Carbonic Anhydrase IX Is Highly Expressed in Hereditary Nonpolyposis Colorectal Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Carbonic Anhydrase IX Is Highly Expressed in Hereditary Nonpolyposis Colorectal Cancer 1760 Carbonic Anhydrase IX Is Highly Expressed in Hereditary Nonpolyposis Colorectal Cancer Anssi M. Niemela¨,3,4 Piritta Hynninen,5 Jukka-Pekka Mecklin,1 Teijo Kuopio,2 Antti Kokko,7 Lauri Aaltonen,7 Anna-Kaisa Parkkila,6 Silvia Pastorekova,8 Jaromir Pastorek,8 Abdul Waheed,9 William S. Sly,9 Torben F. Ørntoft,10 Mogens Kruhøffer,10 Hannu Haapasalo,4 Seppo Parkkila,3 and Antti J. Kivela¨1 Departments of 1Surgery and 2Pathology, Jyva¨skyla¨Central Hospital, Jyva¨skyla¨, Finland; 3Institute of Medical Technology and Departments of 4Pathology, 5Obstetrics and Gynecology, and 6Neurology, University of Tampere and Tampere University Hospital, Tampere, Finland; 7Department of Medical Genetics and Cancer Biology Research Program, University of Helsinki, Helsinki, Finland; 8Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic; 9Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri; and 10Department of Clinical Biochemistry, Aarhus University Hospital, Skejby, Aarhus N, Denmark Abstract Carbonic anhydrase (CA) II, CA IX, and CA XII are HNPCC group. For more information, 77 specimens expressed in various neoplasias and have been linked to were immunohistochemically stained to study the levels tumorigenesis. We examined their expression in three of CA II, CA IX, and CA XII. Immunohistochemical different groups of colorectal cancer [i.e., microsatellite analyses further confirmed that the subgroups express stable (MSS), microsatellite instable (MSI), and hered- CA II, CA IX, and CA XII differentially, and the HNPCC itary nonpolyposis colorectal cancer (HNPCC)]. First, we tumors express high levels of CA IX. Expression of analyzed gene expression profiles of 113 specimens by a these CAs did not correlate to Dukes stage or grade of microarray method to study the expression of various differentiation. Our results show that CAs are differen- CA isozymes in the subgroups of colorectal cancer. The tially expressed in the subgroups of colorectal cancer, results indicated that mRNAs for CA II and CA XII are and CA IX expression seems to be very high in most down-regulated and CA IX mRNA is up-regulated in all cases of HNPCC. CA IX could be a potential diagnostic three tumor categories when compared with the normal and therapeutic target in HNPCC. (Cancer Epidemiol tissue. The up-regulation of CA IX was greatest in the Biomarkers Prev 2007;16(9):1760–6) Introduction Colorectal cancer is diagnosed in f150,000 people in endometrium, ovary, stomach, small intestine, hepato- the United States and 500,000 worldwide each year (1). biliary tract, ureter, and renal pelvis. From all cases, about 3% to 4% are linked to the familial Genetic instability, which is common in colorectal cancer syndromes. The most common form is hereditary cancer and often targets the DNA mismatch repair genes, nonpolyposis colorectal cancer (HNPCC; also called the is one hallmark of carcinogenesis and can be promoted Lynch syndrome), which is caused by a germ-line by cell stress factors within the tumor microenvironment mutation in one of four DNA mismatch repair genes. such as cell hypoxia (5). What is less known is the However, many colorectal cancers show microsatellite mechanism through which hypoxia contributes to genet- instability without evidence of germ-line abnormalities ic instability (6). The transcription factor called hypoxia- (2). In these cases, the cause is biallelic methylation of inducible factor (HIF)-1a is crucial for the cellular the promoter sequences of MLH1—an epigenetic, not response to hypoxia and is frequently overexpressed in inherited, change that leads to a deficiency of DNA hypoxic regions of human cancers, resulting in activation mismatch repair (2). The prognosis for HNPCC is better of genes essential for cell survival. One of these HIF- than for the sporadic form of cancer (3, 4), although the inducible genes is called CA9,whichencodesthe patients with HNPCC have an increased risk for cancer carbonic anhydrase (CA) IX isozyme that is over- development in certain extracolonic sites such as the expressed in certain carcinomas (7, 8). CA XII is another member of the CA isozyme family that has been reported to be inducible by hypoxia (8), although the evidence is Received 1/27/07; revised 6/12/07; accepted 6/14/07. not yet as convincing as for CA IX. Grant support: Sigrid Juselius Foundation, Academy of Finland, Finnish Cancer CAs have been classically considered zinc-containing Foundation, Finnish Cultural Foundation, Slovak Grant Agencies VEGA (2/3055 and metalloenzymes, which catalyze a very fundamental APVV-51-024805) and NIH (DK40163). chemical reaction wherein carbon dioxide is hydrated The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance to carbonic acid, which then dissociates to bicarbonate X X + À with 18 U.S.C. Section 1734 solely to indicate this fact. and proton (CO2 +H2O H2 CO3 H + HCO3 ). There Requests for reprints: Antti J. Kivela¨, Department of Surgery, Jyva¨skyla¨Central are at least 13active a-CA isozymes in mammals Hospital, Keskussairaalantie 19, 40620 Jyva¨skyla¨, Finland. Phone: 358-50-324-7762; Fax: 011-358-14-269-3626. E-mail: [email protected] including five cytoplasmic (CA I, CA II, CA III, CA VII, Copyright D 2007 American Association for Cancer Research. and CA XIII), two mitochondrial (CA VA and CA VB), doi:10.1158/1055-9965.EPI-07-0080 one secreted (CA VI), and five membrane-associated Cancer Epidemiol Biomarkers Prev 2007;16(9). September 2007 Downloaded from cebp.aacrjournals.org on October 4, 2021. © 2007 American Association for Cancer Research. Cancer Epidemiology, Biomarkers & Prevention 1761 (CA IV, CA IX, CA XII, CA XIV, and CA XV) forms. The detectable levels in majority (>50%) of the samples, discovery that some of the CA isozymes (CA II, CA IX, which were removed from further analyses (22). and CA XII) are implicated in tumorigenesis has ignited a completely new era in CA research during the past Tumor Samples for Immunohistochemistry. Tumor decade (7, 9–12). Colorectal cancer was one of the first samples were collected together with routine histopath- tumor types wherein CA expression was explored in ologic specimens taken during surgical operations in detail (13–15). It has been shown that CA II is down- Jyva¨skyla¨Central Hospital between 1979 and 2004. The regulated and CA IX is up-regulated in the tumor study was approved by the Ethics Committee of the tissue compared with the normal intestinal epithelium Jyva¨skyla¨ Central Hospital. The samples included in (14, 16, 17). CA XII levels remained quite constant during the immunohistochemical staining were not the same the colorectal tumor progression, although the distribu- tumors that were studied by the microarray analyses. tion of the enzyme became more widespread, in contrast There were 77 colorectal tumor samples, including to its confined expression in the normal mucosa (15). 43MSS, 18 MSI, and 16 HNPCC. The histologic grade Tumor-associated CAs may participate in oncogenesis by was low in 29 lesions, moderate in 26 lesions, and high acidifying the extracellular milieu adjacent to cancer in 8 lesions. The lesions had been isolated from the cells. This acidification would create a microenvironment ascending colon (N = 10), transverse colon (N = 4), within the tumor that would be conducive to cancer descending colon (N = 2), sigmoid colon (N = 10), rectum growth and spread (18, 19). Although the exact mecha- (N = 19), and rectosigmoideum (N = 1). Additional 14 nisms are largely unknown, acidification has been linked samples were obtained from the colon, but the informa- to various events of tumor progression such as defective tion about the exact location was not available. Of the intercellular adhesion, increased invasion, and up-regu- carcinomas, 14 were at Dukes stage A, 28 at stage B, lation of growth factors and matrix metalloproteinases. 16 at stage C, and 3at stage D. Interestingly, acidification seems to contribute to the increase in mutation rate and reduction in DNA repair Immunohistochemistry. Tissue samples were washed (20)—both being cardinal features of genetic instability. briefly with PBS, fixed with 4% neutral-buffered form- It is plausible to predict that CAs, as the major pH- aldehyde, and embedded in paraffin. Sections were cut at A regulating enzymes, are involved in modulating pH in 5 m and placed on SuperFrost Plus microscope slides tumor microenvironments. This hypothesis was strongly (Menzel). Immunoperoxidase staining was done using supported by recent observations that CA IX contributes an automated Lab Vision Autostainer 480 (Immuno- to the acidification process in cells that are cultured Vision Technologies Co.). under hypoxic conditions (21). The polyclonal rabbit antibodies against human CA II The aim of this study was to obtain a comprehensive and XII have previously been characterized and pro- view of CA expression in different groups of colorectal duced (15, 23, 24). The monoclonal antibody M75 cancer including microsatellite stable (MSS) and micro- against human CA IX has also been described previously satellite instable (MSI) sporadic carcinomas and HNPCC. (15, 23, 25). In the first part of the study, we analyzed mRNA The automated immunostaining was done using expression levels of multiple CA isozymes in colorectal Power Vision+ Poly-HRP IHC Kit (ImmunoVision cancers using an expression microarray technology. Technologies Co.) reagents and included the following Thereafter, we studied CA II, CA IX, and CA XII steps: (a) rinsing in wash buffer; (b) treatment in 3% expression in MSS, MSI, and HNPCC colorectal tumors H2O2 in double-distilled water for 5 min and rinsing with by immunohistochemistry. To the best of our knowledge, wash buffer; (c) blocking with cow colostrum diluted 1:2 this is the first study on CA expression in hereditary in TBS containing 0.05% Tween 20 for 30 min and rinsing colorectal cancer and the first correlation of CAs to the in wash buffer; (d) incubation with primary antibody genetic stability/instability in any cancer.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table 3 Complete List of RNA-Sequencing Analysis of Gene Expression Changed by ≥ Tenfold Between Xenograft and Cells Cultured in 10%O2
    Supplementary Table 3 Complete list of RNA-Sequencing analysis of gene expression changed by ≥ tenfold between xenograft and cells cultured in 10%O2 Expr Log2 Ratio Symbol Entrez Gene Name (culture/xenograft) -7.182 PGM5 phosphoglucomutase 5 -6.883 GPBAR1 G protein-coupled bile acid receptor 1 -6.683 CPVL carboxypeptidase, vitellogenic like -6.398 MTMR9LP myotubularin related protein 9-like, pseudogene -6.131 SCN7A sodium voltage-gated channel alpha subunit 7 -6.115 POPDC2 popeye domain containing 2 -6.014 LGI1 leucine rich glioma inactivated 1 -5.86 SCN1A sodium voltage-gated channel alpha subunit 1 -5.713 C6 complement C6 -5.365 ANGPTL1 angiopoietin like 1 -5.327 TNN tenascin N -5.228 DHRS2 dehydrogenase/reductase 2 leucine rich repeat and fibronectin type III domain -5.115 LRFN2 containing 2 -5.076 FOXO6 forkhead box O6 -5.035 ETNPPL ethanolamine-phosphate phospho-lyase -4.993 MYO15A myosin XVA -4.972 IGF1 insulin like growth factor 1 -4.956 DLG2 discs large MAGUK scaffold protein 2 -4.86 SCML4 sex comb on midleg like 4 (Drosophila) Src homology 2 domain containing transforming -4.816 SHD protein D -4.764 PLP1 proteolipid protein 1 -4.764 TSPAN32 tetraspanin 32 -4.713 N4BP3 NEDD4 binding protein 3 -4.705 MYOC myocilin -4.646 CLEC3B C-type lectin domain family 3 member B -4.646 C7 complement C7 -4.62 TGM2 transglutaminase 2 -4.562 COL9A1 collagen type IX alpha 1 chain -4.55 SOSTDC1 sclerostin domain containing 1 -4.55 OGN osteoglycin -4.505 DAPL1 death associated protein like 1 -4.491 C10orf105 chromosome 10 open reading frame 105 -4.491
    [Show full text]
  • Genomic and Expression Profiling of Chromosome 17 in Breast Cancer Reveals Complex Patterns of Alterations and Novel Candidate Genes
    [CANCER RESEARCH 64, 6453–6460, September 15, 2004] Genomic and Expression Profiling of Chromosome 17 in Breast Cancer Reveals Complex Patterns of Alterations and Novel Candidate Genes Be´atrice Orsetti,1 Me´lanie Nugoli,1 Nathalie Cervera,1 Laurence Lasorsa,1 Paul Chuchana,1 Lisa Ursule,1 Catherine Nguyen,2 Richard Redon,3 Stanislas du Manoir,3 Carmen Rodriguez,1 and Charles Theillet1 1Ge´notypes et Phe´notypes Tumoraux, EMI229 INSERM/Universite´ Montpellier I, Montpellier, France; 2ERM 206 INSERM/Universite´ Aix-Marseille 2, Parc Scientifique de Luminy, Marseille cedex, France; and 3IGBMC, U596 INSERM/Universite´Louis Pasteur, Parc d’Innovation, Illkirch cedex, France ABSTRACT 17q12-q21 corresponding to the amplification of ERBB2 and collinear genes, and a large region at 17q23 (5, 6). A number of new candidate Chromosome 17 is severely rearranged in breast cancer. Whereas the oncogenes have been identified, among which GRB7 and TOP2A at short arm undergoes frequent losses, the long arm harbors complex 17q21 or RP6SKB1, TBX2, PPM1D, and MUL at 17q23 have drawn combinations of gains and losses. In this work we present a comprehensive study of quantitative anomalies at chromosome 17 by genomic array- most attention (6–10). Furthermore, DNA microarray studies have comparative genomic hybridization and of associated RNA expression revealed additional candidates, with some located outside current changes by cDNA arrays. We built a genomic array covering the entire regions of gains, thus suggesting the existence of additional amplicons chromosome at an average density of 1 clone per 0.5 Mb, and patterns of on 17q (8, 9). gains and losses were characterized in 30 breast cancer cell lines and 22 Our previous loss of heterozygosity mapping data pointed to the primary tumors.
    [Show full text]
  • CDH12 Cadherin 12, Type 2 N-Cadherin 2 RPL5 Ribosomal
    5 6 6 5 . 4 2 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 A A A A A A A A A A A A A A A A A A A A C C C C C C C C C C C C C C C C C C C C R R R R R R R R R R R R R R R R R R R R B , B B B B B B B B B B B B B B B B B B B , 9 , , , , 4 , , 3 0 , , , , , , , , 6 2 , , 5 , 0 8 6 4 , 7 5 7 0 2 8 9 1 3 3 3 1 1 7 5 0 4 1 4 0 7 1 0 2 0 6 7 8 0 2 5 7 8 0 3 8 5 4 9 0 1 0 8 8 3 5 6 7 4 7 9 5 2 1 1 8 2 2 1 7 9 6 2 1 7 1 1 0 4 5 3 5 8 9 1 0 0 4 2 5 0 8 1 4 1 6 9 0 0 6 3 6 9 1 0 9 0 3 8 1 3 5 6 3 6 0 4 2 6 1 0 1 2 1 9 9 7 9 5 7 1 5 8 9 8 8 2 1 9 9 1 1 1 9 6 9 8 9 7 8 4 5 8 8 6 4 8 1 1 2 8 6 2 7 9 8 3 5 4 3 2 1 7 9 5 3 1 3 2 1 2 9 5 1 1 1 1 1 1 5 9 5 3 2 6 3 4 1 3 1 1 4 1 4 1 7 1 3 4 3 2 7 6 4 2 7 2 1 2 1 5 1 6 3 5 6 1 3 6 4 7 1 6 5 1 1 4 1 6 1 7 6 4 7 e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
    [Show full text]
  • DNA Sequences of Ca2+-Atpase Gene in Rice KDML 105
    Kasetsart J. (Nat. Sci.) 40 : 472 - 485 (2006) DNA Sequences of Ca2+-ATPase Gene in Rice KDML 105 Sakonwan Prasitwilai1, Sripan Pradermwong2, Amara Thongpan3 and Mingkwan Mingmuang1* ABSTRACT Total RNA isolated from the leaves of KDML 105 rice was used as template to make complementary DNA (cDNA). Primer combinations of CA1-CA10 which were designed from Lycopersicon esculentum and Arabidopsis thaliana Ca2+-ATPase gene sequence were used. The nucleotide sequences amplified from 7 primer combinations gave 2,480 bp (fragment A). This fragment was found to be 99% homology to that of the putative calcium ATPase of Oryza sativa (Japonica cultivar-group) as shown in the GenBank. Amplification of 3v end fragment done by Rapid Amplification of cDNA Ends (3vRACE) technique using 3vGSP1, 3vGSP2, and 3vUAP as primers gave a DNA fragment of 933 bp having an overlapping region with DNA fragment A, which resulted in the combined length of 2,944 bp (fragment B). To find the sequence of 5v end, 5vRACE technique was used having 5vGSP1, 5vGSP2, 5v AP and 5vUAP as primers. It gave a DNA fragment of 473 bp showing an overlapping region with DNA fragment B, which ultimately resulted in the combined length of 3,331 bp (total CA). The deduced 1,008 amino acid sequence of total CA showed 99% homology to putative calcium ATPase of O. sativa (Japonica cultivar-group) cv. Nipponbare. The higher percent homology of this Ca2+-ATPase gene in KDML105 to that of O. sativa cv. Nipponbare (99%) than to O. sativa cv. IR36 (89%) was not as anticipated since both KDML105 and O.
    [Show full text]
  • The Design, Optimization and Testing of Y Chromosome
    THE DESIGN, OPTIMIZATION AND TESTING OF Y CHROMOSOME SHORT TANDEM REPEAT MEGAPLEXES by Richard Schoske submitted to the Faculty of the College of Arts and Sciences of American University in Partial Fulfillment of the requirements for the Degree of Doctor of Philosophy in Chemistry Chair: ________________________ Dr. James Girard ________________________ Dr. Albert Cheh ________________________ Dr. John M. Butler ______________________________ Dean of the College _________________ Date 2003 American University Washington, D.C. 20016 THE DESIGN, OPTIMIZATION AND TESTING OF Y CHROMOSOME SHORT TANDEM REPEAT MEGAPLEXES BY Richard Schoske ABSTRACT A multiplex polymerase chain reaction (PCR) assay capable of the simultaneous amplifying 20 Y chromosome short tandem repeat (STR) markers has been developed and tested to aid human testing and population studies. These markers include all of the Y-STR markers that make up the “extended haplotype” used in Europe (DYS19, DYS385 a/b, DYS389I/II, DYS390, DYS391, DYS392, DYS393, and YCAII a/b) plus the additional polymorphic Y-STR markers (DYS437, DYS438, DYS439, DYS447, DYS448, DYS388, DYS460, and GATA H4). The Y-STR 20plex is the first to include a simultaneous amplification of all the markers within the European “minimal” and “extended haplotype.” A subset of the Y-STR 20plex primers, the Y-STR 9plex was also developed and tested. The Y-STR 9plex contains only the markers within the European minimal haplotype. Lastly, a Y-STR 11plex was designed and tested. The markers within the Y-STR 11plex are DYS385 a/b, DYS447, DYS448, DYS450, DYS456, DYS458 and DYS 464 a/b/c/d. ii Validation experiments were performed in order to assess the reliability of the haplotypes generated by these newly designed Y-STR multiplexes.
    [Show full text]
  • An Update on the Metabolic Roles of Carbonic Anhydrases in the Model Alga Chlamydomonas Reinhardtii
    H OH metabolites OH Review An Update on the Metabolic Roles of Carbonic Anhydrases in the Model Alga Chlamydomonas reinhardtii Ashok Aspatwar 1,* ID , Susanna Haapanen 1 and Seppo Parkkila 1,2 1 Faculty of Medicine and Life Sciences, University of Tampere, FI-33014 Tampere, Finland; [email protected].fi (S.H.); [email protected].fi (S.P.) 2 Fimlab, Ltd., and Tampere University Hospital, FI-33520 Tampere, Finland * Correspondence: [email protected].fi; Tel.: +358-46-596-2117 Received: 11 January 2018; Accepted: 10 March 2018; Published: 13 March 2018 Abstract: Carbonic anhydrases (CAs) are metalloenzymes that are omnipresent in nature. − + CAs catalyze the basic reaction of the reversible hydration of CO2 to HCO3 and H in all living organisms. Photosynthetic organisms contain six evolutionarily different classes of CAs, which are namely: α-CAs, β-CAs, γ-CAs, δ-CAs, ζ-CAs, and θ-CAs. Many of the photosynthetic organisms contain multiple isoforms of each CA family. The model alga Chlamydomonas reinhardtii contains 15 CAs belonging to three different CA gene families. Of these 15 CAs, three belong to the α-CA gene family; nine belong to the β-CA gene family; and three belong to the γ-CA gene family. The multiple copies of the CAs in each gene family may be due to gene duplications within the particular CA gene family. The CAs of Chlamydomonas reinhardtii are localized in different subcellular compartments of this unicellular alga. The presence of a large number of CAs and their diverse subcellular localization within a single cell suggests the importance of these enzymes in the metabolic and biochemical roles they perform in this unicellular alga.
    [Show full text]
  • Datasheet A07237-1 Anti-Carbonic Anhydrase 10/CA10 Antibody
    Product datasheet Anti-Carbonic anhydrase 10/CA10 Antibody Catalog Number: A07237-1 BOSTER BIOLOGICAL TECHNOLOGY Special NO.1, International Enterprise Center, 2nd Guanshan Road, Wuhan, China Web: www.boster.com.cn Phone: +86 27 67845390 Fax: +86 27 67845390 Email: [email protected] Basic Information Product Name Anti-Carbonic anhydrase 10/CA10 Antibody Gene Name CA10 Source Rabbit IgG Species Reactivity human Tested Application WB,Direct ELISA Contents 500ug/ml antibody with PBS ,0.02% NaN3 , 1mg BSA and 50% glycerol. Immunogen E.coli-derived human Carbonic anhydrase 10/CA10 recombinant protein (Position: M1-K328). Purification Immunogen affinity purified. Observed MW Dilution Ratios Western blot: 1:500-2000 Direct ELISA: 1:100-1000 Storage 12 months from date of receipt,-20℃ as supplied.6 months 2 to 8℃ after reconstitution. Avoid repeated freezing and thawing Background Information Carbonic anhydrase-related protein 10 is an enzyme that in humans is encoded by the CA10 gene. This gene encodes a protein that belongs to the carbonic anhydrase family of zinc metalloenzymes, which catalyze the reversible hydration of carbon dioxide in various biological processes. The protein encoded by this gene is an acatalytic member of the alpha-carbonic anhydrase subgroup, and it is thought to play a role in the central nervous system, especially in brain development. Multiple transcript variants encoding the same protein have been found for this gene. Reference Anti-Carbonic anhydrase 10/CA10 Antibody被引用在0文献中。 暂无引用 FOR RESEARCH USE ONLY. NOT FOR DIAGNOSTIC AND CLINICAL USE. 1 Product datasheet Anti-Carbonic anhydrase 10/CA10 Antibody Catalog Number: A07237-1 BOSTER BIOLOGICAL TECHNOLOGY Special NO.1, International Enterprise Center, 2nd Guanshan Road, Wuhan, China Web: www.boster.com.cn Phone: +86 27 67845390 Fax: +86 27 67845390 Email: [email protected] Selected Validation Data FOR RESEARCH USE ONLY.
    [Show full text]
  • A Survey of the Ce-Tubulin Gene Family in Chicken: Unexpected Sequence Heterogeneity in the Polypeptides Encoded by Five Expressed Genes
    The EMBO Journal vol.7 no.4 pp.931 -940, 1988 A survey of the ce-tubulin gene family in chicken: unexpected sequence heterogeneity in the polypeptides encoded by five expressed genes Lisa F.Pratt1 and Don W.Cleveland encoding both a- and ,B-tubulin lay beneath this heterogeneity of microtubule utilization (see Cleveland and Sullivan, 1985; Department of Biological Chemistry, The Johns Hopkins University Cleveland, 1987). For ,3-tubulin, extensive analyses in School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA chicken (Sullivan and Cleveland, 1984; Sullivan et al., 1985, 'Present address: Division of Clinical Immunology, Scripps Clinic and 1986a,b; Murphy et al., 1987; Montiero and Cleveland, Research Foundation, 10666 N. Torrey Pines Road, La Jolla, CA 92037, USA 1988), mouse (Lewis et al., 1985a; Sullivan and Cleveland, 1986; Wang et al., 1986) and human (Hall et al., 1983; Lee Communicated by K.Weber et al., 1983; Lewis et al., 1985b; Sullivan and Cleveland, 1986) have revealed six functional vertebrate f-tubulins. At To characterize the a-tubulin gene family in chicken, we least four [and probably five-see Lopata and Cleveland have isolated five chicken a-tubulin genes and determined (1987)] of these represent distinct ,B-tubulin isotypes whose the majority of the sequences of the encoded polypep- sequences (particularly within a carboxy-terminal variable tides. Three of these (cA3, ca5/6 and ca8) encode novel, domain) have been evolutionarily conserved (Sullivan and expressed a-tubulins that have not previously been Cleveland, 1986; Wang et al., 1986). analyzed, whereas one gene segment is a pseudogene and For a-tubulin, the analyses are less complete.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • SMARCA4 Regulates Spatially Restricted Metabolic Plasticity in 3D Multicellular Tissue
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.21.436346; this version posted March 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. SMARCA4 regulates spatially restricted metabolic plasticity in 3D multicellular tissue Katerina Cermakova1,2,*, Eric A. Smith1,2,*, Yuen San Chan1,2, Mario Loeza Cabrera1,2, Courtney Chambers1,2, Maria I. Jarvis3, Lukas M. Simon4, Yuan Xu5, Abhinav Jain6, Nagireddy Putluri1, Rui Chen7, R. Taylor Ripley5, Omid Veiseh3, and H. Courtney Hodges1,2,3,8,9,‡ 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA 2. Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA 3. Department of Bioengineering, Rice University, Houston, TX, USA 4. Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA 5. Department of Surgery, Division of General Thoracic Surgery, Baylor College of Medicine, Houston, TX, USA 6. Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 7. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA 8. Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 9. Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA * These authors contributed equally to this work ‡ Corresponding author: H. Courtney Hodges, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA, [email protected]. Abstract SWI/SNF and related chromatin remodeling complexes act as tissue-specific tumor suppressors and are frequently inactivated in different cancers.
    [Show full text]
  • Expression of Carbonic Anhydrase II
    Biochemical Genetics, VoL 33, Nos. 11/12, 1995 Expression of Carbonic Anhydrase II (CA II) Promoter-Reporter Fusion Genes in Multiple Tissues of Transgenic Mice Does Not Replicate Normal Patterns of Expression Indicating Complexity of CA II Regulation in Vivo Robert P. Erickson, 1,2,4 Judy Grimes, 1 Patrick J. Venta, 3 and Richard E. Tashian 3 Received 6 June 1995 Final5 Sept. 1995 Although the proximal, 5' 115 bp of the human carbonic anhydrase II (CA II) gene was sufficient for expression of a reporter gene in some transfected cell lines, we found previously that 1100 bp of this promoter (or 500 bp of the mouse CA II promoter) was not sufficient for expression in transgenic mice. We have now studied the expression of linked reporter genes in mice transgenic for either (1) l 1 kb of the human 5' promoter or (2) 8 kb of the human 5' promoter with mouse sequences from the first exon, part of the first intron (since a CpG island spans this region), and the 3' sequences of the gene. Expression was found in both cases, but the tissue specificity was not appropriate for CA II. Although there was a difference in the sensitivity of the assays used, the frst construct led to expression in many tissues, while the second construct was expressed only in spleen. These findings indicate considerable complexity of DNA control regions for in vivo CA II expression. KEY WORDS: transgenic mice; carbonic anhydrase; promoter analysis; transcription; DNA control regions. Angel Charity for Children-Wings for Genetic Research, Steele Memorial Children's Re- search Center, Department of Pediatrics, University of Arizona, Tucson, Arizona.
    [Show full text]