Gene Mapping and Medical Genetics Human Chromosome 8

Total Page:16

File Type:pdf, Size:1020Kb

Gene Mapping and Medical Genetics Human Chromosome 8 J Med Genet: first published as 10.1136/jmg.25.11.721 on 1 November 1988. Downloaded from Gene mapping and medical genetics Journal of Medical Genetics 1988, 25, 721-731 Human chromosome 8 STEPHEN WOOD From the Department of Medical Genetics, University of British Columbia, 6174 University Boulevard, Vancouver, British Columbia, Canada V6T IWS. SUMMARY The role of human chromosome 8 in genetic disease together with the current status of the genetic linkage map for this chromosome is reviewed. Both hereditary genetic disease attributed to mutant alleles at gene loci on chromosome 8 and neoplastic disease owing to somatic mutation, particularly chromosomal translocations, are discussed. Human chromosome 8 is perhaps best known for its In an era when complete sequencing of the human involvement in Burkitt's lymphoma and as the genome is being proposed, it is appropriate for location of the tissue plasminogen activator gene, medical geneticists to accept the challenge of defining by copyright. PLAT, which has been genetically engineered to the set of loci that have mutant alleles causing provide a natural fibrinolytic product for emergency hereditary disease. The fundamental genetic tool of use in cardiac disease. Since chromosome 8 repre- linkage mapping can now be applied, owing largely sents about 5% of the human genome, we may to progress in defining RFLP markers.3 4 This expect it to carry about 5% of human gene loci. This review will focus on genetic disease associated with would correspond to about 90 of the fully validated chromosome 8 loci and the status ofthe chromosome 8 phenotypes in the MIM7 catalogue.' The 27 genes linkage map. assigned to chromosome 8 at the Ninth Human Gene Mapping Workshop (Paris, September 1987) Disease loci thus represent a third of the expected number. In http://jmg.bmj.com/ addition, six loci corresponding to fragile sites, three Inherited diseases that are thought to result from pseudogenes, and four gene-like sequences were mutant alleles at defined gene loci on chromosome 8 reported.2 Nevertheless, this is but a small fraction are shown in table 1. Loci that have been regionally of the 500 to 5000 gene loci expected from a genome localised are shown in the figure. The EBSI, SPHI, that contains between 10 000 and 100 000 genes. and VMD1 loci are defined by the disease associated alleles, while the LGCR locus, which is deleted Received for publication 22 June 1988. in Langer-Giedion syndrome, is cytogenetically Accepted for publication 11 July 1988. defined. on September 28, 2021 by guest. Protected TABLE 1 Chromosome 8 loci that may have disease-causing alleles. Disease Locus symbol McKusick No Localisation Cloned DNA RFLP Dominant disorders Epidermolysis bullosa EBSI 13195 8q Hereditary thrombotic disease PLAT 17337 8pI2-qII 2 + + Langer-Giedion syndrome LGCR 15023 8q24 1-q24 12 Hereditary spherocytosis SPH1 18290 8p2l-l-pl-22 Congenital goitre TG 18845 8q24-2-q24-3 + + Vitelliform macular dystrophy VMDI 15370 8q Recessive disorders Osteopetrosis with renal tubular acidosis CA2 25973 8q22 + + Congenital adrenal hyperplasia 11B CYPIIB 20201 8q21 + Haemolytic anaemia GSR 23180 8p2l Hyperlipoproteinaemia LIPD 23860 8p22 + + 721 J Med Genet: first published as 10.1136/jmg.25.11.721 on 1 November 1988. Downloaded from 722 Stephen Wood 2i considered to be a distinct variant from the EBS 23.1 D8S7 Koebner orEBS Weber-Cockayne type, was reported in a single, large Norwegian family.5 The mutation 22 LIPD was thought to originate in the community of Ogna 21.3 in south-western Norway.5 Among 246 family 21.2 IGSR 21.1 members, 93 cases were identified and close linkage 12 SPHI to GPT established6 (0=0-05, Z=10-98). The recent placement of GPT and the chromosome 8 locus 11.2 TG 7 on the same linkage group enables the EBSI it:t locus to be assigned to chromosome 8. The possibility 11:11 1A that these three dominant forms of EBS are allelic can now be evaluated by linkage analysis with DNA 12 markers. 13 PLASMINOGEN ACTIVATOR DEFICIENCY AND THE 21.1 PLAT GENE Three families have been reported where defective 21.2 CYPIlB release of vascular plasminogen activator, inherited 21.3 as a dominant trait, was associated with a history of deep venous thromboses.8-0 The deficient fibrino- 22.1 22.2 lytic activity in these families may reflect a primary 22.3 defect of the PLAT structural gene. The Bowes melanoma cell line which produces 23 plasminogen activator has been used for isolation of cDNA clones.'1 12 Subsequently, phage'3 andby copyright. cosmid13 14 clones have been isolated and expressed 24.1 |LGCR in L cells.'5 The entire gene, which exceeds 32 kb 24.2 encompassing 14 exons, has been sequenced.'6 The 24.3 gene has been assigned to chromosome 8 using cell 8 hybrids'7-'9 and sublocalised to the pericentromeric20 region 8p12-q11 221 by in situ hybridisation. A common RFLP has been reported.'7 FIGURE Regional localisation ofdisease loci and linkage map for human chromosome 8. Both the physical and LANGER-GIEDION SYNDROME CHROMOSOME http://jmg.bmj.com/ linkage relationships are shown for the loci D8S7, PLA T, REGION (LGCR) D8S5, CA2, and TG. The remaining linked loci are defined The Langer-Giedion syndrome (LGS) has features by proprietary6probes ofCollaborative Research which include characteristic facies, sparse hair, and Incorporated' '(for clarity the CRIprefix is not indicated in cone shaped epiphyses that resemble trichorhino- thisfigure). The numbers indicate sex average phalangeal syndrome type I (TRP I). LGS, which is recombination between adjacent loci. A broken line is used sometimes called TRP II, includes additional to indicate unknown linkage distance. features of mental retardation, microcephaly, and multiple exostoses that are generally not seen in on September 28, 2021 by guest. Protected The remaining loci are defined by their bio- TRP I. Recently 36 cases of LGS were reviewed.22 chemical gene product which is abnormal or absent Since the initial report23 of an 8q terminal in the associated disease. Most of these structural deletion in LGS, various deletions2435 as well as gene loci have been cloned and RFLP markers complex rearrangements36 37 have been described in defined, so that it is possible to show cosegregation affected patients. Cytogenetic review38 suggested of the disease with the structural gene locus. For that apparent non-deletion casesr9 might exhibit most disorders this preliminary step towards subtle features of asymmetry between chromosome defining the nature of the mutant allele(s) has not homologues. The minimum critical region ofdeletion yet been accomplished. that is involved in LGS has been the subject of many reports.29 36 38 Recently, deletion of 8q24 11- EPIDERMOLYSIS BULLOSA SIMPLEX, OGNA TYPE q24-12 has been suggested as the critical region for (EBS1) LGS33 consistent with a reported patient in whom Dominantly inherited EBS, characterised by a the TG locus (at 8q24.2-q24.3) was not involved.40 generalised bruising tendency of the skin and hence It has been suggested that the only consistent J Med Genet: first published as 10.1136/jmg.25.11.721 on 1 November 1988. Downloaded from Human chromosome 8 723 clinical feature that distinguishes LGS from TRP I is to 8pll for the SPH1 gene.55 A family has been the presence of cartilaginous exostoses in the former reported where hereditary spherocytosis and gluta- condition. 38 Furthermore, interstitial deletions of thione reductase deficiency segregated independ- chromosome 8,4 43 including two cases with dele- ently56 suggesting that these genes are not closely tion of 8q24.12,42 43 have been reported in patients linked, although the type of hereditary spherocytosis with TRP I. This suggests that the larger LGS was not determined. deletion may uncover an exostosis gene. Dominantly More recently, two dysmorphic sibs affected with inherited multiple exostoses may involve this same congenital spherocytosis were found to share a locus, although no cytogenetically apparent deletion deletion of chromosome 8, del(8)(pll-1p21-1). The of chromosome 8 has been found. parents were both haematologically and chromo- Most cases of LGS are sporadic, resulting from somally normal.57 This interesting case presumably de novo deletions or presumed deletions. One case represents an example of chromosomal germ line report concerned a patient whose father had an mosaicism.57 An additional case of interstitial inversion, inv(8)(q22-3q24.13).5 Although this may deletion of chromosome 8, del(8)(p11-22p21-1), be a chance observation, the suggestion that inver- associated with spherocytosis has been reported. sions may predispose to unequal recombination45 is Spherocytosis in these deletion patients is probably of general interest and concern46 to medical gen- the result of uniplex (that is, single copy) gene eticists. A familial syndrome with features of LGS expression. This indicates that hereditary sphero- cosegregating with an 8q inversion has been cytosis owing to the SPH1 locus is likely to be an reported.47 An affected father and daughter have amorph or null allele and not the type I hereditary been reported although cytogenetic findings were spherocytosis associated with a neomorph of , not available.48 Finally, a patient reported with spectrin. normal intelligence and a minimal deletion33 could Recently, cDNA clones for P spectrin have been be expected to transmit LGS as a dominant trait. isolated.59 This has allowed localisation of this gene to chromosome 14 by hybridisation to dot blots of by copyright. HEREDITARY SPHEROCYTOSIS (SPH1) flow sorted chromosomes.59 Linkage between her- Hereditary spherocytosis is a common, usually editary spherocytosis and Gm has been reported54 dominantly inherited, haemolytic anaemia caused with a lod score of 3-42 at 0=0-22. While the odds by defects in the red cell cytoskeleton.49 The of heterogeneity to homogeneity of 1:2-04 neither prevalence has been estimated to be about 1 in 5000 favoured nor excluded heterogeneity, the largest Caucasians.50 Both biochemical and genetic studies four families of the 11 families studied made the indicate that hereditary spherocytosis is hetero- major contribution to the lod score.
Recommended publications
  • Frequent Multiplication of the Long Arm of Chromosome 8 in Hepatocellular Carcinoma1
    [CANCER RESEARCH 53. 857-860. February 15. 1993] Frequent Multiplication of the Long Arm of Chromosome 8 in Hepatocellular Carcinoma1 Yoshiyuki Fujiwara, Monto Monden, Takesada Mori, Yusuke Nakamura,2 and Mitsuru Emi Department of Biochemistry ¡Y.F., Y. N.. M. E.l. Cancer Institute. 1-37-1 Kaini-lkebukuro. Tiishinia-ku. Tokyo 170. and the Second Department of Surgen' ¡Y.F.. M. M., T. M.], Osaka University MédiraiSellimi. 1-1-50 Fukushima. Fukushima, Osaka 53}, Japan ABSTRACT normal and tumor DNAs enabled visualization of subtle changes that had occurred in tumor DNAs. Frequent allelic losses at loci on several chromosomes have been de We initiated a systematic RFLP analysis of paired DNAs from tected in human hepatocellular carcinomas, but other types of chromo HCCs and their corresponding normal tissues to examine whether somal abnormalities have not been characterized well. Using eight poly multiplication of chromosomal segments may take place during de morphic DNA markers on chromosome 8, we examined 120 primary hepatocellular carcinomas for abnormalities in the copy number of these velopment of HCC. In this paper, we present results of RFLP analysis loci in tumor cells. A 2- to 6-fold increase in intensities of bands repre at loci on chromosome 8, and we demonstrate that multiplication of senting single alíeleswas observed in 32 of the 78 tumors that were single alíeleson part or all of the long arm of chromosome 8 has informative for one or more of the markers, indicating an increase in copy occurred in a large proportion of HCCs. number ("multiplication") of alíeleson8q.
    [Show full text]
  • Transcriptional Integration of Mitogenic and Mechanical Signals by Myc and YAP
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION rum-mediated and growth factor-mediated cell cycle Transcriptional integration entry (Kelly et al. 1983; Armelin et al. 1984; Roussel of mitogenic and mechanical et al. 1991; Barone and Courtneidge 1995; de Alboran et al. 2001; Trumpp et al. 2001; Perna et al. 2012). This signals by Myc and YAP function of Myc stems from its ability to control the ex- pression of a large fraction of genes involved in cell activa- Ottavio Croci,1,5 Serena De Fazio,1,5 1,5 1,4,5 tion and proliferation. Francesca Biagioni, Elisa Donato, When ectopically expressed in quiescent cells, Myc is Marieta Caganova,1 Laura Curti,1 Mirko Doni,2 able to drive cell cycle progression in the absence of serum Silvia Sberna,1 Deborah Aldeghi,1 (Eilers et al. 1991; Pelengaris et al. 1999). This effect of Chiara Biancotto,1 Alessandro Verrecchia,2 Myc is context-dependent, however, since not all cells or tissues respond to Myc by entering the cell cycle (Jack- Daniela Olivero,3 Bruno Amati,1,2 1 son et al. 1990; Xiao et al. 2001; Murphy et al. 2008). This and Stefano Campaner suggests that a full proliferative response may require the engagement of other TFs, which may respond to different 1Center for Genomic Science of IIT@SEMM (Istituto Italiano di regulatory signals, such as metabolic or mechanical cues. Tecnologia at European School of Molecular Medicine), Recently, YAP has emerged as a key TF in the control of Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, cell growth and organ size in response to a variety of Italy; 2Department of Experimental Oncology, European signals such as cell adhesion, apico–basolateral polarity, Institute of Oncology (IEO), 20139 Milan, Italy; 3Laboratorio di cytoskeletal tension, and mitogens.
    [Show full text]
  • A Study on Acute Myeloid Leukemias with Trisomy 8, 11, Or 13, Monosomy 7, Or Deletion 5Q
    Leukemia (2005) 19, 1224–1228 & 2005 Nature Publishing Group All rights reserved 0887-6924/05 $30.00 www.nature.com/leu Genomic gains and losses influence expression levels of genes located within the affected regions: a study on acute myeloid leukemias with trisomy 8, 11, or 13, monosomy 7, or deletion 5q C Schoch1, A Kohlmann1, M Dugas1, W Kern1, W Hiddemann1, S Schnittger1 and T Haferlach1 1Laboratory for Leukemia Diagnostics, Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany We performed microarray analyses in AML with trisomies 8 aim of this study to investigate whether gains and losses on the (n ¼ 12), 11 (n ¼ 7), 13 (n ¼ 7), monosomy 7 (n ¼ 9), and deletion genomic level translate into altered genes expression also in 5q (n ¼ 7) as sole changes to investigate whether genomic gains and losses translate into altered expression levels of other areas of the genome in AML. genes located in the affected chromosomal regions. Controls were 104 AML with normal karyotype. In subgroups with trisomy, the median expression of genes located on gained Materials and methods chromosomes was higher, while in AML with monosomy 7 and deletion 5q the median expression of genes located in deleted Samples regions was lower. The 50 most differentially expressed genes, as compared to all other subtypes, were equally distributed Bone marrow samples of AML patients at diagnosis were over the genome in AML subgroups with trisomies. In contrast, 30 and 86% of the most differentially expressed genes analyzed: 12 cases with trisomy 8 (AML-TRI8), seven with characteristic for AML with 5q deletion and monosomy 7 are trisomy 11 (AML-TRI11), seven with trisomy 13 (AML-TRI13), located on chromosomes 5 or 7.
    [Show full text]
  • An Update on the Metabolic Roles of Carbonic Anhydrases in the Model Alga Chlamydomonas Reinhardtii
    H OH metabolites OH Review An Update on the Metabolic Roles of Carbonic Anhydrases in the Model Alga Chlamydomonas reinhardtii Ashok Aspatwar 1,* ID , Susanna Haapanen 1 and Seppo Parkkila 1,2 1 Faculty of Medicine and Life Sciences, University of Tampere, FI-33014 Tampere, Finland; [email protected].fi (S.H.); [email protected].fi (S.P.) 2 Fimlab, Ltd., and Tampere University Hospital, FI-33520 Tampere, Finland * Correspondence: [email protected].fi; Tel.: +358-46-596-2117 Received: 11 January 2018; Accepted: 10 March 2018; Published: 13 March 2018 Abstract: Carbonic anhydrases (CAs) are metalloenzymes that are omnipresent in nature. − + CAs catalyze the basic reaction of the reversible hydration of CO2 to HCO3 and H in all living organisms. Photosynthetic organisms contain six evolutionarily different classes of CAs, which are namely: α-CAs, β-CAs, γ-CAs, δ-CAs, ζ-CAs, and θ-CAs. Many of the photosynthetic organisms contain multiple isoforms of each CA family. The model alga Chlamydomonas reinhardtii contains 15 CAs belonging to three different CA gene families. Of these 15 CAs, three belong to the α-CA gene family; nine belong to the β-CA gene family; and three belong to the γ-CA gene family. The multiple copies of the CAs in each gene family may be due to gene duplications within the particular CA gene family. The CAs of Chlamydomonas reinhardtii are localized in different subcellular compartments of this unicellular alga. The presence of a large number of CAs and their diverse subcellular localization within a single cell suggests the importance of these enzymes in the metabolic and biochemical roles they perform in this unicellular alga.
    [Show full text]
  • 8 Translocation in Burkitt Lymphoma Interrupts the VK Locus (Gene Localization/Immunoglobulin Genes/Genetics of B-Cell Neoplasia/In Situ Hybridization) BEVERLY S
    Proc. Natl. Acad. Sci. USA Vol. 81, pp. 2444-2446, April 1984 Genetics The 2p breakpoint of a 2;8 translocation in Burkitt lymphoma interrupts the VK locus (gene localization/immunoglobulin genes/genetics of B-cell neoplasia/in situ hybridization) BEVERLY S. EMANUEL*, JULES R. SELDENt, R. S. K. CHAGANTIt, SURESH JHANWARt, PETER C. NOWELL, AND CARLO M. CROCEt§ *Departments of Pediatrics and of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, and tThe Wistar Institute of Anatomy and Biology, 36th Street at Spruce, Philadelphia, PA 19104; and MLaboratory of Cancer Genetics and Cytogenetics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 Contributed by Peter C. Nowell, January 3, 1984 ABSTRACT The majority of chromosomal rearrange- have demonstrated translocation from 8q24 to 14q32 and ments observed in Burkitt lymphomas involve a translocation deregulation of transcription of the c-myc oncogene (18, 20). between 8q and 14q, while the remaining minority carry vari- Close proximity between immunoglobulin heavy chain and ant translocations between chromosome 8 and either 2 or 22. c-myc DNA sequences on the 14q+ chromosome are a result We have studied the JI Burkitt lymphoma cell line carrying of the translocation (15-18, 20). In Burkitt lines with the 8;22 the variant 2;8 chromosome translocation using a combination rearrangement, there is evidence for translocation of X se- of high-resolution and molecular cytogenetic techniques. We quences to the 8q+ chromosome (9, 10), resulting in tran- have determined that the chromosome 2 breakpoint of the 2;8 scriptional activation of the c-myc that remains on the in- translocation in these cells is in the distal portion of 2pll.2.
    [Show full text]
  • Your Genes, Your Choices
    Your Genes, Your Choices: Exploring the Issues Raised by Genetic Research by Catherine Baker Table of Contents Acknowledgments . 6 Introduction . 7 Chapter 1 Martin Needs Medical Treatment (or does he?) . 9 Chapter 2 Priya Should Find Out if She Has Inherited a Fatal Disease (or should she?) . 14 Chapter 3 Howard’s Health Is Up to Him (or is it?) . 26 Chapter 4 Carlos and Mollie Can Have a Perfectly Healthy Baby (or can they?) . 35 Chapter 5 Donita Should Cooperate with the Police (or should she?) . 45 Chapter 6 John and Elsa Will Profit from Biotech Farming (or will they?) . 52 Chapter 7 Dr. Lu’s Patients Have the Right to Be Tall (or do they?) . 62 Chapter 8 Mrs. Fister Can Replace Her Dying Son (or can she?) . 70 Glossary . 81 References . 89 Credits . 81 Science + Literacy for Health Human Genome Project Advisory Board . 93 5 Acknowledgments I am not a science writer by trade. In order to write this book, I first had to study up on genetics and the issues involved. Then I had to try to explain them in a way that other newcomers to the subject could understand, without making terrible errors. It was a difficult task! I am therefore indebted to the members of the AAAS Advisory Panel (listed on page 82). At an all-day meeting in the spring of 1995, they steered my away from my original outline toward the book you find here. Many months later, several panel members provided very useful reviews of the manuscript. For this, I would like to thank Ruth Allen, Jeffrey Botkin, Ron Cole-Turner, Robert Cook-Deegan, and Joan Weiss.
    [Show full text]
  • Structure and Mechanism of the RNA Polymerase II Transcription Machinery
    Downloaded from genesdev.cshlp.org on October 9, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Structure and mechanism of the RNA polymerase II transcription machinery Allison C. Schier and Dylan J. Taatjes Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA RNA polymerase II (Pol II) transcribes all protein-coding ingly high resolution, which has rapidly advanced under- genes and many noncoding RNAs in eukaryotic genomes. standing of the molecular basis of Pol II transcription. Although Pol II is a complex, 12-subunit enzyme, it lacks Structural biology continues to transform our under- the ability to initiate transcription and cannot consistent- standing of complex biological processes because it allows ly transcribe through long DNA sequences. To execute visualization of proteins and protein complexes at or near these essential functions, an array of proteins and protein atomic-level resolution. Combined with mutagenesis and complexes interact with Pol II to regulate its activity. In functional assays, structural data can at once establish this review, we detail the structure and mechanism of how enzymes function, justify genetic links to human dis- over a dozen factors that govern Pol II initiation (e.g., ease, and drive drug discovery. In the past few decades, TFIID, TFIIH, and Mediator), pausing, and elongation workhorse techniques such as NMR and X-ray crystallog- (e.g., DSIF, NELF, PAF, and P-TEFb). The structural basis raphy have been complemented by cryoEM, cross-linking for Pol II transcription regulation has advanced rapidly mass spectrometry (CXMS), and other methods. Recent in the past decade, largely due to technological innova- improvements in data collection and imaging technolo- tions in cryoelectron microscopy.
    [Show full text]
  • The Ubiquitin Proteasome System Is Required for Cell Proliferation of The
    RESEARCH ARTICLE 3257 Development 137, 3257-3268 (2010) doi:10.1242/dev.053124 © 2010. Published by The Company of Biologists Ltd The ubiquitin proteasome system is required for cell proliferation of the lens epithelium and for differentiation of lens fiber cells in zebrafish Fumiyasu Imai1, Asuka Yoshizawa1, Noriko Fujimori-Tonou2, Koichi Kawakami3 and Ichiro Masai1,* SUMMARY In the developing vertebrate lens, epithelial cells differentiate into fiber cells, which are elongated and flat in shape and form a multilayered lens fiber core. In this study, we identified the zebrafish volvox (vov) mutant, which shows defects in lens fiber differentiation. In the vov mutant, lens epithelial cells fail to proliferate properly. Furthermore, differentiating lens fiber cells do not fully elongate, and the shape and position of lens fiber nuclei are affected. We found that the vov mutant gene encodes Psmd6, the subunit of the 26S proteasome. The proteasome regulates diverse cellular functions by degrading polyubiquitylated proteins. Polyubiquitylated proteins accumulate in the vov mutant. Furthermore, polyubiquitylation is active in nuclei of differentiating lens fiber cells, suggesting roles of the proteasome in lens fiber differentiation. We found that an E3 ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) is involved in lens defects in the vov mutant. These data suggest that the ubiquitin proteasome system is required for cell proliferation of lens epithelium and for the differentiation of lens fiber cells in zebrafish. KEY WORDS: Ubiquitin, Proteasome, Lens, Zebrafish, Psmd6, APC/C INTRODUCTION acid DNase (DLAD; Dnase2b). However, it is unclear how lens During development, the lens placode delaminates from the morphogenesis and organelle loss are related to these transcription epidermal ectoderm and forms the lens vesicle.
    [Show full text]
  • "The Genecards Suite: from Gene Data Mining to Disease Genome Sequence Analyses". In: Current Protocols in Bioinformat
    The GeneCards Suite: From Gene Data UNIT 1.30 Mining to Disease Genome Sequence Analyses Gil Stelzer,1,5 Naomi Rosen,1,5 Inbar Plaschkes,1,2 Shahar Zimmerman,1 Michal Twik,1 Simon Fishilevich,1 Tsippi Iny Stein,1 Ron Nudel,1 Iris Lieder,2 Yaron Mazor,2 Sergey Kaplan,2 Dvir Dahary,2,4 David Warshawsky,3 Yaron Guan-Golan,3 Asher Kohn,3 Noa Rappaport,1 Marilyn Safran,1 and Doron Lancet1,6 1Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 2LifeMap Sciences Ltd., Tel Aviv, Israel 3LifeMap Sciences Inc., Marshfield, Massachusetts 4Toldot Genetics Ltd., Hod Hasharon, Israel 5These authors contributed equally to the paper 6Corresponding author GeneCards, the human gene compendium, enables researchers to effectively navigate and inter-relate the wide universe of human genes, diseases, variants, proteins, cells, and biological pathways. Our recently launched Version 4 has a revamped infrastructure facilitating faster data updates, better-targeted data queries, and friendlier user experience. It also provides a stronger foundation for the GeneCards suite of companion databases and analysis tools. Improved data unification includes gene-disease links via MalaCards and merged biological pathways via PathCards, as well as drug information and proteome expression. VarElect, another suite member, is a phenotype prioritizer for next-generation sequencing, leveraging the GeneCards and MalaCards knowledgebase. It au- tomatically infers direct and indirect scored associations between hundreds or even thousands of variant-containing genes and disease phenotype terms. Var- Elect’s capabilities, either independently or within TGex, our comprehensive variant analysis pipeline, help prepare for the challenge of clinical projects that involve thousands of exome/genome NGS analyses.
    [Show full text]
  • The Cytogenetics of Hematologic Neoplasms 1 5
    The Cytogenetics of Hematologic Neoplasms 1 5 Aurelia Meloni-Ehrig that errors during cell division were the basis for neoplastic Introduction growth was most likely the determining factor that inspired early researchers to take a better look at the genetics of the The knowledge that cancer is a malignant form of uncon- cell itself. Thus, the need to have cell preparations good trolled growth has existed for over a century. Several biologi- enough to be able to understand the mechanism of cell cal, chemical, and physical agents have been implicated in division became of critical importance. cancer causation. However, the mechanisms responsible for About 50 years after Boveri’s chromosome theory, the this uninhibited proliferation, following the initial insult(s), fi rst manuscripts on the chromosome makeup in normal are still object of intense investigation. human cells and in genetic disorders started to appear, fol- The fi rst documented studies of cancer were performed lowed by those describing chromosome changes in neoplas- over a century ago on domestic animals. At that time, the tic cells. A milestone of this investigation occurred in 1960 lack of both theoretical and technological knowledge with the publication of the fi rst article by Nowell and impaired the formulations of conclusions about cancer, other Hungerford on the association of chronic myelogenous leu- than the visible presence of new growth, thus the term neo- kemia with a small size chromosome, known today as the plasm (from the Greek neo = new and plasma = growth). In Philadelphia (Ph) chromosome, to honor the city where it the early 1900s, the fundamental role of chromosomes in was discovered (see also Chap.
    [Show full text]
  • Rapid Molecular Assays to Study Human Centromere Genomics
    Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Method Rapid molecular assays to study human centromere genomics Rafael Contreras-Galindo,1 Sabrina Fischer,1,2 Anjan K. Saha,1,3,4 John D. Lundy,1 Patrick W. Cervantes,1 Mohamad Mourad,1 Claire Wang,1 Brian Qian,1 Manhong Dai,5 Fan Meng,5,6 Arul Chinnaiyan,7,8 Gilbert S. Omenn,1,9,10 Mark H. Kaplan,1 and David M. Markovitz1,4,11,12 1Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA; 2Laboratory of Molecular Virology, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay 11400; 3Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan 48109, USA; 4Program in Cancer Biology, University of Michigan, Ann Arbor, Michigan 48109, USA; 5Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA; 6Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48109, USA; 7Michigan Center for Translational Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; 8Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA; 9Department of Human Genetics, 10Departments of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA; 11Program in Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA; 12Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA The centromere is the structural unit responsible for the faithful segregation of chromosomes. Although regulation of cen- tromeric function by epigenetic factors has been well-studied, the contributions of the underlying DNA sequences have been much less well defined, and existing methodologies for studying centromere genomics in biology are laborious.
    [Show full text]
  • Trisomy 8 Mosaicism
    Trisomy 8 Mosaicism rarechromo.org Sources Trisomy 8 Mosaicism Trisomy 8 mosaicism (T8M) is a chromosome disorder caused by and the presence of a complete extra chromosome 8 in some cells of References the body. The remaining cells have the usual number of 46 The information in chromosomes, with two copies of chromosome 8 in each cell. this guide is Occasionally T8M is called Warkany syndrome after Dr Josef drawn partly from Warkany, the American paediatrician who first identified the published medical condition and its cause in the 1960s. Full trisomy 8 – where all cells literature. The have an extra copy of chromosome 8 - is believed to be incompatible first-named with survival, so babies and children in whom an extra chromosome author and 8 is found are believed to be always mosaic (Berry 1978; Chandley publication date 1980; Jordan 1998; Karadima 1998). are given to allow you to look for the Genes and chromosomes abstracts or The human body is made up of trillions of cells. Most of the cells original articles contain a set of around 20,000 different genes; this genetic on the internet in information tells the body how to develop, grow and function. Genes PubMed are carried on structures called chromosomes, which carry the (www.ncbi.nlm. genetic material, or DNA, that makes up our genes. nih.gov/pubmed). If you wish, you Chromosomes usually come in pairs: one chromosome from each can obtain most parent. Of these 46 chromosomes, two are a pair of sex articles from chromosomes: XX (a pair of X chromosomes) in females, and XY Unique.
    [Show full text]