Ii 7.Project Title - Short (Stay Within Brackets) 18

Total Page:16

File Type:pdf, Size:1020Kb

Ii 7.Project Title - Short (Stay Within Brackets) 18 AOENCY FOR INTERNATIONAL OCVCt,OPMENT IaTIAPPROT IATE BOX)1 PROJECT PAPER FACESHEET ORIGINAL CAKCP TO BE COrPLETED BY OI GINATIN, OFICE "ADD DILETL 3 2. COUNTRY/REGIONAL ENTI7Y/GRANTEE 13 O02CUMEN1 REVISIC4 NV,. Yemen -'r'abC Republic '. PROJECT NJfER 5. BUREAU o 6. ESTIMATED FY OF PROJECT COMPLETION A, ZYM450L CODE 279-0052 . 03 FY II 7.PROJECT TITLE - SHORT (STAY WITHIN BRACKETS) 18. ESTIMATED FY OF AUTHORIZATIO/OBLIGATION F-Agriculture MOo YRo Dev. Support A. INITIAL 1 8 1 a. IFIAL FY _Ig Horticulture Improvement & Trnz. 9. SECOIDARY TECHNICAL COOLS (HAX. MjLM SIX CODES IOF THREE POSITIONSI EACH) I 0. ESTIMATED TOTAL COST ($000 OR EQUIVALENT, $ I -$) A. PRG,AM INAI IIG FIRST YEAR ALL YEARS A. PI Ca L/C 0. TOTAL E. FX F. L/C G. TOTAL ..1D APPROPRIATED TOTAL 2_003 1 46 3-468 10,378 4,007 14,385 (GRANT) (2,003) (! 465 ( 3,468 ) (10,378) ( 4,007 ) (14,385) (.OAN) (- ) - )( I( -- ) L- L L 3T GOVERNWENT 1,685 1,685 - 4,430 4,430 C T'-ER DONOR ,S) TOTALS 2,003 3,150 5,153 10,378 8,1437 18,815 If.ESTIf/TED OSTS/A Q APPROPRIf .. Ds ($OO,} L! P)-1 PR IMAJ~ r, ,A"IOQ.jIPURPOCE TECH. L A CCO .'COE -CODE D. GRAN E. LOAN or.rA , G. LOAN H_ GRANT1 I LOAN j- QR -J04 1-_LOAN - " 44__rO8 2,240 _, 999 i14,38_ E3 URESt4 r Oj-_CT >,17- (3) (!!TAY WITHIN SIACKETS CHECK IF o FiERENT rROM PID/PRP F-- -naz' tionalize hin the .A- an expanded capacity to sun­ oor- -'neased fruit production throuh extension, plant protection and the delivery of disease free planting stock of improved fruit variez~ies to the fruit subsector which comprises large numbers of small farmers. L I W O7E CrIAtGES 'ADE IN THE PID/PRP FACESHEFT DATA NOT INCLUDED ABOVE? IF YES, ATTACH CHANGED P1) A:!D/OR PRP FACESHEET. r-i Ys [No 15. OR!GINATr_ OC'FICE CLEARANCE 16. DATC" R.CEIVED 'IN AID/W, 3IGNATURE .OR FOR AIDA' DOCUMCNTS, nare.... rc_''L-. r - -/ . "--.... DATE OV DISTRIBuTION TL: -- DATE SIGNED .issior.s Director MO 237_ ____ ____e__ ___e__n__q4__1____ DAY YR.1YR. ___ 10,10J.9 AY !2 T1s SUBPROJECT PAPER / HORTICULTURE IMPROVEMENT AND TRAINING AGRICULTURE DEVELOPMENT SUPPORT 279-0052 YEMEN U.S. Agency for International Development anaa Yemen and Consortium for International Development September 1982 U . ... *.* l - oo.w.. -.. * I1. TRANSACTION coat. a . 61 2. 0CJAJI PROJECT PAPER FACESHEET ,. c,.,i, z '. 3. COUNTR' 9.Ml1VTI OOCUNST RIVISIOWMUM6 YE ARAB REPUBLIC 5. PWJ Wr.r NUMse(7 oteps. Go BUIM.AU:*OrVlCE 7. POQJI6CT Tl'T71.K frbmmm 40 cham la) -- evelpment- .__ 279-0052_ -9 oosC_2 * -- a.Cog]COO ___________________.s__-__&ricu1ta 16 CSTIN&TZO PY OF P7qOJ4CT COMq .ETIOCI 2. 2s'rgTMAME CA.Tt OF 0I9.IGA-IIQN A O9pT ff.# LJA IL X. -T1 .J.atq C. WI, AL. WY 19 1 t ra 1. 2. L 5000 00 EQUIVAt.9NT SI - s0. eSTIMA.TEI? .5TS OF WgqJ(C?_______ plS'v 79 _l__ L.AlFE g OFw " JC V P _ _ _ I A. PUN* ING SOU RifCIE C, .. .. " g C,.__ o. -r'____.__ ­ -m-l, 1,2001 1 v 1,200 :52,746, ' , ' 5 . - 1Z. I . iii - oo-- AN £40I- A2NPWIVK 1 /-0 52-.746 A_10_027 1 . MOST ______,_00 S -,.o -jlO' 007 lrFN - I{ 1,00 - 4,321 6."85 Z­ - *2 - 10 18 L 120 : - * 402'J00-- ;....1.8 __.____._V{. !,cc200,~ O 1 - __6_85 _ -_14__ "I.o !-r8. S 2'504-81 ; -- I _ _ IIIA 3tl:N :1 ;: 2S A -,-A-, CAi. eSbrjcs , I/ InlddCrII PutyadHriul ~ 8 . 3' -' IUJC 0 t8! FN " 10,109; - 11,423 - 52,746t ­ 1/ Included Core, bh, Poultr__y and Horticulture Subprojects. "+ Acting Mission _rector A': "-Z.':" I 0 * USAID/Yemen .. i.: **, I S0! 8 '24'8 12~ , i! I .. :+ i • • ..... 1.. TRNSCTO ,O 46410% VOW INT9WNtArIQtAj 0tV96i111,04M.tr U . C CA G"" PROJECT PAPER FACESHEET A D.Kt 1 .3 s. co0uN?3"YvM.Tr' YMNARAB REPUBLIC! 4, DOCUMENT NEVISION NUMaI, .. L.PQQQ IEgr MuM gg9j*e,. gl 4 ) 6. 1U CAU,'OrlICE T. PmJ C? TIL.E '.wesamm44 chgam lim) A. -MS,O I s 9coo AG.DEV.SUPPORT - HORTIC.LTEE . -- 1 C:279-002 N C03 L-. n-_P. &TRG. U. CSTIMATED VY 0" PMJ6C.T COMPi6ETION 9. ESTIMATED DATEK P0 OLIATION, A IMNII .v 1,8 121I s QUARYCR 0 C. PN"Al- 18 19 (&4 ett. 2. 3. ora4 . 10. ESTIMATIE..ZOSTS SOOO On EUIvAt..]MT S1 - I A. FUNDING SOURCE IlRST Irv - L__ OF PROJECT 0. prx €C 0. TOTAL. C % 0 6'C G,-" r-at. A______O__o_.__ _o__._ 250 250 300 1 10,000 4,0000 0 0 '=.",250 220 i ,E: 500 1 :10,0001 1 4,000 , , 140O .J AN! r -- I ( - I -- ) - ) I g *.-- 0Th(W.t _--__ _ _ _ __ _ _ ­ -.- u - I - I - - _ MOsr COUNRV 1-1000 1,000 - -_4. 000 4 000 OTua COMO-IS) f -- TOTALS 250 1,250 1,500 10 , 000 8,000 i" ,'_I. PROPOSED GUCG"r 7- OAPuq'-,A'o rU S S0002 A. APPRO. S. PRIMARY 'ClIMARY ricm. coo g Si VYL2 . 3119 r' ,mWIAtON JUMIIOSE L Coot•2 UNW4OSE Apo . MN- OMA4 J.. 6 OAN 6. ZMAN? %, 6OAN *, FN I B115 I 070) - 500 40004,- j - 2, 42 --- ,L uu 4,009 j 2,500 ­ 1 12. IH-Oa SlI E U .­ £ ACupaI4tN 4 Ir_ S:.5.:8 sF OF P06JECT UAriomscmeouLl FN 2,500 - 1,600 14,0001I 45 - - ; 2,500 - 1,600 - 14,0001 i *3 -&a • '4 A~,--• 10EZ4E--------- UU~A E .- - - •-. k . I& OR is OR IN PO 2 ,- A1C 's 'P J:CR 4O/ OCU S. .5mA ' q.7 ­ uM4TS. gATE CF OISTRIOUTIO '4 Acting Missft~n Director USAID/Yemen . 8 . -. :8.1 z ____________ __ __ __ '"__ *- .... .. 2..' :. SUBPROJECT PAPER for the HORTICULTURE ThPROVEmEw AND TRAINING SUBPROJECT (HITS) in the YEMEN ARAB REPUBLIC Prepared by: Consortium for International Development (CID) For: The U.S. Agency for International Development ugust 1982 TABLE OF CONTENTS Page Project Development Team. ......................... iv Acronyms ...... ..... ...... ...... ..... v List of Tables. ......................... vi List of Figures . ... vii Hap ..... ... ... ................................. viii Glossary of Horticultural Terms .................. ix I. SUMMARY A. Overview.............. ........ 1 1. Recommendation............. ........... 1 a. Authorization .. ....................... 1 b. Approval of Source-Orgin Waiver ..... .......... 1 2. Duration........... ........................ 1 3. Purpose ....... .................. .. 1 4. Justification, ..... ...................... 1 5. Method of Implementation ................ 1 6. Life-of-Project Cost . ............... 2 7. Exchange Rate .......... ..................... 2 8. Environmental Recommendation ...... .............. 2 B. SPID and Other Design Issues............... 2 1. Project Focus and Increase in AID Contribution........ 2 2. Micro-macroeconomic Analyses ...... .............. 3 3. Water Availability. ................... 3 4. Production Versus Importation of Seedlings. ....... 4 5. Lessons Learned from Previous Project ........... 4 6. Alternative Extension Approaches ...... ............ 5 7. Identification of Beneficiaries ...... ............ 5 8. Relationship to Other Projects ...... ............. 6 9. Financing of Extension Services from Sale of Seedlings ................................. 6 10. Ultimate Authority for HITS Stations ..... .......... 7 II. BACKGROUND AND SETTING.......... ..................... 7 A. Background........... ......................... 7 B. Constraints to Increasing Fruit Production.... ......... 8 C. Previous AID Support in Horticulture ...... ............ 9 D. Relationship to Development Strategy...... ............ 10 i III. Detailed Project Description.................. 11 A. Purpose . .. 11 B. Horticulture Improvement and Training Station ........ 12 1. Tropical-Subtropical Horticulture Station . .. 13 2. Deciduous Horticulture Station ............ .. 14 C. Plant Protection Program. .. .. .. .. 16 1. Training.................. 16 2. Label-' g . 16 3. Lega. Implications ..................... 17 4. Administration.................. .. 17 5. Inspection and Quarantine ................. 17 6. Pests and Diseases....... 17 D. Training and Extension. .. .. .... ..... 17 1. Informal Training . ............ 18 a. Extension Agents and Agriculture Technicians. 18 b. Nurserymen....... .......... 21 c. Farmers ..... ..................... 21 2. Formal Training ...... ................... 21 a. Horticultural and Plant Protection Extension Specialists ...... .............. 21 b. Horticultural and Plata Protection Professionals...... .................. 22 c. Agricultural Inspectors..... ........... 22 E. Information Production and Distribution ............ ... 22 IV. PROJECT ANALYSES ....... ........................ ... 25 A. Technical Analyses..... ..................... .... 25 1. Background....... ...................... 25 a. Climate ................................ 25 b. Tree Fruits and Vitaculture ... ............ .. 25 c. Constraints to Expansion of Fruit Culture . .. 26 2. The Project ..... .. ...................... .. 27 a. HITS Stations ..... .. ................. ... 27 b. Plant Protection Program..... .............. 32 c. Training...... ...................... ... 36 d. Communications and Use of Media ............ ... 36 3. Conclusion ....... ....................... ... 37 ii B. Social Considerations ..... ................... ... 40 1. Beneficiaries .......... ..................... 40 2. Insuring Small Scale Farmer Participation . 41 3. Water Constraint..... .................... 42 4. Extension Approach..................... 42 5. Role of Women ..... .. ..................... 42 6. Agricultural Sociology. 43 7. Lack of Confidence in New Technology............... 43 C. Economic and Recurrent Cost Analyses. ............ 43 1. Fruit Production and Consumption............... ... 44 2. Fruit Marketing ................... ..... 44 3. Profitability of Fruit Production . .. .. ... 44 4. Policy Considerations ................. 46 5. Macro-economic Impact ........ ........ 46 6. Recurrent Cost Implications .... .............. 48 7. Data Collection andAnalysis. .......... 48 a. Farmers' Costs and Returns. .......... 49 b. Marketing ..... ..................... 49 c. Research Implementation
Recommended publications
  • Identification and Management of the Asian Citrus Psyllid and Citrus Greening Disease in Texas Nurseries
    E-597 5/12 x Identification and Management of the Asian Citrus Psyllid and Citrus Greening Disease in Texas Nurseries Carlos E. Bográn, Citrus greening, also known as Huanglongbing (HLB) or yellow dragon Raul T. Villanueva, disease, is the most important threat to citrus production worldwide. The and Mamoudou Setamou disease devastates citrus plants, reducing fruit yield and quality, and killing the plants in as little as 2 years. Citrus greening diseases is caused by bacteria that can live and multiply in the plant’s vascular system (phloem). The bacteria are carried by the Asian citrus psyllid, Diaphorina citri, and may be transmitted when insects feed on healthy plants. The bacteria can also spread during grafting plants with infected plant material. Once restricted to China and South Africa, HLB has spread rapidly in recent years and now occurs in: • The United States: Florida, South Carolina, Georgia, Louisiana, Texas, California • Mexico: Nayarit, Colima, Jalisco, the Yucatan peninsula • Jamaica • Puerto Rico • Virgin Islands • Brazil. As of January 13th, 2012 the first known case of HLB was confirmed in Texas on a Rio Grande Valley orange tree in Hidalgo County. Currently there is no cure for citrus greening disease; the best control strategy is to keep healthy plants from being infected. One of the most effective ways to prevent the disease is to avoid moving plants and plant materials from areas under regulatory quarantine or where the insect or disease is present. * Associate Professor and Extension To avoid or minimize the impact of the disease, use an integrated Specialist–Entomology/Plant Pathology approach: use only certified-clean plant stock; monitor plants regularly to and Microbiology, Assistant Professor and Extension Entomologist, Texas detect and control any population of Asian citrus psyllid; if you suspect HLB, AgriLife Extension; Research Scientist, send a sample of the foliage to the appropriate diagnostic laboratory; and Texas Agrilife Research, The Texas A&M System remove and destroy trees that are confirmed infected with HLB.
    [Show full text]
  • Citrus Industry Biosecurity Plan 2015
    Industry Biosecurity Plan for the Citrus Industry Version 3.0 July 2015 PLANT HEALTH AUSTRALIA | Citrus Industry Biosecurity Plan 2015 Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2004 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2004) Industry Biosecurity Plan for the Citrus Industry (Version 3.0 – July 2015). Plant Health Australia, Canberra, ACT. Disclaimer: The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific and independent professional advice.
    [Show full text]
  • Fruit)From Wikipedia, the Free Encyclopedia Jump To: Navigation, Search This Article Is About the Fruit
    Orange (fruit)From Wikipedia, the free encyclopedia Jump to: navigation, search This article is about the fruit. For the colour, see Orange (colour). For other uses, see Orange (disambiguation). "Orange trees" redirects here. For the painting by Gustave Caillebotte, see Les orangers. This article needs attention from an expert in botany. The specific problem is: Some information seems imprecise and some sources may be outdated. See the talk page for details. WikiProject Botany (or its Portal) may be able to help recrui t an expert. (November 2012) Orange Orange blossoms and oranges on tree Scientific classification Kingdom: Plantae (unranked): Angiosperms (unranked): Eudicots (unranked): Rosids Order: Sapindales Family: Rutaceae Genus: Citrus Species: C. × sinensis Binomial name Citrus × sinensis (L.) Osbeck[1] The orange (specifically, the sweet orange) is the fruit of the citrus species C itrus × ?sinensis in the family Rutaceae.[2] The fruit of the Citrus sinensis is c alled sweet orange to distinguish it from that of the Citrus aurantium, the bitt er orange. The orange is a hybrid, possibly between pomelo (Citrus maxima) and m andarin (Citrus reticulata), cultivated since ancient times.[3] Probably originating in Southeast Asia,[4] oranges were already cultivated in Ch ina as far back as 2500 BC. Arabo-phone peoples popularized sour citrus and oran ges in Europe;[5] Spaniards introduced the sweet orange to the American continen t in the mid-1500s. Orange trees are widely grown in tropical and subtropical climates for their swe et fruit,
    [Show full text]
  • Improvement of Subtropical Fruit Crops: Citrus
    IMPROVEMENT OF SUBTROPICAL FRUIT CROPS: CITRUS HAMILTON P. ÏRAUB, Senior Iloriiciilturist T. RALPH ROBCNSON, Senior Physiolo- gist Division of Frnil and Vegetable Crops and Diseases, Bureau of Plant Tndusiry MORE than half of the 13 fruit crops known to have been cultivated longer than 4,000 years,according to the researches of DeCandolle (7)\ are tropical and subtropical fruits—mango, oliv^e, fig, date, banana, jujube, and pomegranate. The citrus fruits as a group, the lychee, and the persimmon have been cultivated for thousands of years in the Orient; the avocado and papaya were important food crops in the American Tropics and subtropics long before the discovery of the New World. Other types, such as the pineapple, granadilla, cherimoya, jaboticaba, etc., are of more recent introduction, and some of these have not received the attention of the plant breeder to any appreciable extent. Through the centuries preceding recorded history and up to recent times, progress in the improvement of most subtropical fruits was accomplished by the trial-error method, which is crude and usually expensive if measured by modern standards. With the general accept- ance of the Mendelian principles of heredity—unit characters, domi- nance, and segregation—early in the twentieth century a starting point was provided for the development of a truly modern science of genetics. In this article it is the purpose to consider how subtropical citrus fruit crops have been improved, are now being improved, or are likel3^ to be improved by scientific breeding. Each of the more important crops will be considered more or less in detail.
    [Show full text]
  • New Disease-Resistant Rootstocks Urgently Neededby Citrus Growers
    FLORIDA STATE HORTICULTURAL SOCIETY 201 20 years of age before they bloomed in North recent plantings of this Rhodesian mahogany ern Rhodesia, Africa. in southern and south central parts of Florida The mother mahogany tree in Miami, which show that young seedlings of this species have is approximately 20 years old, probably came survived frosts, hurricanes, and dry weather from one of Dr. W. L. Thompson's numerous when planted in hammocks, but have not been introductions of Khaya nyasica seed from Mt. able to fare for themselves under exposed Silinda, Southern Rhodesia, the earliest intro conditions in the open. If these trees can sur duction being received in 1902 (1). This tree vive and reproduce themselves under South in the Miami City Cemetery most likely came Florida conditions, as at least one tree has from Plant Introduction No. 59293 of Dr. done to date, there may well be possibilities Thompson's which arrived in Washington, D. for this new tree crop in this hemisphere. C, April 19, 1924. 1. Lynch, S. J., and H. S. Wolfe. Khaya The Khaya nyasica plantings among Carib nyasica, a new mahogany for South Florida. bean pine at the Sub-Tropical Experiment Sta Proc. Florida State Hort. Soc. 55:113-116, 1942. tion (2) continue to show promise, as well as 2. Lynch, S. J., and H. S. Wolfe. Future plantings at the Dade County nursery on Red may see mahogany forests in Florida. Florida Road, Coconut Grove, Miami, Florida. More Grower, August, 1942. NEW DISEASE-RESISTANT ROOTSTOCKS URGENTLY NEEDED BY CITRUS GROWERS WALTER T.
    [Show full text]
  • The Notice of Treatment for the Asian Citrus Psyllid
    CALIFORNIA DEPARTMENT OF FOOD AND AGRICULTURE OFFICIAL NOTICE FOR BAKERSFIELD, KERN COUNTY PLEASE READ IMMEDIATELY THE NOTICE OF TREATMENT FOR THE ASIAN CITRUS PSYLLID On November 1, 2019, the California Department of Food and Agriculture (CDFA) confirmed the presence of Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, a harmful exotic pest, in the city of Bakersfield, Kern County. This detection indicate that a breeding population exists in the area. The devastating citrus disease Huanglongbing (HLB) is spread by the feeding action of ACP. The ACP infestation is sufficiently isolated and localized to be amenable to the CDFA’s ACP treatment work plan. A Program Environmental Impact Report (PEIR) has been certified which analyzes the ACP treatment program in accordance with Public Resources Code, Sections 21000 et seq. The PEIR is available at http://www.cdfa.ca.gov/plant/peir/. The treatment activities described below are consistent with the PEIR. In accordance with integrated pest management principles, CDFA has evaluated possible treatment methods and determined that there are no physical, cultural, or biological control methods available to eliminate the ACP from this area. Notice of Treatment is valid until November 1, 2020, which is the amount of time necessary to determine that the treatment was successful. The treatment plan for the ACP infestation will be implemented within a 50-meter radius of each detection site, as follows: • Tempo® SC Ultra (cyfluthrin), a contact insecticide for controlling the adults and nymphs of ACP, will be applied from the ground using hydraulic spray equipment to the foliage of host plants; and • Merit® 2F or CoreTect™ (imidacloprid), a systemic insecticide for controlling the immature life stages of ACP, will be applied to the soil underneath host plants.
    [Show full text]
  • The Effects of Virus and Viruslike Diseases on Citrus Production In
    -11- The Effects of Virus and Viruslike Diseaseson Citrus Productionin Florida S. M. Garnsey Summary Florida hasnot experiencedas much devastatinginjury from virus diseasesas many citrus-growingareas; however, tristeza, psorosis, exocortis, and xyloporosis have all been damaging. Tristela continues to be a major problem, but psorosis, xylopo- rosis, and exocortis are now controllable. Sewral other viruses have been described, but are not widely distributed. New dis- eases,including a stem-pitting disorder of 'Milam' (Citrus jambhiri Lush. hybrid?) and some tangerine hybrids (Citrus paradisi Macf. X Citrus reticulata Blanco), are appearing. Several viruses haw been discowred by inoculating herbaceous plants, but relationship of these viruses to specific diseaseshas not been established. Introduction of new citrus varieties, rapid shifts in rootstocks, and rapidly changing production practices will contribute to future problems. Vigorous researdt and regulatory programs will be needed in responseto existing and future problems. Introduction Strictlydefined, virus diseasesare causedby small, infectious nucleoproteins.Commonly, however, infectious citrus dis- easesnot obviouslycaused by fungi, bacteria,or nematodesare called "virus" diseases,although me identity of the causal agentis often unknown. This broaderdefinition will be retainedin this paperso that the necessarytopics can be covered. Emphasiswill be placedon diseaseeffects, not on propertiesof the causalagent. Somediseases that will be covered,haw beencalled virus diseases,but are now known to haveother causalagents. Examplesare exocortis, caused by a small, naked, infectious nucleicacid, pro~sionally calleda viroid or pathogene(41,42), and stubborn,which hasbeen associated with a mycoplasmalike organismmuch largerand more complex than a true virus (3, 11). Young tree decline(YTO) and sandhill decline(SH 0), which are very similar to the older and alsounsolved decline problem called blight (30),are cowred specific- ally by other authorsand will be treated only briefly in this paper.
    [Show full text]
  • Boxwood Blight
    Boxwood Blight Calonectria pseudonaviculata (aka Cylindrocladium pseudonaviculatum) AGRICULTURE/WEIGHTS & MEASURES Hosts • Buxus species: -Some are very susceptible -Some are tolerant, but can carry fungus. • Pachysandra procumbens, P. terminalis (Japanese spurge) • Sarcococca spp. (sweet box) Conditions • Can survive in fallen leaves for up to 5 years. • Produces spores in a sticky, slimy matrix when environment becomes suitable 77 • Needs high humidity or free water. 64 • Infection occurs quickly in warm (64°F to 77°F), wet conditions. • No infections occur below 43°F. Young leaves can become infected at 54°F if wet for at least 48 hours. Transmission • Short-distance: water or rain splash • Contaminated equipment/shoes/clothing • Infected nursery stock • Infected plant debris/mulch/soil • Insects, birds • Spores unlikely to travel long distances by wind alone. Symptoms (images from pnwhandbooks.org) Spots on both leaves and stems -Luisa Santamaria, 2012 Dark or light brown spots on leaves, often in a circular or zonate pattern. -OSU Plant Clinic Image, 2014 Lesions of various shapes on the leaves. -Karl Puls, Oregon Department of Agriculture, 2011. Whole leaves and stems can become blighted. -OSU Plant Clinic Image, 2013. Stem with lesions and defoliation. -Karl Puls, Oregon Department of Agriculture, 2012. • The stem lesions might appear before the leaves look affected. Defoliation of lower branches. -Karl Puls, Oregon Department of Agriculture, 2011 Images from San Mateo County SCOUTING • Inspect the lower and interior canopy for symptoms of the disease. • Be sure to part the plant and examine interior leaves and stems for spots and streaks. • INSPECT and ISOLATE new plants for 3 weeks.
    [Show full text]
  • Citrus Fruits 5
    Citrus fruits 15 CITRUS CULTIVATION IN PUNJAB By H.S. Rattanpal Gurteg Singh Sandeep Singh Anita Arora Department of Fruit Science Punjab Agricultural University Ludhiana - 141 004 First Edition: February 2017 ISBN 978-93-86267-15-3 Published by Additional Director of Communication for Punjab Agricultural University, Ludhiana. Email : [email protected] CONTENTS INTRODUCTION 1 SOIL AND CLIMATE 3 VARIETIES 5 CITRUS NURSERY PRODUCTION 22 PLANTING OF ORCHARD 31 NUTRITION 35 IRRIGATION 45 INTERCROPPING 52 TRAINING AND PRUNING 53 WEED MANAGEMENT 58 HARVESTING AND POST-HARVEST HANDLING 61 OTHER DISORDERS 71 INSECT AND MITE PESTS 76 DISEASES 100 PREPARATION OF DIFFERENT FUNGICIDES 121 This page is intentionally left blank INTRODUCTION The importance of citrus fruits in world’s economy is demonstrated by its wide scale cultivation under tropical and sub-tropical conditions. Citrus has a tremendous socio-economical and cultural impact on the whole society. The multifold nutritional and medicinal values make this fruit indispensible in several parts of the world. Citrus is primarily valued for the fruit, which is either eaten alone as fresh fruit, processed into juice or added to dishes and beverages. At the moment, citrus is being grown in Punjab over 52,836 hectares with annual production of 10,49,977 tonnes. Kinnow mandarin occupies an area of 49,356 hectare with annual production of 10,21,719 tonnes. The agro-ecological conditions of Punjab are best suited for the production of Kinnow mandarin. Kinnow cultivation has proved a boon for the farmers due to its higher economic productivity as compared to other fruit crops. The inherited abiotic stress tolerance in Kinnow came from its mother parent King mandarin make this tropical fruit suitable for the sub-tropical region too.
    [Show full text]
  • Texas Citrus Nursery Stock Certification Manual
    CNSCP: Citrus Nursery Stock Certification Manual 1 Texas Citrus Nursery Stock Certification Manual TEXAS DEPARTMENT OF AGRICULTURE COMMISSIONER SID MILLER http://www.TexasAgriculture.gov AGRICULTURE AND CONSUMER PROTECTION DIVISION Environmental and Biosecurity Programs Citrus Program Citrus Nursery Stock Certification Program, Environmental and Biosecurity Programs CNS 1.0 DRAFT Agriculture and Consumer Protection Division, Texas Department of Agriculture Revised 01/19/2016 CNSCP: Citrus Nursery Stock Certification Manual 2 A. GENERAL 4 I. OVERVIEW 4 II. SCOPE OF THE CITRUS NURSERY STOCK CERTIFICATION PROGRAM 4 III. CITRUS GREENING QUARANTINE 5 B. CERTIFIED CITRUS NURSERY FACILITIES 6 I. STRUCTURE REQUIREMENTS 6 II. CITRUS NURSERY CERTIFICATION 7 III. SANITATION REQUIREMENTS 8 IV. ROOTSTOCK 10 V. CITRUS PROPAGATION REQUIREMENTS 11 C. CITRUS NURSERY STOCK PROPAGATION IN AREAS OF TEXAS OUTSIDE THE CITRUS ZONE 12 I. CITRUS NURSERY STOCK PROPAGATION WITHIN AREAS OF TEXAS OUTSIDE OF THE CITRUS ZONE 12 II. NURSERY FLORAL REQUIREMENTS 12 III. SANITATION REQUIREMENTS 13 IV. LABELING 13 V. TREATMENT REQUIREMENTS 13 VI. MOVEMENT OF CITRUS PLANTS INTO THE CITRUS ZONE OR OUT OF AN AREA QUARANTINED FOR CITRUS GREENING 13 D. FOUNDATION BLOCKS 15 I. DESIGNATION OF A FOUNDATION BLOCK 15 II. ESTABLISHMENT OF A FOUNDATION BLOCK 15 III. ESTABLISHMENT OF A FOUNDATION BLOCK 16 IV. MAINTAINING FOUNDATION BLOCK STATUS 17 V. LABELING AND HANDLING OF BUDWOOD PRODUCED IN FOUNDATION BLOCK 17 VI. FOUNDATION BLOCK AND CERTIFIED BUDWOOD FEES 17 VII. PLAN FOR CERTIFIED BUDWOOD IF FOUNDATION BLOCK IS UNAVAILABLE 18 E. INCREASE TREES AND INCREASE BLOCKS 19 I. INCREASE TREES AND INCREASE BLOCKS 19 F. MONITORING FOR PESTS & DISEASES 22 I.
    [Show full text]
  • IPM in Texas Citrus
    B-6121 6-02 IPM in Texas Citrus Juan R. Anciso J. Victor French Mani Skaria Julian W. Sauls Rodney Holloway IPM in Texas Citrus Juan Anciso Extension Integrated Pest Management Specialist Texas Cooperative Extension, Edinburg, Texas J. Victor French Professor and Citrus Entomologist Texas A&M Kingsville Citrus Center, Weslaco, Texas Mani Skaria Associate Professor and Citrus Plant Pathologist Texas A&M-Kingsville Citrus Center, Weslaco, Texas Julian W. Sauls Professor and Citrus Horticulturist Texas Cooperative Extension, Weslaco, Texas Rodney Holloway Associate Professor and Extension Pesticide Assessment Specialist Texas Cooperative Extension, College Station, Texas All of the Texas A&M University System Juan R. Anciso Editor Mauro Rodriguez Graphic Design and Layout Acknowledgments This publication was made possible by a grant from the Texas Department of Agriculture’s Integrated Pest Management Grant program. Cover photograph is courtesy of the TexaSweet Marketing image catalog. The information given herein is for educational purposes only. References to commercial products or trade names is made with the understanding that no discrimination is intended and no endorsement by Texas Cooperative Extension personnel is implied. © 2002 by Texas Cooperative Extension All rights reserved Contents Integrated Pest Management Citrus History ..............................................................................................................................1 1Pest and Pesticide Challenges ....................................................................................................3
    [Show full text]
  • Citrus Rootstocks: Their Characters and Reactions
    CITRUS ROOTSTOCKS: THEIR CHARACTERS AND REACTIONS (an unpublished manuscript) ca. 1986 By W. P. BITTERS (1915 – 2006) Editor, digital version: Marty Nemeth, Reference Librarian, UC Riverside Science Library, retired Subject matter experts, digital version: Dr. Tracy Kahn, Curator, UC Citrus Variety Collection Dr. Robert Krueger, Curator, USDA-ARS National Clonal Germplasm Repository for Citrus & Dates Toni Siebert, Assistant Curator, UC Citrus Variety Collection ca. 1955 ca. 1970 IN MEMORIUM Willard P. Bitters Professor of Horticulture, Emeritus Riverside 1915-2006 Born in Eau Claire, Wisconsin, in June, 1915, Dr. Willard “Bill” Bitters earned his bachelor’s degree in biology from St. Norbert College and his master’s degree and Ph.D. from the University of Wisconsin. After earning his doctorate, he first worked as the superintendent of the Valley Research Farm of the University of Arizona in Yuma, and joined the Citrus Experiment Station, in Riverside in 1946 as a Horticulturist. In 1961, Dr. Bitters became a Professor in the newly established University of California-Riverside. His initial assignment was to work on horticultural aspects of tristeza, a serious vector-transmitted virus disease which threatened to destroy California citrus orchards. Tristeza was already in California and spreading in 1946. At that time most citrus trees in California were grafted on a rootstock that was known to be susceptible to tristeza. Dr. Bill Bitters was responsible for screening of over 500 cultivars to determine which rootstock-scion combinations were resistant to this disease and yet possessed suitable horticultural characteristics. Of the 500 screened, most were susceptible, but several successful ones were selected and released to the industry.
    [Show full text]