Phytopathologia Mediterranea Phytopathologia

Total Page:16

File Type:pdf, Size:1020Kb

Phytopathologia Mediterranea Phytopathologia ISSN 0031 - 9465 PHYTOPATHOLOGIA MEDITERRANEA PHYTOPATHOLOGIA PHYTOPATHOLOGIA MEDITERRANEAVolume 58 • No. 3 • December 2019 Plant health and food safety Iscritto al Tribunale di Firenze con il n° 4923del 5-1-2000 - Poste Italiane Spa Spedizione in Abbonamento Postale 70% DCB FIRENZE di Firenze Iscritto al Tribunale FIRENZE The international journal of the UNIVERSITY Mediterranean Phytopathological Union PRESS PHYTOPATHOLOGIA MEDITERRANEA Plant health and food safety The international journal edited by the Mediterranean Phytopathological Union founded by A. Ciccarone and G. Goidànich Phytopathologia Mediterranea is an international journal edited by the Mediterranean Phytopathological Union The journal’s mission is the promotion of plant health for Mediterranean crops, climate and regions, safe food production, and the transfer of knowledge on diseases and their sustainable management. The journal deals with all areas of plant pathology, including epidemiology, disease control, biochemical and physiological aspects, and utilization of molecular technologies. All types of plant pathogens are covered, including fungi, nematodes, protozoa, bacteria, phytoplasmas, viruses, and viroids. Papers on mycotoxins, biological and integrated management of plant diseases, and the use of natural substances in disease and weed control are also strongly encouraged. The journal focuses on pathology of Mediterranean crops grown throughout the world. The journal includes three issues each year, publishing Reviews, Original research papers, Short notes, New or unusual disease reports, News and opinion, Current topics, Commentaries, and Letters to the Editor. EDITORS-IN-CHIEF Laura Mugnai – University of Florence, DAGRI, Plant pathology and Richard Falloon – New Zealand Institute for Plant & Entomology section, P.le delle Cascine 28, 50144 Firenze, Italy Food Research, Private Bag 4704, Christchurch 8108, New Phone: +39 055 2755861 Zealand E-mail: [email protected] Phone: +64 3 3259499; Fax: +64 3 3253864 E-mail: [email protected] CONSULTING EDITORS A. Phillips, Faculdade de Ciências, Universidade de Lisboa, Portugal G. Surico, DAGRI, University of Florence, Italy EDITORIAL BOARD I.M. de O. Abrantes, Universidad de Coimbra, M. Garbelotto, University of California, Berke- E. Paplomatas, Agricultural University of Ath- Portugal ley, CA, USA ens, Greece J. Armengol, Universidad Politécnica de Valencia, L. Ghelardini, University of Florence, Italy I. Pertot, University of Trento, Italy Spain V. Guarnaccia, University of Stellenbosh, South A. Picot, Univerisité de Bretagne Occidental, S. Banniza, University of Saskatchewan, Canada Africa LUBEM, Plouzané, France R. Batler, Plant & Food Research, Christchurch, N. Iacobellis, University of Basilicata, Potenza, D. Rubiales, Institute for Sustainable Agricul- NZ Italy ture, CSIC, Cordoba, Spain A. Bertaccini, Alma Mater Studiorum, Univer- H. Kassemeyer, Staatliches Weinbauinstitut, J-M. Savoie, INRA, Villenave d’Ornon, France sity of Bologna, Italy Freiburg, Germany A. Tekauz, Cereal Research Centre, Winnipeg, A.G. Blouin, Plant & Food Research, Auckland, P. Kinay Teksür, Ege University, Bornova Izmir, MB, Canada New Zealand Turkey D. Tsitsigiannis, Agricultural University of Ath- R. Buonaurio, University of Perugia, Italy A. Moretti, National Research Council (CNR), ens, Greece N. Buzkan, Imam University, Turkey Bari, Italy J.N. Vanneste, Plant & Food Research, Sandring- T. Caffi, Università Cattolica del Sacro Cuore, L. Mostert, Faculty of AgriSciences, Stellenbosh, ham, New Zealand Piacenza, Italy South Africa M. Vurro, National Research Council (CNR), J. Davidson, South Australian Research and De- J. Murillo, Universidad Publica de Navarra, Spain Bari, Italy velopment Institute (SARDI), Adelaide, Australia J.A. Navas-Cortes, CSIC, Cordoba, Spain M.J. Wingfield, University of Pretoria, South Africa A.M. D’Onghia, CIHEAM/Mediterranean Ag- P. Nicot, INRA, Avignon, France R. Zare, Iranian Research Institute of Plant Pro- ronomic Institute of Bari, Italy L. Palou, Centre de Tecnologia Postcollita, Valen- tection, Tehran, Iran T.A. Evans, University of Delaware, Newark, DE, USA cia, Spain DIRETTORE RESPONSABILE Giuseppe Surico, DAGRI, University of Florence, Italy E-mail: [email protected] EDITORIAL OFFICE STAFF DAGRI, Plant pathology and Entomology section, University of Florence, Italy E-mail: [email protected], Phone: ++39 055 2755861/862 EDITORIAL ASSISTANT - Sonia Fantoni EDITORIAL OFFICE STAFF - Angela Gaglier Phytopathologia Mediterranea on-line: www.fupress.com/pm/ PHYTOPATHOLOGIA MEDITERRANEA The international journal of the Mediterranean Phytopathological Union Volume 58, December, 2019 Firenze University Press Phytopathologia Mediterranea. The international journal of the Mediterranean Phytopathological Union Published by Firenze University Press – University of Florence, Italy Via Cittadella, 7 - 50144 Florence - Italy http://www.fupress.com/pm Direttore Responsabile: Giuseppe Surico, University of Florence, Italy Copyright © 2019 Authors. The authors retain all rights to the original work without any restrictions. Open Access. This issue is distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY-4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropri- ate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication (CC0 1.0) waiver applies to the data made available in this issue, unless otherwise stated. Phytopathologia Mediterranea Firenze University Press The international journal of the www.fupress.com/pm Mediterranean Phytopathological Union Review Emerging and re-emerging fungus and oomycete soil-borne plant diseases in Italy Citation: S.O. Cacciola, M.L. Gullino (2019) Emerging and re-emerging fun- gus and oomycete soil-borne plant dis- eases in Italy. Phytopathologia Mediter- Santa Olga CACCIOLA1,*, Maria Lodovica GULLINO2 ranea 58(3): 451-472. doi: 10.14601/ 1 Phyto-10756 Department of Agriculture, Food and Environment (Di3A), University of Catania, V. S. Sofia 100, 95123 Catania, Italy Accepted: November 02, 2019 2 Centre for Innovation in the Agro-Environmental Sector, AGROINNOVA, University of Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy Published: December 30, 2019 *Corresponding author: [email protected] Copyright: © 2019 S.O. Cacciola, M.L. Gullino. This is an open access, Summary. A disease is recognized as emerging if it is new, it occurs in a new host, peer-reviewed article published by Firenze University Press (http://www. there is an unexpected outbreak, its economic importance increases, if it attracts pub- fupress.com/pm) and distributed lic opinion and the scientific community regardless of economic importance, or if it under the terms of the Creative Com- appears in an area for the first time (referred to as geographic emergence). This review mons Attribution License, which per- deals with major driving factors of the emergence of plant diseases caused by soil- mits unrestricted use, distribution, and borne fungi and oomycetes (here indicated as “fungi”), in Italy during recent years. reproduction in any medium, provided These factors include: accidental introduction of alien pathogens by human activities; the original author and source are effect of climate change; unusually severe weather events; favourable environmental credited. and ecological conditions; pathogen genetic variation; host shifts and expansion of host Data Availability Statement: All rel- ranges; introduction or expansion of the geographic range of a susceptible plant spe- evant data are within the paper and its cies or variety; limited availability of fungicides or development of fungicide-resistance Supporting Information files. pathogen strains; changes of cropping systems; and/or increased pathogen in soil as a consequence of intensive monoculture of crops. Although in most cases more than a Competing Interests: The Author(s) single driving factor contributes to the emergence of an infectious disease, there are declare(s) no conflict of interest. examples where a determinant may prevail over others. The case studies reviewed Editor: Josep Armengol. include pathogens belonging to major genera of soil-inhabiting fungi and oomycetes, including Armillaria, Calonectria, Coniella, Fusarium sensu lato, Ilyonectria, Mono- sporoascus, Plectosphaerella, Rhizoctonia, Rosellinia, Sclerotinia, Sclerotium, Verticillium, Pythium and Phytophthora. The examples encompass natural and forest ecosystems, economically important agricultural crops including citrus, fruit trees, olive, legumes, vegetables, and ornamentals, as well as exotic or expanding minor crops, such as avo- cado, goji berry, and pomegranate. Whatever the prevailing driving factor(s) these case studies all show that the large-scale emergence of soil-borne fungal diseases of plants is the consequence of human activities. Keywords. Exotic pathogens, endemic pathogens, agricultural crops, minor crops, for- est ecosystems. INTRODUCTION There are different definitions of the term soil-borne when referring to plant pathogens. According to Koike et al. (2003), this includes pathogens that infect the plant through the soil while Katan (2017) broadened the con- Phytopathologia Mediterranea 58(3): 451-472, 2019 ISSN 0031-9465 (print) | ISSN 1593-2095 (online) | DOI: 10.14601/Phyto-10756 452 Santa Olga Cacciola,
Recommended publications
  • Master Gardener Weed List 2019.Xlsx
    Common Name Scientific Name Family Category Barley, Foxtail Hordeum jubatum Poaceae (Grass Family) Grass Barley, Hare Hordeum Poaceae (Grass Family) Grass Barnyardgrass Echinochloa crus-galli Poaceae (Grass Family) Grass Bedstraw, Catchweed Galium aparine Rubiaceae (Madder Family) Broadleaf Bentgrasses Agrostis spp. Poaceae (Grass Family) Grass Bermudagrass Cynodon dactylon Poaceae (Grass Family) Grass Bindweed, Field Convolvulus arvensis Convolvulaceae (Morningglory Broadleaf Bittercress, Little Cardamine oligosperma Brassicaceae (Mustard Family) Broadleaf Bluegrass, Annual Poa annua Poaceae (Grass Family) Grass Bluegrass, Roughstalk Poa trivialis Poaceae (Grass Family) Grass Brassbuttons, Southern Cotula australis Asteraceae (Sunflower Family) Broadleaf Brome, Ripgut Bromus diandrus Poaceae (Grass Family) Grass Brome, Soft Bromus hordeaceus Poaceae (Grass Family) Grass Bromegrasses Bromus spp. Poaceae (Grass Family) Grass Burclover, California Medicago polymorpha Fabaceae (Pea or Bean Family) Broadleaf Burweed, Lawn Soliva sessilis Asteraceae (Sunflower Family) Broadleaf Buttercup, Bermuda (Buttercup Oxalis pes-caprae Oxalidaceae (Oxalis Family) Broadleaf Carrot, Wild Daucus carota Apiaceae (Carrot Family) Broadleaf Catsear, Common Hypochaeris radicata Asteraceae (Sunflower Family) Broadleaf Celery, Wild Cyclospermum leptophyllum Apiaceae (Carrot family) Broadleaf Chamomile, Mayweed Anthemis cotula Asteraceae (Sunflower Family) Broadleaf Chickweed, Mouseear Cerastium Caryophyllaceae (Pink Family) Broadleaf Chickweed, Common Stellaria
    [Show full text]
  • – the 2020 Horticulture Guide –
    – THE 2020 HORTICULTURE GUIDE – THE 2020 BULB & PLANT MART IS BEING HELD ONLINE ONLY AT WWW.GCHOUSTON.ORG THE DEADLINE FOR ORDERING YOUR FAVORITE BULBS AND SELECTED PLANTS IS OCTOBER 5, 2020 PICK UP YOUR ORDER OCTOBER 16-17 AT SILVER STREET STUDIOS AT SAWYER YARDS, 2000 EDWARDS STREET FRIDAY, OCTOBER 16, 2020 SATURDAY, OCTOBER 17, 2020 9:00am - 5:00pm 9:00am - 2:00pm The 2020 Horticulture Guide was generously underwritten by DEAR FELLOW GARDENERS, I am excited to welcome you to The Garden Club of Houston’s 78th Annual Bulb and Plant Mart. Although this year has thrown many obstacles our way, we feel that the “show must go on.” In response to the COVID-19 situation, this year will look a little different. For the safety of our members and our customers, this year will be an online pre-order only sale. Our mission stays the same: to support our community’s green spaces, and to educate our community in the areas of gardening, horticulture, conservation, and related topics. GCH members serve as volunteers, and our profits from the Bulb Mart are given back to WELCOME the community in support of our mission. In the last fifteen years, we have given back over $3.5 million in grants to the community! The Garden Club of Houston’s first Plant Sale was held in 1942, on the steps of The Museum of Fine Arts, Houston, with plants dug from members’ gardens. Plants propagated from our own members’ yards will be available again this year as well as plants and bulbs sourced from near and far that are unique, interesting, and well suited for area gardens.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Alternatives to Turfgrass Lawns Gary Knox North Florida REC ‐ Quincy
    6/27/2018 Alternatives to Turfgrass Lawns Gary Knox North Florida REC ‐ Quincy Backstory of Lawns • Originated in England and maritime western Europe as a symbol of social status – Evolved from a “browsed grass pasture” to a non- agricultural area artificially maintained (at great expense) as a trimmed grass sward – Affiliated with the “English Landscape Style” popularized by “Capability” Brown and other garden designers Borde Hill, West Sussex, England, UK Backstory of Lawns • Concept spread worldwide in early 19th century – Temperate European grasses not suited to climates like Florida, requiring substitute grasses • Emulated by middle class with emergence of mechanical lawn mowers in middle 19th/early 20th centuries 1 6/27/2018 Functions of a Lawn • Aesthetics • Erosion control (unifying visual •Swale element) vegetation • Recreation • Runoff filtration • Walkway • Cool/clean air • Groundcover • Reduce noise Environmental Problems/Issues • If dominating a • Ideal lawn plant landscape, a turfgrass – Beautiful appearance lawn – Supresses weeds – Reduces biodiversity – Suitable for foot traffic (i.e., monoculture over – Pest/disease resistant a large area) – Low maintenance – Provides minimal • Requires little or no ecosystem services irrigation, fertilization or • High aesthetic mowing/pruning appearance requires – Provides ecosystem services high levels of inputs UF’s Ongoing Search for Better Turfgrasses for Florida Lawns • New, alternative turfgrasses • Better turfgrasses through breeding • http://www.ffsp.net/uf-research-turfgrass-breeding-program/
    [Show full text]
  • Comparative Biology of Seed Dormancy-Break and Germination in Convolvulaceae (Asterids, Solanales)
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) Kariyawasam Marthinna Gamage Gehan Jayasuriya University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Jayasuriya, Kariyawasam Marthinna Gamage Gehan, "COMPARATIVE BIOLOGY OF SEED DORMANCY- BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES)" (2008). University of Kentucky Doctoral Dissertations. 639. https://uknowledge.uky.edu/gradschool_diss/639 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Kariyawasam Marthinna Gamage Gehan Jayasuriya Graduate School University of Kentucky 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) ABSRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Art and Sciences at the University of Kentucky By Kariyawasam Marthinna Gamage Gehan Jayasuriya Lexington, Kentucky Co-Directors: Dr. Jerry M. Baskin, Professor of Biology Dr. Carol C. Baskin, Professor of Biology and of Plant and Soil Sciences Lexington, Kentucky 2008 Copyright © Gehan Jayasuriya 2008 ABSTRACT OF DISSERTATION COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) The biology of seed dormancy and germination of 46 species representing 11 of the 12 tribes in Convolvulaceae were compared in laboratory (mostly), field and greenhouse experiments.
    [Show full text]
  • Invasive Plants: Changing the Landscape of America
    Utah State University DigitalCommons@USU All U.S. Government Documents (Utah Regional U.S. Government Documents (Utah Regional Depository) Depository) 1998 Invasive Plants: Changing the Landscape of America Federal Interagency Committee for the Management of Noxious and Exotic Weeds Randy G. Westbrooks Follow this and additional works at: https://digitalcommons.usu.edu/govdocs Part of the Environmental Indicators and Impact Assessment Commons Recommended Citation Federal Interagency Committee for the Management of Noxious and Exotic Weeds and Westbrooks, Randy G., "Invasive Plants: Changing the Landscape of America" (1998). All U.S. Government Documents (Utah Regional Depository). Paper 490. https://digitalcommons.usu.edu/govdocs/490 This Report is brought to you for free and open access by the U.S. Government Documents (Utah Regional Depository) at DigitalCommons@USU. It has been accepted for inclusion in All U.S. Government Documents (Utah Regional Depository) by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. DISCLAIMER This document COlltains . tone-on-tone or color graphs, charts and/or pictuTes Wllicll l1ave been reproduced in black and white. disk 1 cvrtone. FC'defn I In tcra ~'i('n('v Comlnitt(>C' for the { .' Mlln;H',cment of (lnd Exotic t 1 I), PROTECTED UNDER INTERNATIONAL COPYRIGHT ALL RIGHTS RESERVED. NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMERCE Cataloging-in-Publication Data Westbrooks, Randy G., 1953- Invasive plants: changing the landscape of America: fact book! [senior author, Randy Westbrooks]. -- Washington, D.C.: Federal Interagency Committee for the Management of Noxious and Exotic Weeds, 1998. [vi], 107 p.: col. Ill.; 28 cm.
    [Show full text]
  • Noteworthy Distributions and Additions in Southwestern Convolvulaceae
    NOTEWORTHY DISTRIBUTIONS AND ADDITIONS IN SOUTHWESTERN CONVOLVULACEAE Daniel F. Austin Arizona-Sonora Desert Museum Tucson, AZ 85734 [email protected] ABSTRACT Since 1998 when the Convolvulaceae was published for the Vascular Plants of Arizona, Calystegia sepium ssp. angulata Brummitt and Convolvulus simuans L. M. Perry have been added to the flora and another species, Jacquemontia agrestis (Choisy) Meisner, has been located that had not been found since 1945. Descriptions, keys, and discussions of these are given to place them in the flora. Additionally, these and Dichondra argentea Willdenow, D. brachypoda Wooton & Standley, D. sericea Swartz, Ipomoea aristolochiifolia (Kunth) G. Don, I. cardiophylla A. Gray, I. ×leucantha Jacquin, and I. thurberi A. Gray, with new noteworthy distributions records in the region, are discussed and mapped. All taxa documented by recent collections are illustrated to facilitate identification. DISTRIBUTION PATTERNS AND ADDITIONS TO THE ARIZONA FLORA Three notable disjunct records have been discovered within Arizona since the treatment of the Convolvulaceae was published for the state (Austin 1998a), Calystegia sepium ssp. angulata Brummitt, Convolvulus simulans L.M. Perry and Jacquemontia agrestis (Choisy) Meisner. Additionally, Ipomoea aristolochiifolia (Kunth) G. Don has been found just south of the border in Mexico. All of these are significant disjunctions in the family, but there are others that have been documented for years and little discussed. Although these are not the only disjunctions within the Convolvulaceae in the region, they are representative of floristic patterns in this and other families. The following discussion updates the known status of the Convolvulaceae in Arizona and compares several species to the floras from which they were derived.
    [Show full text]
  • Annual Bluegrass Control in Dichondra-Progress Report
    Visual evaluations of the percent cover of cool season grasses frequent mowing that the other grasses studied. Several words of indicated a gradual increase in cover in subsequent winter Seasons caution: (a) Bentgrasses are sensitive to traffic; therefore, use of for all grasses except annual ryegrass, which persisted for only one them for overseeding highly trafficked bermudagrass (i.e., athletic season. By the fifth winter season, all creeping bentgrasses had fields) is not recommended . In such situations, perennial or an- a cover greater than 50 percent. nual ryegrass may be the better choice; (b) If dethatching is per- ‘Penncross’ creeping bentgrass, with a 76 percent turf cover, formed on bermudagrass, it may well be necessary to overseed was the most persistent grass followed closely by ‘Emerald’ and annually, regardless of the kind of grass used and its persistence ‘Seaside’ with 60 and 58 percent cover, respectively. characteristics; (c) Where persistence of overseeded grass for more Results of this study suggest that (a) a higher rate of seeding than one season is undesirable, bentgrasses and fescues are poor of all cool season grasses (approximately twice that used in this choices for bermudagrass overseeding. study) may produce a better quality turf; (b) creeping bentgrass, especially ‘Pencross: can provide a satisfactory cover for more than one season per seeding; (c) annual ryegrass, creeping red fes- Acknowledgements cues and ‘Highland’ bentgrass will probably produce acceptable The author would like to thank the Northern California Turfgrass cover for only one season; (d) of all grasses evaluated, creeping Council for its financial support of this project.
    [Show full text]
  • Dichondra—A Weed in Southern Putting Greens
    June 16, 1925 UNITED STATES GOLF ASSOCIATION 129 Dichondra—a Weed in Southern Putting Greens Throughout the southern states from Norfolk, Virginia, to Florida and Texas, there appears as a weed in putting greens the native plant shown in the accomprnying illustration. Its scientific name is Dichondra A creeping b:anch bearing flowers and The plant as it appears on a putting green, showing a flower and pod enlarged. Dichondra carolinensis carolinensis ; it bears no common name. Most botanists classify it in the morning-glory family, but others consider that it represents a distinct family of plants. On putting greens it makes turf of about the same quality as white clover. It is however easily identified by the simple kidney-shaped leaves. At the present no means of eradication is known except by cutting it out and replacing with good sod. One plant may spread over an area 2 or 3 feet in diameter. It thrives welll in shade and it is sometimes used as a shady lawn plant. Its characters are well shown in the accompanying illustrations. Back Numbers of the Bulletin—Available as follows: Vol. 1 (1921). Reprint of entire volume, in paper covers. Price $2.25. Vol. II (1922). July, August, October, November, December numbers only. Price, 35 cents per copy. Indrx included. Vol. Ill (1923). March and June to December numbers inclusive. Price, 35 cents per copy. Index included. Vol. IV (1924). To mermVr clubs only. All numbers except January and March. Price, 35 cents per copy. Index included. Getting rid of moles with gasoline engine discharge.—'' In the BULLETIN, April, 1925, page 90, you published an article on trapping moles, and I thought your readers might be interested in my experience with moles in my lawn.
    [Show full text]
  • Fungal Flora of Korea
    Fungal Flora of Korea Volume 1, Number 2 Ascomycota: Dothideomycetes: Pleosporales: Pleosporaceae Alternaria and Allied Genera 2015 National Institute of Biological Resources Ministry of Environment Fungal Flora of Korea Volume 1, Number 2 Ascomycota: Dothideomycetes: Pleosporales: Pleosporaceae Alternaria and Allied Genera Seung Hun Yu Chungnam National University Fungal Flora of Korea Volume 1, Number 2 Ascomycota: Dothideomycetes: Pleosporales: Pleosporaceae Alternaria and Allied Genera Copyright ⓒ 2015 by the National Institute of Biological Resources Published by the National Institute of Biological Resources Environmental Research Complex, Hwangyeong-ro 42, Seo-gu Incheon, 404-708, Republic of Korea www.nibr.go.kr All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the National Institute of Biological Resources. ISBN : 9788968111259-96470 Government Publications Registration Number 11-1480592-000905-01 Printed by Junghaengsa, Inc. in Korea on acid-free paper Publisher : Kim, Sang-Bae Author : Seung Hun Yu Project Staff : Youn-Bong Ku, Ga Youn Cho, Eun-Young Lee Published on March 1, 2015 The Flora and Fauna of Korea logo was designed to represent six major target groups of the project including vertebrates, invertebrates, insects, algae, fungi, and bacteria. The book cover and the logo were designed by Jee-Yeon Koo. Preface The biological resources represent all the composition of organisms and genetic resources which possess the practical and potential values essential for human lives, and occupies a firm position in producing highly value-added products such as new breeds, new materials and new drugs as a means of boosting the national competitiveness.
    [Show full text]
  • A Survey of Tricolpate (Eudicot) Phylogenetic Relationships1
    American Journal of Botany 91(10): 1627±1644. 2004. A SURVEY OF TRICOLPATE (EUDICOT) PHYLOGENETIC RELATIONSHIPS1 WALTER S. JUDD2,4 AND RICHARD G. OLMSTEAD3 2Department of Botany, University of Florida, Gainesville, Florida 32611 USA; and 3Department of Biology, University of Washington, Seattle, Washington 98195 USA The phylogenetic structure of the tricolpate clade (or eudicots) is presented through a survey of their major subclades, each of which is brie¯y characterized. The tricolpate clade was ®rst recognized in 1989 and has received extensive phylogenetic study. Its major subclades, recognized at ordinal and familial ranks, are now apparent. Ordinal and many other suprafamilial clades are brie¯y diag- nosed, i.e., the putative phenotypic synapomorphies for each major clade of tricolpates are listed, and the support for the monophyly of each clade is assessed, mainly through citation of the pertinent molecular phylogenetic literature. The classi®cation of the Angiosperm Phylogeny Group (APG II) expresses the current state of our knowledge of phylogenetic relationships among tricolpates, and many of the major tricolpate clades can be diagnosed morphologically. Key words: angiosperms; eudicots; tricolpates. Angiosperms traditionally have been divided into two pri- 1992a; Chase et al., 1993; Doyle et al., 1994; Soltis et al., mary groups based on the presence of a single cotyledon 1997, 2000, 2003; KaÈllersjoÈ et al., 1998; Nandi et al., 1998; (monocotyledons, monocots) or two cotyledons (dicotyledons, Hoot et al., 1999; Savolainen et al., 2000a, b; Hilu et al., 2003; dicots). A series of additional diagnostic traits made this di- Zanis et al., 2003; Kim et al., 2004). This clade was ®rst called vision useful and has accounted for the long recognition of the tricolpates (Donoghue and Doyle, 1989), but the name these groups in ¯owering plant classi®cations.
    [Show full text]
  • Index of Fungal Names
    INDEX OF FUNGAL NAMES Alternaria cerealis 187 Alternaria cetera 188–189 Alphabetical list of fungal species, genera and families treated in Alternaria chartarum 201 the Taxonomy sections of the included manuscripts. Alternaria chartarum f. stemphylioides 201 Alternaria cheiranthi 189 A Alternaria chlamydospora 190, 199 Alternaria chlamydosporigena 190 Acicuseptoria 376–377 Alternaria “chlamydosporum” 199 Acicuseptoria rumicis 376–377 Alternaria chrysanthemi 204 Allantozythia 384 Alternaria cichorii 200 Allewia 183 Alternaria cinerariae 202 Allewia eureka 193 Alternaria cinerea 207 Allewia proteae 193 Alternaria cirsinoxia 200 Alternaria 183, 186, 190, 193, 198, 207 Alternaria citriarbusti 187 Alternaria abundans 189 Alternaria citrimacularis 187 Alternaria acalyphicola 200 Alternaria colombiana 187 Alternaria agerati 200 Alternaria concatenata 201 Alternaria agripestis 200 Alternaria conjuncta 196 Alternaria allii 191 Alternaria conoidea 188 Alternaria alternantherae 185 Alternaria “consortiale” 204 Alternaria alternariae 206 Alternaria consortialis 204 Alternaria alternarina 195 Alternaria crassa 200 Alternaria cretica 200 Alternaria alternata 183, 185–186 Alternaria cucumerina 200 Alternaria anagallidis 200 Alternaria cucurbitae 204 Alternaria angustiovoidea 187 Alternaria cumini 193 Alternaria anigozanthi 193 Alternaria cyphomandrae 201 Alternaria aragakii 200 Alternaria danida 201 Alternaria araliae 199 Alternaria dauci 201 Alternaria arborescens 187, 201 Alternaria daucicaulis 196 Alternaria arbusti 195 Alternaria daucifollii 187
    [Show full text]