Apex of the Expanded Base, Most Sporophyllous. Sporangia Are

Total Page:16

File Type:pdf, Size:1020Kb

Apex of the Expanded Base, Most Sporophyllous. Sporangia Are UNIT II EVOLUTION AND DIVERSITY 88 CHAPTER 4 EVOLUTION AND DIVERSITY OF VASCULAR PLANTS I OF PLANTS 89 apex of the expanded base, most sporophyllous. Sporangia microsporophylls and megasporophylls, respectively), grouped are heterosporous, and are located on the adaxial side of leaf together in terminal strobili, the sporophylls in four rows, not (sporophyll) bases; megasporangia occur on outer leaves of much differentiated from vegetative leaves. Gametophytes a flush of growth, the megaspores large (50—300 per sporan are endosporic. gium), trilete, spore sculpturing used in species identification; The Selaginellaceae are mostly distributed in tropical and microsporangia occur on inner leaves (or in alternating cycle warm regions, worldwide. Economic importance includes with megasporangia), the microspores small, monolete, very cultivated ornamentals and local medicinal plants. See Jermy numerous (up to I million per sporangium). Both sporangia (1990b) for general infonnation and Korall and Kenrick (2002, are marginally covered by a membrane, the “velum”, and are 2004) for phylogenetic analyses of the family. internally traversed by sterile strands (“trabeculae”); sporan The Selaginellaceae are distinctive in being erect to pros gia lack a precise dehiscence mechanism and open by tissue trate herbs, with dichotomously branched stems, sometimes degradation. Gametophytes are endosporic. Plants have CAM forming planar branch systems, the leaves microphyllous, photosynthesis. Air chambers occur in roots and leaves. spiral, either homomorphic or dimorphic and four-rowed The Isoetaceae have a worldwide distribution. Economic (with two upper rows of leaves smaller than the two lower importance is limited to some cultivated ornamentals. See rows), sporangia heterosporous, microsporangia and me Jermy (1990a) for general information and Rydin and Wik gasporangia borne in axils of ligulate sporophylls of terminal strom (2002) and Hoot et al. (2006) for phylogenetic and strobili; gametophytes endosporic. biogeographic studies of the family. The Isoetaceae are distinctive in being cormose to rhi EUPHYLLOPHITA—EUPHYLLOPHYTE S zo,natous plants with a basal rosette of microphyllous, ligu The sister group of the lycophytes are the euphyllophytes, late leaves, the leaves basally sheathing, apically linear to including all the other extant vascular plants (Figure 4.1). acicular, heterosporous, bearing adaxial megasporangia or Several major apomorphies that unite the euphyllophytes are microsporangia within sheathing leaf base. mentioned here. First, in contrast to the lycophytes, the roots [Note that Isoetes and Isoetaceae can be spelled Isoëtes and of euphyllophytes are monopodial, meaning that they do not Isoëtaceae, respectively, the umlaut indicating that the “e” is dichtomously branch at the apical meristem. Lateral roots a separate vowel and should be pronounced, not part of the arise endogenously from either the endodermis (in monilo diphthong “oe.” See Botanical Names, in Chapter 16.] phytes) or the pericycle (in spermatophytes, Chapter 5). Second, the roots of euphyllophytes have an exarch protoxy Selaginellaceae—Spike-Moss family (Latin Selago, a moss- 1cm, in which the protoxylem is positioned outer to the like plant of the Scrophulariaceae + ella, diminutive). 1 genus metaxylem (Figure 4.20A,B); lycophyte roots have an endarch (Selaginella)Ica. 700 species. (Figure 4.19) protoxylem. Third, the ancestral sporangia in euphyllophytes The Selaginellaceae consist of perennial herbs, rarely tree- were terminal in position with longitudinal deshiscence like, some species xeric-adapted “resurrection plants” (e.g., S. (although these features have undergone considerable modi lepidophylla). The roots are adventitious and dichotomously fication in some groups). Fourth, extant euphyllophytes have branching (dichopodial), in some taxa arising from branch a molecular apomorphy, a 30-kilobase inversion located in junctions and growing downward (formerly interpreted as leaf the large single-copy region of chloroplast DNA (Figure less stems, termed “rhizophores”). The stems are generally di 4.20C; see Figure 14.4 of Chapter 14). Fifth, the leaves of chotomously branching, with erect, cespitose, prostrate/repand, euphyllophytes, termed euphylls, are distinctive. (Note that or climbing habit; the stems may be pseudomonopodial or euphyll is essentially synonymous with megaphyll, a more sympodial, forming a very flattened, “fern-like” branch system traditional term.) Euphylls, like lycophylls, are generally in some species, some with aerial tubers; the stem vasculature is dorsiventral organs, functioning as the primary organ of pho a protostele (exarch or mesarch). The leaves are simple, sessile, tosynthesis. Euphylls are different in being associated with a spiral, with a single midrib (microphyllous), adaxially ligul ate, leaf gap, a region of nonvascular, parenchyma tissue inter - blades generally small, either homomorphic (“isophyllous”) rupting the vasculature of the stem, and in (usually) having or, in some prostrate taxa, dimorphic (“anisophyllous”) and in more than one vein per leaf (Figure 4.20F). Euphylls gener FIGURE 4.19 LYCOPODIOPHYTA—ISOETOPSIDA. Selaginellaceae. A. Selaginella bigelovii, with isomorphic leaves. B—K. four rows, leaves of two upper (dorsal) rows smaller, those of ally have a highly branched system of veins, between which Selagineila spp. B. Shoot with dimorphic leaves. C. Close-up of vegetative shoot, showing 2 rows of large and 2 rows of small leaves. the other two lower (ventral or lateral) rows larger. Sporangia is the mesophyll, the chloroplast-containing tissue. (Note D. Close-up of ligule, adaxial side of leaf base. E. Cone (strobilus), an axis bearing microsporophylls and megasporophylls. F. Close-up of megasporangium (sporophylls removed). G. Adaxial view of microsporophyll and megasporophyll with axillary are heterosporous; microsporangia (bearing numerous, small, that in a few euphyllous taxa, the veins have become second microsporangium and microsporangium and megasporangium, respectively. H. Strobilus longitudinal-section, showing sporophylls, megasporangia, and microspo trilete microspores) and megasporangia (bearing usually four arily reduced to a single mid-vein, an evolutionary reversal.) rangia. I. Close-up of microsporangium, containing numerous microspores. J. Close-up of megasporangium, containing 4 megaspores. [numerous], large, trilete. gen. ornamented megaspores) oc In addition, euphylls, in contrast to lycophylls, grow by means K. Dispersed microspores and megaspores, the latter showing trilete mark. Note great size difference. cur on short stalks in the axils of ligulate sporophylls (termed of either marginal or apical meristems. UNIT II EVOLUTION AND DIVERSITY 88 CHAPTER 4 EVOLUTION AND DIVERSITY OF VASCULAR PLANTS I OF PLANTS 89 apex of the expanded base, most sporophyllous. Sporangia microsporophylls and megasporophylls, respectively), grouped are heterosporous, and are located on the adaxial side of leaf together in terminal strobili, the sporophylls in four rows, not (sporophyll) bases; megasporangia occur on outer leaves of much differentiated from vegetative leaves. Gametophytes a flush of growth, the megaspores large (50—300 per sporan are endosporic. gium), trilete, spore sculpturing used in species identification; The Selaginellaceae are mostly distributed in tropical and microsporangia occur on inner leaves (or in alternating cycle warm regions, worldwide. Economic importance includes with megasporangia), the microspores small, monolete, very cultivated ornamentals and local medicinal plants. See Jermy numerous (up to I million per sporangium). Both sporangia (1990b) for general infonnation and Korall and Kenrick (2002, are marginally covered by a membrane, the “velum”, and are 2004) for phylogenetic analyses of the family. internally traversed by sterile strands (“trabeculae”); sporan The Selaginellaceae are distinctive in being erect to pros gia lack a precise dehiscence mechanism and open by tissue trate herbs, with dichotomously branched stems, sometimes degradation. Gametophytes are endosporic. Plants have CAM forming planar branch systems, the leaves microphyllous, photosynthesis. Air chambers occur in roots and leaves. spiral, either homomorphic or dimorphic and four-rowed The Isoetaceae have a worldwide distribution. Economic (with two upper rows of leaves smaller than the two lower importance is limited to some cultivated ornamentals. See rows), sporangia heterosporous, microsporangia and me Jermy (1990a) for general information and Rydin and Wik gasporangia borne in axils of ligulate sporophylls of terminal strom (2002) and Hoot et al. (2006) for phylogenetic and strobili; gametophytes endosporic. biogeographic studies of the family. The Isoetaceae are distinctive in being cormose to rhi EUPHYLLOPHITA—EUPHYLLOPHYTE S zo,natous plants with a basal rosette of microphyllous, ligu The sister group of the lycophytes are the euphyllophytes, late leaves, the leaves basally sheathing, apically linear to including all the other extant vascular plants (Figure 4.1). acicular, heterosporous, bearing adaxial megasporangia or Several major apomorphies that unite the euphyllophytes are microsporangia within sheathing leaf base. mentioned here. First, in contrast to the lycophytes, the roots [Note that Isoetes and Isoetaceae can be spelled Isoëtes and of euphyllophytes are monopodial, meaning that they do not Isoëtaceae, respectively, the umlaut indicating that the “e” is dichtomously
Recommended publications
  • The Lower Devonian Water Canyon Formation of Northeastern Utah
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1963 The Lower Devonian Water Canyon formation of Northeastern Utah Michael E. Taylor Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Geology Commons Recommended Citation Taylor, Michael E., "The Lower Devonian Water Canyon formation of Northeastern Utah" (1963). All Graduate Theses and Dissertations. 6626. https://digitalcommons.usu.edu/etd/6626 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. THE LOWER DEVONIAN WATER CANYON FORMATION OF NORTHEASTERN UTAH by Michael E. Taylor A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Geology UTAH STATE UNIVERSITY Logan, Utah 1963 ACKNOWLEDGMENTS The writer greatly appreciates the advice and criticism offered by Dean J. Stewart Williams, Dr. Clyde T . Hardy , and Dr. Donald R. Olsen, of the Department of Geology of Utah State University. He is also grateful to his parents for their encouragement during the course of this investigation and for capable assistance with the preparation of the manuscript. Michael E. Taylor TABLE OF CONTENTS Page INTRODUCTION o 1 General statement 1 Geolog ic setting o 3 External stratigraphic relations 4 WATER CANYON FORMATION 8 General statement 8 Card Member 9 Grassy Flat Member 13 Areal distribution 22 Paleonto logy 27 Age 33 Correlat i on 35 Environment of deposition 37 Source of detr itus 40 SUMMARY , 42 LITE RATURE CITED 43 APPENDIX 46 LIST OF FIGURES Figure Page 1.
    [Show full text]
  • Vascular Plants (About 425 Mya)
    LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 29 Plant Diversity I: How Plants Colonized Land Lectures by Erin Barley Kathleen Fitzpatrick © 2011 Pearson Education, Inc. Overview: The Greening of Earth • For more than the first 3 billion years of Earth’s history, the terrestrial surface was lifeless • Cyanobacteria likely existed on land 1.2 billion years ago • Around 500 million years ago, small plants, fungi, and animals emerged on land © 2011 Pearson Education, Inc. • Since colonizing land, plants have diversified into roughly 290,000 living species • Land plants are defined as having terrestrial ancestors, even though some are now aquatic • Land plants do not include photosynthetic protists (algae) • Plants supply oxygen and are the ultimate source of most food eaten by land animals © 2011 Pearson Education, Inc. Figure 29.1 1 m Concept 29.1: Land plants evolved from green algae • Green algae called charophytes are the closest relatives of land plants © 2011 Pearson Education, Inc. Morphological and Molecular Evidence • Many characteristics of land plants also appear in a variety of algal clades, mainly algae • However, land plants share four key traits with only charophytes – Rings of cellulose-synthesizing complexes – Peroxisome enzymes – Structure of flagellated sperm – Formation of a phragmoplast © 2011 Pearson Education, Inc. Figure 29.2 30 nm 1 m • Comparisons of both nuclear and chloroplast genes point to charophytes as the closest living relatives of land plants • Note that land plants are not descended from modern charophytes, but share a common ancestor with modern charophytes © 2011 Pearson Education, Inc.
    [Show full text]
  • Laboratory 8: Ginkgo, Cycads, and Gnetophytes
    IB 168 – Plant Systematics Laboratory 8: Ginkgo, Cycads, and Gnetophytes This is the third and final lab concerning the gymnosperms. Today we are looking at Ginkgo, the Cycads, and the Gnetophytes, the so-called non-coniferous gymnosperms. While these groups do not have cones like the true conifers, many do produce strobili. Order Ginkgoales: leaves simple (with dichotomously branching venation); dimorphic shoots; water-conducting cells are tracheids; dioecious; generally two ovules produced on an axillary stalk or "peduncle"; microsporangiate strobili loose and catkin-like; multi-flagellate sperm. Ginkgoaceae – 1 genus, 1 sp., cultivated relict native to China Tree, tall, stately with curving branches attached to a short trunk. Leaves fan shaped, deciduous, attached in whorls to the end of "short shoots" growing from the longer branches ("long shoots"); veins of the leaves dichotomously branched; dioecious; paired ovules at the end of a stalk and naked, hanging like cherries; seeds enclosed in a fleshy whitish-pink covering. Ginkgo Order Cycadales: pinnately-compound leaves, whorled, attached spirally at the stem apex; main stem generally unbranched; circinate vernation in some representatives; water-conducting cells are tracheids; dioecious; both male and female cones are simple structures; seeds generally large and round, unwinged; numerous microsporangia per microsporophyll; multi-flagellate sperm. Cycadaceae – 1 genus, 17 spp., Africa, Japan, and Australia Stems palm-like and rough, usually not branched; leaves fern-like, pinnately compound, thick and leathery; attached spirally at the stem apex, young pinnae with circinate vernation, leaf bases remaining after the leaves drop; dioecious; whorls of wooly-covered micro- and megasporophylls alternate with whorls of scales and foliage leaves at the stem apex; ovules born along the sporophyll margins; seed almond or plum like; ovules borne along the margin of the leaf- like megasporophyll.
    [Show full text]
  • Dicranophyllum Glabrum (DAWSON) STOPES, an UNUSUAL ELEMENT of LOWER WESTPHALIAN FLORAS in ATLANTIC CANADA
    DICRANOPHYLLUM GLABRUM OF LOWER WESTPHALIAN FLORAS IN CANADA 7 Dicranophyllum glabrum (DAWSON) STOPES, AN UNUSUAL ELEMENT OF LOWER WESTPHALIAN FLORAS IN ATLANTIC CANADA Robert H. WAGNER Centro Paleobotánico, Jardín Botánico de Córdoba, Avda. de Linneo, s/n, 14004 Córdoba (Spain); e-mail: [email protected] Wagner, R. H. 2005. Dicranophyllum glabrum (Dawson) Stopes, an unusual element of lower Westphalian fl oras in Atlantic Canada. [Dicranophyllum glabrum (Dawson) Stopes, un elemento raro de las fl oras del Westfaliense inferior del Canadá Atlántico.] Revista Española de Paleontología, 20 (1), 7-13. ISSN 0213-6937. ABSTRACT Rare but well preserved repeatedly dichotomised leaves, apparently in a single plane, are identifi ed with Dicrano- phyllum, an unusual gymnosperm attributed to a special order, the Dicranophyllales. The specimens recorded here from the “Fern Ledges” at Saint John, New Brunswick are from lower Westphalian (Langsettian) strata, which is a low horizon for this genus, which is best known from the Stephanian and Lower Permian. Comparison is made with various species described from the Carboniferous in Europe. Keywords: Dicranophyllum, Langsettian, New Brunswick, Nova Scotia. RESUMEN Se han hallado ejemplares aislados con hojas que se dicotomizan repetidamente en lo que parece ser un solo plano en estratos del Westfaliense inferior (Langsettiense) de los “Fern Ledges” en Saint John, Nueva Brunswick. Estos ejemplares se han atribuido al género Dicranophyllum, una gimnosperma del orden de las Dicranophy llales. Se trata de un registro antiguo para este género, que se conoce sobre todo en materiales del Estefaniense y del Pérmico Inferior. Se compara con varias de las especies descritas del Carbonífero de Europa.
    [Show full text]
  • Ancient Noeggerathialean Reveals the Seed Plant Sister Group Diversified Alongside the Primary Seed Plant Radiation
    Ancient noeggerathialean reveals the seed plant sister group diversified alongside the primary seed plant radiation Jun Wanga,b,c,1, Jason Hiltond,e, Hermann W. Pfefferkornf, Shijun Wangg, Yi Zhangh, Jiri Beki, Josef Pšenickaˇ j, Leyla J. Seyfullahk, and David Dilcherl,m,1 aState Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China; bCenter for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China; cUniversity of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China; dSchool of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; eBirmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; fDepartment of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19104-6316; gState Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China; hCollege of Paleontology, Shenyang Normal University, Key Laboratory for Evolution of Past Life in Northeast Asia, Ministry of Natural Resources, Shenyang 110034, China; iDepartment of Palaeobiology and Palaeoecology, Institute of Geology v.v.i., Academy of Sciences of the Czech Republic, 165 00 Praha 6, Czech Republic; jCentre of Palaeobiodiversity, West Bohemian Museum in Plzen, 301 36 Plzen, Czech Republic; kDepartment of Paleontology, Geozentrum, University of Vienna, 1090 Vienna, Austria; lIndiana Geological and Water Survey, Bloomington, IN 47404; and mDepartment of Geology and Atmospheric Science, Indiana University, Bloomington, IN 47405 Contributed by David Dilcher, September 10, 2020 (sent for review July 2, 2020; reviewed by Melanie Devore and Gregory J.
    [Show full text]
  • The Classification of Early Land Plants-Revisited*
    The classification of early land plants-revisited* Harlan P. Banks Banks HP 1992. The c1assificalion of early land plams-revisiled. Palaeohotanist 41 36·50 Three suprageneric calegories applied 10 early land plams-Rhyniophylina, Zoslerophyllophytina, Trimerophytina-proposed by Banks in 1968 are reviewed and found 10 have slill some usefulness. Addilions 10 each are noted, some delelions are made, and some early planls lhal display fealures of more lhan one calegory are Sel aside as Aberram Genera. Key-words-Early land-plams, Rhyniophytina, Zoslerophyllophytina, Trimerophytina, Evolulion. of Plant Biology, Cornell University, Ithaca, New York-5908, U.S.A. 14853. Harlan P Banks, Section ~ ~ ~ <ltm ~ ~-~unR ~ qro ~ ~ ~ f~ 4~1~"llc"'111 ~-'J~f.f3il,!"~, 'i\'1f~()~~<1I'f'I~tl'1l ~ ~1~il~lqo;l~tl'1l, 1968 if ~ -mr lfim;j; <fr'f ~<nftm~~Fmr~%1 ~~ifmm~~-.mtl ~if-.t~m~fuit ciit'!'f.<nftmciit~%1 ~ ~ ~ -.m t ,P1T ~ ~~ lfiu ~ ~ -.t 3!ftrq; ~ ;j; <mol ~ <Rir t ;j; w -.m tl FIRST, may I express my gratitude to the Sahni, to survey briefly the fate of that Palaeobotanical Sociery for the honour it has done reclassification. Several caveats are necessary. I recall me in awarding its International Medal for 1988-89. discussing an intractable problem with the late great May I offer the Sociery sincere thanks for their James M. Schopf. His advice could help many consideration. aspiring young workers-"Survey what you have and Secondly, may I join in celebrating the work and write up that which you understand. The rest will the influence of Professor Birbal Sahni. The one time gradually fall into line." That is precisely what I did I met him was at a meeting where he was displaying in 1968.
    [Show full text]
  • Phlorotannins from Undaria Pinnatifida Sporophyll: Extraction, Antioxidant, and Anti-Inflammatory Activities
    Agricultural and Biosystems Engineering Publications Agricultural and Biosystems Engineering 7-24-2019 Phlorotannins from Undaria pinnatifida Sporophyll: Extraction, Antioxidant, and Anti-Inflammatory Activities Xiufang Dong Dalian Polytechnic University Ying Bai Dalian Polytechnic University Zhe Xu Dalian Polytechnic University Yixin Shi Dalian Polytechnic University Yihan Sun Dalian Polytechnic University See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/abe_eng_pubs Part of the Amino Acids, Peptides, and Proteins Commons, Bioresource and Agricultural Engineering Commons, and the Marine Biology Commons The complete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ abe_eng_pubs/1147. For information on how to cite this item, please visit http://lib.dr.iastate.edu/howtocite.html. This Article is brought to you for free and open access by the Agricultural and Biosystems Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Agricultural and Biosystems Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Phlorotannins from Undaria pinnatifida Sporophyll: Extraction, Antioxidant, and Anti-Inflammatory Activities Abstract Undaria pinnatifida sporophyll (U. pinnatifida) is a major byproduct of U. pinnatifida (a brown algae) processing. Its phenolic constituents, phlorotannins, are of special interest due to their
    [Show full text]
  • Diversity and Evolution of the Megaphyll in Euphyllophytes
    G Model PALEVO-665; No. of Pages 16 ARTICLE IN PRESS C. R. Palevol xxx (2012) xxx–xxx Contents lists available at SciVerse ScienceDirect Comptes Rendus Palevol w ww.sciencedirect.com General palaeontology, systematics and evolution (Palaeobotany) Diversity and evolution of the megaphyll in Euphyllophytes: Phylogenetic hypotheses and the problem of foliar organ definition Diversité et évolution de la mégaphylle chez les Euphyllophytes : hypothèses phylogénétiques et le problème de la définition de l’organe foliaire ∗ Adèle Corvez , Véronique Barriel , Jean-Yves Dubuisson UMR 7207 CNRS-MNHN-UPMC, centre de recherches en paléobiodiversité et paléoenvironnements, 57, rue Cuvier, CP 48, 75005 Paris, France a r t i c l e i n f o a b s t r a c t Article history: Recent paleobotanical studies suggest that megaphylls evolved several times in land plant st Received 1 February 2012 evolution, implying that behind the single word “megaphyll” are hidden very differ- Accepted after revision 23 May 2012 ent notions and concepts. We therefore review current knowledge about diverse foliar Available online xxx organs and related characters observed in fossil and living plants, using one phylogenetic hypothesis to infer their origins and evolution. Four foliar organs and one lateral axis are Presented by Philippe Taquet described in detail and differ by the different combination of four main characters: lateral organ symmetry, abdaxity, planation and webbing. Phylogenetic analyses show that the Keywords: “true” megaphyll appeared at least twice in Euphyllophytes, and that the history of the Euphyllophytes Megaphyll four main characters is different in each case. The current definition of the megaphyll is questioned; we propose a clear and accurate terminology in order to remove ambiguities Bilateral symmetry Abdaxity of the current vocabulary.
    [Show full text]
  • 81 Vascular Plant Diversity
    f 80 CHAPTER 4 EVOLUTION AND DIVERSITY OF VASCULAR PLANTS UNIT II EVOLUTION AND DIVERSITY OF PLANTS 81 LYCOPODIOPHYTA Gleicheniales Polypodiales LYCOPODIOPSIDA Dipteridaceae (2/Il) Aspleniaceae (1—10/700+) Lycopodiaceae (5/300) Gleicheniaceae (6/125) Blechnaceae (9/200) ISOETOPSIDA Matoniaceae (2/4) Davalliaceae (4—5/65) Isoetaceae (1/200) Schizaeales Dennstaedtiaceae (11/170) Selaginellaceae (1/700) Anemiaceae (1/100+) Dryopteridaceae (40—45/1700) EUPHYLLOPHYTA Lygodiaceae (1/25) Lindsaeaceae (8/200) MONILOPHYTA Schizaeaceae (2/30) Lomariopsidaceae (4/70) EQifiSETOPSIDA Salviniales Oleandraceae (1/40) Equisetaceae (1/15) Marsileaceae (3/75) Onocleaceae (4/5) PSILOTOPSIDA Salviniaceae (2/16) Polypodiaceae (56/1200) Ophioglossaceae (4/55—80) Cyatheales Pteridaceae (50/950) Psilotaceae (2/17) Cibotiaceae (1/11) Saccolomataceae (1/12) MARATTIOPSIDA Culcitaceae (1/2) Tectariaceae (3—15/230) Marattiaceae (6/80) Cyatheaceae (4/600+) Thelypteridaceae (5—30/950) POLYPODIOPSIDA Dicksoniaceae (3/30) Woodsiaceae (15/700) Osmundales Loxomataceae (2/2) central vascular cylinder Osmundaceae (3/20) Metaxyaceae (1/2) SPERMATOPHYTA (See Chapter 5) Hymenophyllales Plagiogyriaceae (1/15) FIGURE 4.9 Anatomy of the root, an apomorphy of the vascular plants. A. Root whole mount. B. Root longitudinal-section. C. Whole Hymenophyllaceae (9/600) Thyrsopteridaceae (1/1) root cross-section. D. Close-up of central vascular cylinder, showing tissues. TABLE 4.1 Taxonomic groups of Tracheophyta, vascular plants (minus those of Spermatophyta, seed plants). Classes, orders, and family names after Smith et al. (2006). Higher groups (traditionally treated as phyla) after Cantino et al. (2007). Families in bold are described in found today in the Selaginellaceae of the lycophytes and all the pericycle or endodermis. Lateral roots penetrate the tis detail.
    [Show full text]
  • Synoptic Taxonomy of Major Fossil Groups
    APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida
    [Show full text]
  • Reproductive Morphology
    Week 3; Wednesday Announcements: 1st lab quiz TODAY Reproductive Morphology Reproductive morphology - any portion of a plant that is involved with or a direct product of sexual reproduction Example: cones, flowers, fruits, seeds, etc. Basic Plant Life cycle Our view of the importance of gametes in the life cycle is shaped by the animal life cycle in which meiosis (the cell division creating haploid daughter cells with only one set of chromosomes) gives rise directly to sperm and eggs which are one celled and do not live independently. Fertilization (or the fusion of gametes – sperm and egg) occurs inside the animal to recreate the diploid organism (2 sets of chromosomes). Therefore, this life cycle is dominated by the diploid generation. This is NOT necessarily the case among plants! Generalized life cycle -overhead- - alternation of generations – In plants, spores are the result of meiosis. These may grow into a multicellular, independent organism (gametophyte – “gamete-bearer”), which eventually produces sperm and eggs (gametes). These fuse (fertilization) and a zygote is formed which grows into what is known as a sporophyte - “spore-bearer”. (In seed plants, pollination must occur before fertilization! ) This sporophyte produces structures called sporangia in which meiosis occurs and the spores are released. Spores (the product of meiosis) are the first cell of the gametophyte generation. Distinguish Pollination from Fertilization and Spore from Gamete Pollination – the act of transferring pollen from anther or male cone to stigma or female cone; restricted to seed plants. Fertilization – the act of fusion between sperm and egg – must follow pollination in seed plants; fertilization occurs in all sexually reproducing organisms.
    [Show full text]
  • Type of the Paper (Article
    life Article Dynamics of Silurian Plants as Response to Climate Changes Josef Pšeniˇcka 1,* , Jiˇrí Bek 2, Jiˇrí Frýda 3,4, Viktor Žárský 2,5,6, Monika Uhlíˇrová 1,7 and Petr Štorch 2 1 Centre of Palaeobiodiversity, West Bohemian Museum in Pilsen, Kopeckého sady 2, 301 00 Plzeˇn,Czech Republic; [email protected] 2 Laboratory of Palaeobiology and Palaeoecology, Geological Institute of the Academy of Sciences of the Czech Republic, Rozvojová 269, 165 00 Prague 6, Czech Republic; [email protected] (J.B.); [email protected] (V.Ž.); [email protected] (P.Š.) 3 Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha 6, Czech Republic; [email protected] 4 Czech Geological Survey, Klárov 3/131, 118 21 Prague 1, Czech Republic 5 Department of Experimental Plant Biology, Faculty of Science, Charles University, Viniˇcná 5, 128 43 Prague 2, Czech Republic 6 Institute of Experimental Botany of the Czech Academy of Sciences, v. v. i., Rozvojová 263, 165 00 Prague 6, Czech Republic 7 Institute of Geology and Palaeontology, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic * Correspondence: [email protected]; Tel.: +420-733-133-042 Abstract: The most ancient macroscopic plants fossils are Early Silurian cooksonioid sporophytes from the volcanic islands of the peri-Gondwanan palaeoregion (the Barrandian area, Prague Basin, Czech Republic). However, available palynological, phylogenetic and geological evidence indicates that the history of plant terrestrialization is much longer and it is recently accepted that land floras, producing different types of spores, already were established in the Ordovician Period.
    [Show full text]