Bacterial Diseases That May Or Do Emerge, With

Total Page:16

File Type:pdf, Size:1020Kb

Bacterial Diseases That May Or Do Emerge, With 001_JPP Review Janse_S5 20-12-2012 9:50 Pagina 5 Journal of Plant Pathology (2012), 94 (4, Supplement), S4.5-S4.29 Edizioni ETS Pisa, 2012 S4.5 OFFERED REVIEW BACTERIAL DISEASES THAT MAY OR DO EMERGE, WITH (POSSIBLE) ECONOMIC DAMAGE FOR EUROPE AND THE MEDITERRANEAN BASIN: NOTES ON EPIDEMIOLOGY, RISKS, PREVENTION AND MANAGEMENT ON FIRST OCCURRENCE J.D. Janse Department of Laboratory Methods and Diagnostics, Dutch General Inspection Service (NAK), PO Box 1115,8300 BC Emmeloord, The Netherlands SUMMARY onion in the USA, isolated from seed in South Africa; (vi) almond witches’ broom, “Candidatus Phytoplasma Bacterial diseases are difficult to control (both chem- phoenicium” killing thousands of trees in Lebanon and ically and biologically), and are restrained primarily by Iran; (vii) potato stolbur, “Candidatus Phytoplasma preventive measures. Most important risk factors for the solani”, spreading from Eastern Europe westwards; (vi- introduction or spread of bacterial diseases in Europe ii) zebra chip disease of potato and yellows of carrot and the Mediterranean basin are imported infected caused by “Candidatus Liberibacter solanacearum (syn- planting material and infected insect vectors. In this re- onym Ca. Liberibacter psyllourous). The potato strains view the epidemiology, management and main risks of occurs only in North and Central America and New several emerging bacterial diseases approaching or al- Zealand, but the carrot pathogen has been reported ready present in Europe, their causal organisms and from several Scandinavian countries and Spain with the vectors will be highlighted, especially: (a) Citrus huang- respective psyllid vectors Bactericera cockerelli and Tri- longbing (= Citrus greening), caused by the heat-toler- oza apicalis; (ix) an apparently ‘harmless’ “Candidatus ant “Candidatus Liberibacter asiaticus” and heat-sensi- Liberibacter europaeus” found in the pear psyllid tive “Candidatus L. africanus”. Both liberibacters and (Capopsylla pyri) in Italy; (x) bacterial fruit blotch of cu- the respective psyllid vectors Diaphorina citri and Trioza curbits, Acidovorax citrulli, seed-transmitted and the erytreae are present in the Arabian peninsula, with re- cause of outbreaks in Europe, Turkey and Israel; (xi) a cent reports of huanglongbing occurring in Iran, Mali, new strain of the potato stem rot bacterium, provision- Ethiopia and Somalia. T. erytreae is already present on ally named Dickeya solani, emerging in several north- some Atlantic Ocean islands; (b) leaf scorch and leaf western European countries and Israel; (xii) Stewart’s scald diseases of grape and different fruit and ornamen- disease or bacterial wilt of maize, P. stewartii subsp. tal trees, caused by Xylella fastidiosa. For this pathogen, stewartii, spread by the corn flea beetle Chaetocnema although its presence has not been confirmed in Europe pulicaria, observed in several European countries in or the Mediterranean basin, local possible vectors such which it has not become established due to the absence as Cicadella viridis and Philaenus spumarius occur; (c) of vector; (xiii) renewed outbreaks from 2008 of Citrus canker caused by Xanthomonas citri pv. citri, the Pseudomonas syringae pv. actinidiae, the agent of bacter- most severe form of which, the so-called Asiatic, is al- ial blight, especially on Actinidia chinensis (yellow ki- ready present in Iraq, Iran, Oman, Somalia, United wifruit) but also on A. deliciosa in central Italy and, Arab Emirates (UAE), Saudi Arabia, Yemen and Re- since 2010, in France; (xiv) bleeding canker of horse union. Outbreaks and/or risk and (possible) emerging chestnut, Ps. syringae pv. aesculi, emerging in western character of some other bacterial pathogens not yet Europe; (xv) bacterial canker of stone fruits caused by present in Europe (i-iv) or already present (v-xvi) are al- X. arboricola pv. pruni, with recent outbreaks in Switzer- so highlighted: (i) black spot of mango, Xanthomonas land, Spain (on almond) and in the Netherlands on citri pv. mangiferindicae, present in UAE and Reunion; cherry-laurel (Prunus laurocerasus); (xvi) bacterial leaf (ii) bacterial blight of pomegranate, X. axonopodis pv. spot of poinsettia, X. axonopodis pv. poinsettiicola ob- punicae, emerging in India; (iii) bacterial blight of gua- served in greenhouses in several north-western Euro- va, Erwinia psidii, emerging in Brazil; (iv) bacterial spot pean countries. Ornamental and wild hosts may play an of passion fruit, X. campestris pv. passiflorae, emerging important role in spreading diseases and maintaining in Brazil; (v) stem rot and leaf spot of maize and center the pathogens and their vectors in the environment. rot of onion, Pantoea ananatis, an emerging problem for These plants should be included in surveys. Rapid and reliable diagnosis remains a key issue, as well as breed- ing for resistance. All pathogens mentioned are emerg- Corresponding author: J.D. Janse ing threats, with real risks of introduction and, in some Fax: +31.527.635411 E-mail: [email protected] cases, closely approaching or already present in the 001_JPP Review Janse_S5 20-12-2012 9:50 Pagina 5 Journal of Plant Pathology (2012), 94 (4, Supplement), S4.5-S4.29 Edizioni ETS Pisa, 2012 S4.5 OFFERED REVIEW BACTERIAL DISEASES THAT MAY OR DO EMERGE, WITH (POSSIBLE) ECONOMIC DAMAGE FOR EUROPE AND THE MEDITERRANEAN BASIN: NOTES ON EPIDEMIOLOGY, RISKS, PREVENTION AND MANAGEMENT ON FIRST OCCURRENCE J.D. Janse Department of Laboratory Methods and Diagnostics, Dutch General Inspection Service (NAK), PO Box 1115,8300 BC Emmeloord, The Netherlands SUMMARY onion in the USA, isolated from seed in South Africa; (vi) almond witches’ broom, “Candidatus Phytoplasma Bacterial diseases are difficult to control (both chem- phoenicium” killing thousands of trees in Lebanon and ically and biologically), and are restrained primarily by Iran; (vii) potato stolbur, “Candidatus Phytoplasma preventive measures. Most important risk factors for the solani”, spreading from Eastern Europe westwards; (vi- introduction or spread of bacterial diseases in Europe ii) zebra chip disease of potato and yellows of carrot and the Mediterranean basin are imported infected caused by “Candidatus Liberibacter solanacearum (syn- planting material and infected insect vectors. In this re- onym Ca. Liberibacter psyllourous). The potato strains view the epidemiology, management and main risks of occurs only in North and Central America and New several emerging bacterial diseases approaching or al- Zealand, but the carrot pathogen has been reported ready present in Europe, their causal organisms and from several Scandinavian countries and Spain with the vectors will be highlighted, especially: (a) Citrus huang- respective psyllid vectors Bactericera cockerelli and Tri- longbing (= Citrus greening), caused by the heat-toler- oza apicalis; (ix) an apparently ‘harmless’ “Candidatus ant “Candidatus Liberibacter asiaticus” and heat-sensi- Liberibacter europaeus” found in the pear psyllid tive “Candidatus L. africanus”. Both liberibacters and (Capopsylla pyri) in Italy; (x) bacterial fruit blotch of cu- the respective psyllid vectors Diaphorina citri and Trioza curbits, Acidovorax citrulli, seed-transmitted and the erytreae are present in the Arabian peninsula, with re- cause of outbreaks in Europe, Turkey and Israel; (xi) a cent reports of huanglongbing occurring in Iran, Mali, new strain of the potato stem rot bacterium, provision- Ethiopia and Somalia. T. erytreae is already present on ally named Dickeya solani, emerging in several north- some Atlantic Ocean islands; (b) leaf scorch and leaf western European countries and Israel; (xii) Stewart’s scald diseases of grape and different fruit and ornamen- disease or bacterial wilt of maize, P. stewartii subsp. tal trees, caused by Xylella fastidiosa. For this pathogen, stewartii, spread by the corn flea beetle Chaetocnema although its presence has not been confirmed in Europe pulicaria, observed in several European countries in or the Mediterranean basin, local possible vectors such which it has not become established due to the absence as Cicadella viridis and Philaenus spumarius occur; (c) of vector; (xiii) renewed outbreaks from 2008 of Citrus canker caused by Xanthomonas citri pv. citri, the Pseudomonas syringae pv. actinidiae, the agent of bacter- most severe form of which, the so-called Asiatic, is al- ial blight, especially on Actinidia chinensis (yellow ki- ready present in Iraq, Iran, Oman, Somalia, United wifruit) but also on A. deliciosa in central Italy and, Arab Emirates (UAE), Saudi Arabia, Yemen and Re- since 2010, in France; (xiv) bleeding canker of horse union. Outbreaks and/or risk and (possible) emerging chestnut, Ps. syringae pv. aesculi, emerging in western character of some other bacterial pathogens not yet Europe; (xv) bacterial canker of stone fruits caused by present in Europe (i-iv) or already present (v-xvi) are al- X. arboricola pv. pruni, with recent outbreaks in Switzer- so highlighted: (i) black spot of mango, Xanthomonas land, Spain (on almond) and in the Netherlands on citri pv. mangiferindicae, present in UAE and Reunion; cherry-laurel (Prunus laurocerasus); (xvi) bacterial leaf (ii) bacterial blight of pomegranate, X. axonopodis pv. spot of poinsettia, X. axonopodis pv. poinsettiicola ob- punicae, emerging in India; (iii) bacterial blight of gua- served in greenhouses in several north-western Euro- va, Erwinia psidii, emerging in Brazil; (iv) bacterial spot pean countries. Ornamental and wild hosts may play an of passion fruit, X.
Recommended publications
  • Nerium Oleander Linn. (Kaner)
    Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2014; 6(3): 593-597 ISSN: 0975-4873 Review Article A Review on: Nerium oleander Linn. (Kaner) *Chaudhary Kiran1, Prasad D.N.2 1K.C. Institute of Pharmaceutical Sciences, Pandoga, Distt.Una (H.P.) 2Shivalik College of Pharmacy, Naya Nangal, Distt.Ropar, Punjab Available Online: 1st September 2014 ABSTRACT Nerium oleander is an evergreen shrub or small tree in the dogbane family Apocyanaceae. It is commonly known as oleander but has many other names like Nerium indicum mill. and Nerium odorum soland. It bears flowers in clusters with white, pink, yellow and red colours. It contains plumericin, alpha-amyrin, beta-sitosterol, kaempferol, cardioactive glycosides named Odorosides A-H obtained from the root bark. Leaves contain the cardiac glycosides kaneroside, neriumoside, digitoxigenin, alpha –L-olendroside -5α-adynerin and other glycosides. Odorosides are cardioactive glycosides. Gentiobiosyl –oleandrin, Odoroside A and Oleandrin were the main glycosides identified. It has potent cardiotonic activity, digitalis like effect on heart. It has been reported to have effective against skin diseases,wound infections, cancer, diabetes, inflammation and CNS depression. All parts of the plant are poisonous in nature which can be treated by the use of activated charcoal.Topical preparation containing Nerium extract can be used as antiageing cream. Keywords : Nerium oleander, Nerium indicum, Oleander, Cardiotonic, Odorosides , Antibacterial, Antiageing INTRODUCTION Nepal westwards to Kashmir upto 1950m, extending to Taxonomic classification Baluchistan, Afghanistan and found throughout India in Phyllum- Plantae gardens .The white and red flowered variety is equated Class/ Subphyllum- Angiosperms with Nerium indicum.
    [Show full text]
  • Xanthomonas Citri Jumbo Phage Xacn1 Exhibits a Wide Host Range
    www.nature.com/scientificreports OPEN Xanthomonas citri jumbo phage XacN1 exhibits a wide host range and high complement of tRNA Received: 28 November 2017 Accepted: 19 February 2018 genes Published: xx xx xxxx Genki Yoshikawa1, Ahmed Askora2,3, Romain Blanc-Mathieu1, Takeru Kawasaki2, Yanze Li1, Miyako Nakano2, Hiroyuki Ogata1 & Takashi Yamada2,4 Xanthomonas virus (phage) XacN1 is a novel jumbo myovirus infecting Xanthomonas citri, the causative agent of Asian citrus canker. Its linear 384,670 bp double-stranded DNA genome encodes 592 proteins and presents the longest (66 kbp) direct terminal repeats (DTRs) among sequenced viral genomes. The DTRs harbor 56 tRNA genes, which correspond to all 20 amino acids and represent the largest number of tRNA genes reported in a viral genome. Codon usage analysis revealed a propensity for the phage encoded tRNAs to target codons that are highly used by the phage but less frequently by its host. The existence of these tRNA genes and seven additional translation-related genes as well as a chaperonin gene found in the XacN1 genome suggests a relative independence of phage replication on host molecular machinery, leading to a prediction of a wide host range for this jumbo phage. We confrmed the prediction by showing a wider host range of XacN1 than other X. citri phages in an infection test against a panel of host strains. Phylogenetic analyses revealed a clade of phages composed of XacN1 and ten other jumbo phages, indicating an evolutionary stable large genome size for this group of phages. Tailed bacteriophages (phages) with genomes larger than 200 kbp are commonly named “jumbo phages”1.
    [Show full text]
  • A Dunedin Garden
    VIREYA VINE ISSUE #82, OCTOBER 2007 PUBLISHED BY THE EDUCATION COMMITTEE OF THE RHODODENDRON SPECIES FOUNDATION R.S.F. PO BOX 3798, FEDERAL WAY, WA. 98063 E. White Smith, Editor From Daphne and Gavin Clark Dunedin, New Zealand Published with permission from the Dunedin Bulletin Feb. 2007 RHODODENDRON lowii (Subsection Vireya) More information about R. lowii relting to the piece in VV81 Addendum – February 2007 Following on from the previous article the long cane produced four shoots. Two were given to a very keen propagator to strike and we tried to strike two, but they all failed. However a good quantity of seed was collected at the end of January, 2005 and again this was shared. Our seed was kept in cool storage and eventually sown in September 2005. A small transparent plastic container with a clear lid was used with the seed sprinkled on to damp, sterilized sphagnum moss. The seeds germinated very well and some of the seedlings were transferred into compost but despite tender care died. The remaining seedlings stayed in the plastic container for some considerable time until recently when they were very carefully removed to individual peat pots into a specially mixed compost. Nine pots are housed in a clear, plastic lidded container 340mm x 300mm which stands on a wide kitchen windowsill with excellent light but no direct sunlight and hopefully some of these will survive. In the meantime the parent plant is flourishing, the two basal shoots are now 800mm high with the original cane cut down to 750mm. It is still in its container and now occupies a choice place among other vireya species in a wooded area beneath 50 year old camellias and rhododendrons which have been pruned to provide an excellent canopy, with morning sun, filtered afternoon sunlight, together with a degree of humidity.
    [Show full text]
  • 'Candidatus Phytoplasma Solani' (Quaglino Et Al., 2013)
    ‘Candidatus Phytoplasma solani’ (Quaglino et al., 2013) Synonyms Phytoplasma solani Common Name(s) Disease: Bois noir, blackwood disease of grapevine, maize redness, stolbur Phytoplasma: CaPsol, maize redness phytoplasma, potato stolbur phytoplasma, stolbur phytoplasma, tomato stolbur phytoplasma Figure 1: A ‘dornfelder’ grape cultivar Type of Pest infected with ‘Candidatus Phytoplasma Phytoplasma solani’. Courtesy of Dr. Michael Maixner, Julius Kühn-Institut (JKI). Taxonomic Position Class: Mollicutes, Order: Acholeplasmatales, Family: Acholeplasmataceae Genus: ‘Candidatus Phytoplasma’ Reason for Inclusion in Manual OPIS A pest list, CAPS community suggestion, known host range and distribution have both expanded; 2016 AHP listing. Background Information Phytoplasmas, formerly known as mycoplasma-like organisms (MLOs), are pleomorphic, cell wall-less bacteria with small genomes (530 to 1350 kbp) of low G + C content (23-29%). They belong to the class Mollicutes and are the putative causal agents of yellows diseases that affect at least 1,000 plant species worldwide (McCoy et al., 1989; Seemüller et al., 2002). These minute, endocellular prokaryotes colonize the phloem of their infected plant hosts as well as various tissues and organs of their respective insect vectors. Phytoplasmas are transmitted to plants during feeding activity by their vectors, primarily leafhoppers, planthoppers, and psyllids (IRPCM, 2004; Weintraub and Beanland, 2006). Although phytoplasmas cannot be routinely grown by laboratory culture in cell free media, they may be observed in infected plant or insect tissues by use of electron microscopy or detected by molecular assays incorporating antibodies or nucleic acids. Since biological and phenotypic properties in pure culture are unavailable as aids in their identification, analysis of 16S rRNA genes has been adopted instead as the major basis for phytoplasma taxonomy.
    [Show full text]
  • Pl Path 502 Phytoplasma
    Phytoplasmas Pl. Path. 502 Dr. PN SHARMA Department of Plant Pathology CSK HP Agricultural University Palampur-176 062 (HP State) INDIA What are Phytoplasmas ? Phytoplasmas have diverged from gram-positive eubacteria, and belong to the Genus Phytoplasma within the Class Mollicutes. Mycoplasmas dramatically differ phenotypically from other bacteria by their minute size (0.3 - 0.5 and lack of cell wall. The lack of cell wall was used to separate mycoplasmas from other bacteria in a class named Mollicutes. Due to degenerative or reductive evolution, accompanied by significant losses of genomic sequences, the genomes of mollicutes have shrunk and are relatively small compared to other bacteria, ranging from 580 kb. to 2,200 kb. Phytoplasma •Phytoplasma are wall-less prokaryotic organisms •Seen with electron microscope in the phloem of infected plant •Unable to grow on culture media •Pleomorphic shaped and spiral Phytoplasma •Most phytoplasma transmitted from plant to plant by • leafhoppers, • but some are transmitted by Psyllids and planthoppers •Caused Yellowing, Big bud, Stuntting, Witchbroom •Sensitive to antibiotics, especially Tetracycline group Mycoplasma (Phytoplsma): Doi et al. (1970) are submicroscopic, measuring 150- 300 nm in diameter having ribosomes and DNA strands enclosed by a bilayer membrane but not the cell wall, replicate by binary fission, can be cultured artificially in vitro on specific medium and are sensitive to certain antibiotics (tetracycline not to penicillin). E.g. Little leaf of brinjal, Peach yellow Spiroplasm citri (Fudt Allh et al. 1571) Citrus stubbesh. Classification Class : Mollicutes Order: Mycoplasmatales. Three families, each with one genus: Mycoplasmataceae, genus Mycoplasma, Acholeplasmataceae, . genus Acholeplasma, Spiroplasmataceae . genus Spiroplasma.
    [Show full text]
  • Method 4 Xcc V19-2-12
    Pest risk assessment for the European Community: plant health: a comparative approach with case studies Pest Risk Assessment: Test Method 4 January 2012 1 Preface Pest risk assessment provides the scientific basis for the overall management of pest risk. It involves identifying hazards and characterizing the risks associated with those hazards by estimating their probability of introduction and establishment as well as the severity of the consequences to crops and the wider environment. Risk assessments are science-based evaluations. They are neither scientific research nor are they scientific manuscripts. The risk assessment forms a link between scientific data and decision makers and expresses risk in terms appropriate for decision makers. Note Risk assessors will find it useful to have a copy of ISPM 11, Pest risk analysis for quarantine pests, including analysis of environmental risks and living modified organisms (FAO, 2004)1 and the EFSA guidance document on a harmonized framework for pest risk assessment (EFSA, 2010)2 to hand as they read this document and conduct a pest risk assessment. 1 ISPM No. 11 available at https://www.ippc.int/id/13399 2 EFSA Journal 2010, 8(2),1495-1561, Available at http://www.efsa.europa.eu/en/scdocs/doc/1495.pdf 2 CONTENTS Table / list of contents 3 Executive Summary Keywords: Xanthomonas citri, citrus canker, trade of fresh fruits, trade of ornamental rutaceous plants and plant parts, Illegal entry of plant propagative material, Climex map Provide a technical summary reflecting the content of the assessment (the questions addressed, the information evaluated, and the key issues that resulted in the conclusion) The purpose of this pest risk assessment was to evaluate the plant health risk associated with Xanthomonas citri (strains causing citrus canker disease) within the framework of EFSA project CFP/EFSA/PLH/2009/01.
    [Show full text]
  • European Academic Research
    EUROPEAN ACADEMIC RESEARCH Vol. IV, Issue 10/ January 2017 Impact Factor: 3.4546 (UIF) ISSN 2286-4822 DRJI Value: 5.9 (B+) www.euacademic.org Evidences from morphological investigations supporting APGIII and APGIV Classification of the family Apocynaceae Juss., nom. cons IKRAM MADANI Department of Botany, Faculty of Science University of Khartoum, Sudan LAYALY IBRAHIM ALI Faculty of Science, University Shandi EL BUSHRA EL SHEIKH EL NUR Department of Botany, Faculty of Science University of Khartoum, Sudan Abstract: Apocynaceae have traditionally been divided into into two subfamilies, the Plumerioideae and the Apocynoideae. Recently, based on molecular data, classification of Apocynaceae has undergone considerable revisions. According to the Angiosperm Phylogeny Group III (APGIII, 2009), and the update of the Angiosperm Phylogeny Group APG (APGIV, 2016) the family Asclepiadaceae is now included in the Apocynaceae. The family, as currently recognized, includes some 1500 species divided in about 424 genera and five subfamilies: Apocynoideae, Rauvolfioideae, Asclepiadoideae, Periplocoideae, and Secamonoideae. In this research selected species from the previous families Asclepiadaceae and Apocynaceae were morphologically investigated in an attempt to distinguish morphological important characters supporting their new molecular classification. 40 morphological characters were treated as variables and analyzed for cluster of average linkage between groups using the statistical package SPSS 16.0. Resulting dendrograms confirm the relationships between species from the previous families on the basis of their flowers, fruits, 8259 Ikram Madani, Layaly Ibrahim Ali, El Bushra El Sheikh El Nur- Evidences from morphological investigations supporting APGIII and APGIV. Classification of the family Apocynaceae Juss., nom. cons and seeds morphology. Close relationships were reported between species from the same subfamilies.
    [Show full text]
  • Identification and Management of the Asian Citrus Psyllid and Citrus Greening Disease in Texas Nurseries
    E-597 5/12 x Identification and Management of the Asian Citrus Psyllid and Citrus Greening Disease in Texas Nurseries Carlos E. Bográn, Citrus greening, also known as Huanglongbing (HLB) or yellow dragon Raul T. Villanueva, disease, is the most important threat to citrus production worldwide. The and Mamoudou Setamou disease devastates citrus plants, reducing fruit yield and quality, and killing the plants in as little as 2 years. Citrus greening diseases is caused by bacteria that can live and multiply in the plant’s vascular system (phloem). The bacteria are carried by the Asian citrus psyllid, Diaphorina citri, and may be transmitted when insects feed on healthy plants. The bacteria can also spread during grafting plants with infected plant material. Once restricted to China and South Africa, HLB has spread rapidly in recent years and now occurs in: • The United States: Florida, South Carolina, Georgia, Louisiana, Texas, California • Mexico: Nayarit, Colima, Jalisco, the Yucatan peninsula • Jamaica • Puerto Rico • Virgin Islands • Brazil. As of January 13th, 2012 the first known case of HLB was confirmed in Texas on a Rio Grande Valley orange tree in Hidalgo County. Currently there is no cure for citrus greening disease; the best control strategy is to keep healthy plants from being infected. One of the most effective ways to prevent the disease is to avoid moving plants and plant materials from areas under regulatory quarantine or where the insect or disease is present. * Associate Professor and Extension To avoid or minimize the impact of the disease, use an integrated Specialist–Entomology/Plant Pathology approach: use only certified-clean plant stock; monitor plants regularly to and Microbiology, Assistant Professor and Extension Entomologist, Texas detect and control any population of Asian citrus psyllid; if you suspect HLB, AgriLife Extension; Research Scientist, send a sample of the foliage to the appropriate diagnostic laboratory; and Texas Agrilife Research, The Texas A&M System remove and destroy trees that are confirmed infected with HLB.
    [Show full text]
  • A Hydroalcoholic Extract from the Leaves of Nerium Oleander Inhibits Glycolysis and Induces Selective Killing of Lung Cancer Cells
    Original Papers A Hydroalcoholic Extract from the Leaves of Nerium oleander Inhibits Glycolysis and Induces Selective Killing of Lung Cancer Cells Authors José Manuel Calderón-Montaño1, Estefanía Burgos-Morón1, Manuel Luis Orta2, Santiago Mateos2, Miguel López-Lázaro1 Affiliations 1 Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain 2 Department of Cell Biology, Faculty of Biology, University of Seville, Seville, Spain Key words Abstract consumption and lactate production) in A549 l" Nerium oleander ! cells, comparable to that of the glycolysis inhibitor l" Apocynaceae Recent evidence suggests that cardiac glycosides dichloroacetate (currently in clinical develop- l" cardiac glycosides might be used for the treatment of cancer. The or- ment for cancer therapy). Because platinum com- l" cardiotonic steroids namental shrub Nerium oleander has been used in pounds are widely used in the treatment of lung l" anticancer traditional medicine for treating several disorders cancer, we tested the cytotoxicity of several com- including cancer, and extracts from the leaves of binations of cisplatin with the extract and found a this plant have already entered phase I clinical tri- moderate synergism when Nerium oleander ex- als. In this communication, we have prepared a tract was administered after cisplatin but a mod- hydroalcoholic extract from the leaves of Nerium erate antagonism when it was added before cis- oleander (containing 4.75 ± 0.32% of cardenolides) platin. Our results suggest that extracts from Ne- and have assessed its cytotoxic activity in A549 rium oleander might induce anticancer effects in lung cancer cells vs. MRC5 nonmalignant lung fi- patients with lung cancer and support their possi- broblasts.
    [Show full text]
  • Citrus Industry Biosecurity Plan 2015
    Industry Biosecurity Plan for the Citrus Industry Version 3.0 July 2015 PLANT HEALTH AUSTRALIA | Citrus Industry Biosecurity Plan 2015 Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2004 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2004) Industry Biosecurity Plan for the Citrus Industry (Version 3.0 – July 2015). Plant Health Australia, Canberra, ACT. Disclaimer: The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific and independent professional advice.
    [Show full text]
  • D.1A Floral and Faunal Compendia
    Appendix D.1a Floral and Faunal Compendia APPENDIX D.1a FLORAL AND FAUNAL COMPENDIA INTRODUCTION TO FLORAL AND FAUNAL SURVEY Expected site use by wildlife is derived from survey information combined with documented habitat preferences of regional wildlife species, which, whether or not recorded during the survey, are considered likely to include the project area within their range. Habitat designations used in this report are according to the classification system of Holland (1986). Floral taxonomy used in this report follows the Jepson Manual (Hickman 1993), with updates in accordance to the online Jepson Interchange where known. Common plant names, where not available from Munz (1974), are taken from Abrams (1923), Robbins, et al. (1951), Collins (1972), Niehaus and Ripper (1976) and Muns (1983). Vertebrates identified in the field by sight, calls, tracks, scat or other signs are cited according to the nomenclature of Jennings (1983) for amphibians and reptiles; AOU (1983) for birds; and Jones, et al. (1982) for mammals. Butterflies observed or collected in the field were identified with the help of Garth and Tilden (1986) and Tilden and Smith (1986). FLORAL COMPENDIUM1 LEGEND * Nonnative @ Ornamental/Landscape VASCULAR PLANTS CONIFERAE PINACEAE - PINE FAMILY * Pinus halepensis Aleppo Pine ANGIOSPERMAE (DICOTYLEDONS) ANACARDIACEAE - SUMAC FAMILY Malosma laurina laurel sumac Rhus ovata sugar bush * Schinus molle Peruvian pepper-tree Toxicodendron diversilobum poison-oak APOCYNACEAE - DOGBANE FAMILY * Vinca major periwinkle * Nerium oleander oleander ASTERACEAE - SUNFLOWER FAMILY Baccharis pilularis coyote brush Baccharis salicifolia mulefat Helianthus gracilentus slender sunflower * Picris echioides bristly ox-tongue * Silybum marianum milk thistle * Sonchus asper prickly sow-thistle * Sonchus oleraceus common sow-thistle Stephanomeria virgata twiggy wreathplant BRASSICACEAE - MUSTARD FAMILY * Brassica nigra black mustard * Sisymbrium officinale hedge-mustard CAPRIFOLIACEAE - HONEYSUCKLE FAMILY Sambuccus.
    [Show full text]
  • Xanthomonas Axonopodis Pv. Citri: Factors Affecting Successful Eradication of Citrus Canker
    MOLECULAR PLANT PATHOLOGY (2004) 5(1), 1–15 DOI:10.1046/J.1364-3703.2003.00197.X PBlackwellathogen Publishing Ltd. profile Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker JAMES H. GRAHAM1,*, TIM R. GOTTWALD2, JAIME CUBERO1 AND DIANN S. ACHOR1 1Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA; 2USDA-ARS, Horticultural Research Laboratory 2001 South Rock Road, Ft. Pierce, FL 34945, USA www.plantmanagementnetwork.org/pub/php/review/citruscanker/, SUMMARY http://www.abecitrus.com.br/fundecitrus.html, http://www. Taxonomic status: Bacteria, Proteobacteria, gamma subdivi- biotech.ufl.edu/PlantContainment/canker.htm, http:// sion, Xanthomodales, Xanthomonas group, axonopodis DNA www.aphis.usda.gov/oa/ccanker/. homology group, X. axonopodis pv. citri (Hasse) Vauterin et al. Microbiological properties: Gram negative, slender, rod- shaped, aerobic, motile by a single polar flagellum, produces slow growing, non-mucoid colonies in culture, ecologically INTRODUCTION obligate plant parasite. Host range: Causal agent of Asiatic citrus canker on most Rationale for eradication of citrus canker Citrus spp. and close relatives of Citrus in the family Rutaceae. Disease symptoms: Distinctively raised, necrotic lesions on Increasing international travel and trade have dramatically accel- fruits, stems and leaves. erated introductions of invasive species into agricultural crops Epidemiology: Bacteria exude from lesions during wet (Anonymous, 1999). Systems for protecting agricultural indus- weather and are disseminated by splash dispersal at short range, tries have been overwhelmed by an unprecedented number of windblown rain at medium to long range and human assisted pests, especially plant pathogens. One of the most notable is movement at all ranges.
    [Show full text]