological Society 3340 Pilot Knob Road St. Paul, MN 55121-2097 Phone: +1.651.454.7250 Fax: +1.651.454.0766 Email: [email protected] APSnet: www.apsnet.org 1 Microbial Genomic Sequencing Perspectives of the American Phytopathological Society Background Microorganisms play a critical role in plant health. Depending on the organism, they can cause multiple diseases or prevent them. Yet, on a genomic level, we know little about them (The Microbe Project, 2001, National Science and Technology Council, Office of Science and Technology Policy, Washington, D.C., 29 pg.). Genomic analyses of plant associated microorganisms are as essential to understanding the development and suppression of plant diseases. Analyses of microbial genomes will complement those done on plant genomes (e.g. for Arabidopsis, rice, etc) by providing new insights into the nature of plant-microbe interactions. The APS has consulted its members and constituencies on priority setting of microorganisms that should be sequenced. A first list was compiled in 2000-2001which had significant impact in stimulating efforts leading to the sequencing of a number of microbial genomes, particularly bacterial and fungal. The list was revised in 2003. Researchers have been quite successful over the past two years in obtaining funding to sequence plant-associated microbes (see Existing sequencing projects with Plant-Associated Microbes), and therefore the list required a second revision in 2005 and a third in 2007. Nevertheless, there remains a critical need for greater information in microbial genomics. Thus it is with a sense of continued urgency that this 2008 revised list, created with extensive input from the membership of The American Phytopathological Society during 2007 is presented. -
Aquatic Microbial Ecology 80:15
The following supplement accompanies the article Isolates as models to study bacterial ecophysiology and biogeochemistry Åke Hagström*, Farooq Azam, Carlo Berg, Ulla Li Zweifel *Corresponding author: [email protected] Aquatic Microbial Ecology 80: 15–27 (2017) Supplementary Materials & Methods The bacteria characterized in this study were collected from sites at three different sea areas; the Northern Baltic Sea (63°30’N, 19°48’E), Northwest Mediterranean Sea (43°41'N, 7°19'E) and Southern California Bight (32°53'N, 117°15'W). Seawater was spread onto Zobell agar plates or marine agar plates (DIFCO) and incubated at in situ temperature. Colonies were picked and plate- purified before being frozen in liquid medium with 20% glycerol. The collection represents aerobic heterotrophic bacteria from pelagic waters. Bacteria were grown in media according to their physiological needs of salinity. Isolates from the Baltic Sea were grown on Zobell media (ZoBELL, 1941) (800 ml filtered seawater from the Baltic, 200 ml Milli-Q water, 5g Bacto-peptone, 1g Bacto-yeast extract). Isolates from the Mediterranean Sea and the Southern California Bight were grown on marine agar or marine broth (DIFCO laboratories). The optimal temperature for growth was determined by growing each isolate in 4ml of appropriate media at 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50o C with gentle shaking. Growth was measured by an increase in absorbance at 550nm. Statistical analyses The influence of temperature, geographical origin and taxonomic affiliation on growth rates was assessed by a two-way analysis of variance (ANOVA) in R (http://www.r-project.org/) and the “car” package.