Citrus Rootstocks: Their Characters and Reactions

Total Page:16

File Type:pdf, Size:1020Kb

Citrus Rootstocks: Their Characters and Reactions CITRUS ROOTSTOCKS: THEIR CHARACTERS AND REACTIONS (an unpublished manuscript) ca. 1986 By W. P. BITTERS (1915 – 2006) Editor, digital version: Marty Nemeth, Reference Librarian, UC Riverside Science Library, retired Subject matter experts, digital version: Dr. Tracy Kahn, Curator, UC Citrus Variety Collection Dr. Robert Krueger, Curator, USDA-ARS National Clonal Germplasm Repository for Citrus & Dates Toni Siebert, Assistant Curator, UC Citrus Variety Collection ca. 1955 ca. 1970 IN MEMORIUM Willard P. Bitters Professor of Horticulture, Emeritus Riverside 1915-2006 Born in Eau Claire, Wisconsin, in June, 1915, Dr. Willard “Bill” Bitters earned his bachelor’s degree in biology from St. Norbert College and his master’s degree and Ph.D. from the University of Wisconsin. After earning his doctorate, he first worked as the superintendent of the Valley Research Farm of the University of Arizona in Yuma, and joined the Citrus Experiment Station, in Riverside in 1946 as a Horticulturist. In 1961, Dr. Bitters became a Professor in the newly established University of California-Riverside. His initial assignment was to work on horticultural aspects of tristeza, a serious vector-transmitted virus disease which threatened to destroy California citrus orchards. Tristeza was already in California and spreading in 1946. At that time most citrus trees in California were grafted on a rootstock that was known to be susceptible to tristeza. Dr. Bill Bitters was responsible for screening of over 500 cultivars to determine which rootstock-scion combinations were resistant to this disease and yet possessed suitable horticultural characteristics. Of the 500 screened, most were susceptible, but several successful ones were selected and released to the industry. Among these were ‘Troyer’ citrange and Citrus macrophylla, which continue to be important rootstocks worldwide. The industry greatly benefited by such releases. Another important contribution was his developmental work with ‘Flying Dragon’ trifoliate rootstock, which is able to dwarf most standard cultivars by 90 percent, making them easier to harvest. Perhaps Dr Bitters’ most important contribution was his work with the Citrus Variety Collection. Herbert John Webber, the first director of the Citrus Experiment Station, had initiated and overseen the Citrus Variety Collection up until his death in 1944. When Dr. Bitters became the curator of the collection in 1947, it had been somewhat neglected. Dr. Bitters was instrumental in increasing the number of accessions in the collection from 600 to 1200. This collection is still recognized as one the major collections of citrus genetic resources in the world. During his time working with the Citrus Variety Collection, Dr. Bitters traveled extensively throughout the citrus growing regions of the world. He became known as a world authority on citrus scion and rootstock cultivars, and was well versed in many other areas of citriculture. Dr. Bitters was the author of 99 publications of significant benefit to citrus researchers and growers throughout the world. In 1967, Dr. Bitters received the Annual Citrograph Award in recognition of his many outstanding contributions resulting in the utilization of rootstock and scion varieties that produce improved tree growth and fruit quality. ii After his retirement in 1982, Dr. Bitters continued to work with other University of California Riverside researchers to improve the quality of the Citrus Variety Collection, advise others working in citriculture, and to serve the public through the University of California Cooperative Extension Master Gardeners Program. He was a member of many academic organizations, including the American Society of Horticultural Science, the International Society of Citriculture, the Japanese Society of Horticultural Science, and the California Lemon’s Men’s Club. Tracy L. Kahn Carol J. Lovatt Robert R. Krueger Jodie S. Holt iii EDITOR’S PREFACE, DIGITAL VERSION Substance and Context The Citrus Experiment Station, established in 1907, is the world-eminent citrus research center, and its publications were consulted by citrus growers and scientists everywhere. The Citrus Experiment Station undertook a revision of The Citrus Industry, originally published 1943-1948, in the early 1960’s. This was to be a comprehensive landmark work that included all the Citrus Experiment Station research up to that time, as well as research from other citrus scientists from around the world, in all areas of citriculture. Dr. W. P. Bitters (1915-2006) began his career at the Citrus Experiment Station in 1946. His assignment was to study citrus rootstocks, their disease resistance, and their graft compatibilities with various commercial citrus varieties. Dr. Bitters undertook a series of comprehensive experiments that involved hundreds of trees, at three different locations in California, and lasted more than 20 years. This was truly a historic and landmark undertaking, never done before, and never repeated. It is still considered the seminal research on citrus rootstocks. Over the years Dr. Bitters became renowned as a world authority on citrus rootstocks and many other areas of citriculture. The published results from his experiments, and personal consultation until his death, form the basis of all current experimentation on citrus rootstocks. A chapter on citrus rootstocks by Dr. Bitters was to be part of the 5th volume of the The Citrus Industry, revised edition, 1967-1989. Ultimately the chapter was not included, and efforts to publish it as a separate volume were not successful. After Dr. Bitters’ death in 2006, a typescript draft of this chapter was found among his papers. It was determined that this draft was the latest. Dr. Bitters ceased work on the manuscript ca. 1986. This monograph is a comprehensive work on citrus rootstocks, not only reporting the results of Dr. Bitters’ landmark experiments and research, but aggregating and correlating those results with all other known experiments on citrus rootstocks from all over the world, a truly landmark work. The bibliography alone is a significant historical record of citrus rootstock research from every part of the world, and includes many references to published materials that have rarely, if ever, been referenced elsewhere. The monograph also includes unpublished research results from Dr. Bitters work, and from various growers’ experiments, observations, and experiences. Dr. Tracy Kahn, Curator of the UC Citrus Variety Collection and longtime friend and colleague of Dr. Bitters, suggested digitizing the manuscript. Permission to publish an electronic edition of this unpublished monograph was granted by Dr. Bitters in his lifetime. Subsequently, Dr. Kahn received permission from Dr. Bitters’ heirs to publish a digital version. She brought the manuscript to Marty Nemeth, a librarian retired from the UC Riverside Science Library (now the Orbach Science Library), who was responsible for previous digitization efforts. Condition of the Manuscript The manuscript is a typed carbon (2 copies), double-spaced, on yellow paper. It consists of 17 headed sections, including an introduction and a bibliography, in 262 consecutively numbered pages with no hand-written annotations, so there are no questions about how the material should be organized. Tables are included as part of the text. There are some blank spaces and lines, indicating an intent to complete the thought or reference at a later date. In addition, some text references lack dates and/or lack a corresponding entry in the bibliography. There are references to figures, but no images in any format are attached or specifically iv designated for inclusion. Some sections were added subsequent to the main portion, and are not as polished, but nonetheless contain invaluable information and unpublished data from Dr. Bitters’ experiments and observations. Editorial Practices In general, the editorial guidelines used were those of copy editing only. All editorial annotations are in italics within brackets. Copy editing: Copy editing guidelines: all spelling errors have been corrected, without annotation; punctuation was inserted, where appropriate, without annotation; occasionally, if a word was needed to clarify the meaning of a sentence, it was inserted without annotation (beyond that no rewriting was done); the author’s phrasing, word selection, and general style were not altered and no annotations of “[sic]” were made; blank lines in the manuscript, which were left to indicate the intent to complete the sentence or thought at a later editing, were indicated by an explanatory annotation; the numerous textual bibliographic references to unpublished materials, many without date, were not included in the bibliography because there is insufficient information to identify or verify them. Fact checking: . All citrus names, geographic areas, technical terms, etc were checked and have been corrected, without annotation. All references were verified; corrections were made where necessary, without annotation. References in the text for which there are no dates (just authors) and/or for which there are no corresponding items in the bibliography, were identified, where possible, by correlating information in the manuscript with the referenced item in hand, and the verified items were added to the bibliography without annotation. Illustrative materials: . Some photographic slides, among the hundreds that were among Dr. Bitters’ papers, were identified as corresponding to references in the manuscript; these are included
Recommended publications
  • Palestinian Refugees: Adiscussion ·Paper
    Palestinian Refugees: ADiscussion ·Paper Prepared by Dr. Jan Abu Shakrah for The Middle East Program/ Peacebuilding Unit American Friends Service Committee l ! ) I I I ' I I I I I : Contents Preface ................................................................................................... Prologue.................................................................................................. 1 Introduction . .. .. ... .. .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 2 The Creation of the Palestinian Refugee Problem .. .. .. .. .. 3 • Identifying Palestinian Refugees • Counting Palestinian Refugees • Current Location and Living Conditions of the Refugees Principles: The International Legal Framework .... .. ... .. .. ..... .. .. ....... ........... 9 • United Nations Resolutions Specific to Palestinian Refugees • Special Status of Palestinian Refugees in International Law • Challenges to the International Legal Framework Proposals for Resolution of the Refugee Problem ...................................... 15 • The Refugees in the Context of the Middle East Peace Process • Proposed Solutions and Principles Espoused by Israelis and Palestinians Return Statehood Compensation Resettlement Work of non-governmental organizations................................................. 26 • Awareness-Building and Advocacy Work • Humanitarian Assistance and Development • Solidarity With Right of Return and Restitution Conclusion .... ..... ..... ......... ... ....... ..... ....... ....... ....... ... ......... .. .. ... .. ............
    [Show full text]
  • Rangpur Lime X Troyer Citrange, a Hybrid Citrus Rootstock for Closely Spaced Trees
    Proc. Fla. State Hort. Soc. 99:33-35. 1986. RANGPUR LIME X TROYER CITRANGE, A HYBRID CITRUS ROOTSTOCK FOR CLOSELY SPACED TREES W. S. Castle A combination of diseases, repeated freezes, and other University of Florida, IFAS factors has reemphasized the importance of rootstocks in Citrus Research and Education Center Florida. Moreover, the effects of these factors illustrate the 700 Experiment Station Road inherent weaknesses in virtually all citrus rootstocks and Lake Alfred, FL 33850 the need to continually search for new, improved ones. Another recent trend related to rootstocks has been C. O. YOUTSEY the shift toward more closely spaced trees, particularly FDACS, Division of Plant Industry within the row (7,8). Rootstocks well-suited for dense plan Citrus Budwood Registration Bureau tings have not been available although such stocks are 3027 Lake Alfred Road being evaluated and one appears particularly promising Winter Haven, FL 33881 (1, 3, 4, 8). It is a hybrid of Rangpur lime and Troyer D. J. Hutchison citrange (RxT) and has been under study in Florida for 18 United States Department of Agriculture yr. During this period, trees on RxT have demonstrated Agricultural Research Service sufficient commercial potential to justify our presentation 2120 Camden Road in this report of their performance and a description of Orlando, FL 32803 RxT and its characteristics. Additional index words. Blight, tristeza, tree size control. History Dr. J. R. Furr, formerly a plant breeder with the U.S. Abstract. A hybrid of Rangpur lime (Citrus limonia Osb.) and Department of Agriculture (USDA) at Indio, California, Troyer citrange [ C. sinensis (L) Osb.
    [Show full text]
  • Citrus Blight and Other Diseases of Recalcitrant Etiology
    P1: FRK August 1, 2000 18:44 Annual Reviews AR107-09 Annu. Rev. Phytopathol. 2000. 38:181–205 Copyright c 2000 by Annual Reviews. All rights reserved CITRUS BLIGHT AND OTHER DISEASES OF RECALCITRANT ETIOLOGY KS Derrick and LW Timmer University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, Florida 33850-2299; e-mail: [email protected]fl.edu, [email protected]fl.edu Key Words citrus psorosis, citrus variegated chlorosis, lettuce big vein, peach tree short life, replant diseases ■ Abstract Several economically important diseases of unknown or recently de- termined cause are reviewed. Citrus blight (CB), first described over 100 years ago, was shown in 1984 to be transmitted by root-graft inoculations; the cause remains unknown and is controversial. Based on graft transmission, it is considered to be an infectious agent by some; others suggest that the cause of CB is abiotic. Citrus varie- gated chlorosis, although probably long present in Argentina, where it was considered to be a variant of CB, was identified as a specific disease and shown to be caused by a strain of Xylella fastidiosa after if reached epidemic levels in Brazil in 1987. Citrus psorosis, described in 1933 as the first virus disease of citrus, is perhaps one of the last to be characterized. In 1988, it was shown to be caused by a very unusual virus. The cause of lettuce big vein appears to be a viruslike agent that is transmitted by a soilborne fungus. Double-stranded RNAs were associated with the disease, suggesting it may be caused by an unidentified RNA virus.
    [Show full text]
  • Literature Research
    Literature Search 20. Literature Search Growing Lemons in Australia - a production manual© 20 — 1 Literature Search Abu-Awwad, A.M. 2001. Influence of Different Water Quantities and Qualities on Lemon trees and Soil Salt Distribution at the Jordan Valley. Agricultural Water Management 52: 53-71. Young lemon trees (Eureka) were studied for five years (1996-2000). Five water levels and three water qualities were imposed via trickle irrigation system on clay loam soil. In saline substrates Na+ and C1- are usually the dominant ions. The lemon tree is a salt-sensitive crop to salinity, and even low salt concentrations may affect its growth and productivity. A field experiment was conducted to investigate the influence of different water and salinity levels on the development of young lemon (Eureka) trees. Materials and Methods A field experiment was conducted for 5 years. One dripper per tree for the first year, two drippers 1.0 m apart per tree for the second year, and thereafter four drippers 1.0 m apart. 8L/hr of five water levels and three water qualities. Conclusion Increasing irrigation water salinity increased salt concentration and osmotic potential in the root zone, and consequently reduced lemon annual water use, stem diameter and fruit yield. Regardless of irrigation water salinity, the significantly highest fruit yield was at irrigation water depth equal to evaporation depth from class A pan when corrected for tree canopy percentage shaded area. Adriaensens, S.Z., Past and Present Situation of the Spanish Citrus Industry, 1993. Lemon group The Verna is a typically Spanish variety of unknown origin.
    [Show full text]
  • Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid
    Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid Diaphorina Liberibacter citri Plant Name asiaticus Citrus Huanglongbing Psyllid Aegle marmelos (L.) Corr. Serr.: bael, Bengal quince, golden apple, bela, milva X Aeglopsis chevalieri Swingle: Chevalier’s aeglopsis X X Afraegle gabonensis (Swingle) Engl.: Gabon powder-flask X Afraegle paniculata (Schum.) Engl.: Nigerian powder- flask X Atalantia missionis (Wall. ex Wight) Oliv.: see Pamburus missionis X X Atalantia monophylla (L.) Corr.: Indian atalantia X Balsamocitrus dawei Stapf: Uganda powder- flask X X Burkillanthus malaccensis (Ridl.) Swingle: Malay ghost-lime X Calodendrum capense Thunb.: Cape chestnut X × Citroncirus webberi J. Ingram & H. E. Moore: citrange X Citropsis gilletiana Swingle & M. Kellerman: Gillet’s cherry-orange X Citropsis schweinfurthii (Engl.) Swingle & Kellerm.: African cherry- orange X Citrus amblycarpa (Hassk.) Ochse: djerook leemo, djeruk-limau X Citrus aurantiifolia (Christm.) Swingle: lime, Key lime, Persian lime, lima, limón agrio, limón ceutí, lima mejicana, limero X X Citrus aurantium L.: sour orange, Seville orange, bigarde, marmalade orange, naranja agria, naranja amarga X Citrus depressa Hayata: shiikuwasha, shekwasha, sequasse X Citrus grandis (L.) Osbeck: see Citrus maxima X Citrus hassaku hort. ex Tanaka: hassaku orange X Citrus hystrix DC.: Mauritius papeda, Kaffir lime X X Citrus ichangensis Swingle: Ichang papeda X Citrus jambhiri Lushington: rough lemon, jambhiri-orange, limón rugoso, rugoso X X Citrus junos Sieb. ex Tanaka: xiang
    [Show full text]
  • California Department of Food and Agriculture
    CALIFORNIA DEPARTMENT OF FOOD AND AGRICULTURE AMENDMENT TO THE PROCLAMATION OF AN EMERGENCY PROGRAM AGAINST THE HUANGLONGBING DISEASE FOR COMMUNITIES IN LOS ANGELES COUNTY Between March 30, 2012 to May 27, 2021, the California Department of Food and Agriculture (CDFA) confirmed the presence of the causative bacterial agent of the citrus disease huanglongbing (HLB) in citrus tree tissue collected in the cities of Cerritos, Compton, Duarte, El Monte, Hacienda Heights, La Mirada, La Puente, Lakewood, Long Beach, Montebello, Norwalk, Paramount, Pico Rivera, Rosemead, San Gabriel, Temple City, and Whittier in Los Angeles County. HLB is a devastating disease of citrus and is spread through feeding action by populations of the Asian citrus psyllid (ACP), Diaphorina citri Kuwayama. In order to determine the extent of the infestation, and to define an appropriate response area, additional surveys took place for several days over a 250-meter radius area, centered on the detection sites. Based on the results of the surveys, implementation of the CDFA’s ACP and HLB emergency response strategies are necessary for eradication and control. The Proclamation of Emergency Program and associated Notice of Treatment are valid until May 27, 2022, which is the amount of time necessary to determine that the treatment was successful. HLB is considered the most devastating disease of citrus in the world. In the United States, HLB’s unchecked spread in Florida starting in 2006 resulted in devastating impacts on the environment and economy. Symptoms of HLB include yellow shoots with mottling and chlorosis of the leaves, misshapen fruit, fruit that does not fully color, and fruit that has a very bitter taste, which makes it unfit for human consumption.
    [Show full text]
  • Tropical Horticulture: Lecture 32 1
    Tropical Horticulture: Lecture 32 Lecture 32 Citrus Citrus: Citrus spp., Rutaceae Citrus are subtropical, evergreen plants originating in southeast Asia and the Malay archipelago but the precise origins are obscure. There are about 1600 species in the subfamily Aurantioideae. The tribe Citreae has 13 genera, most of which are graft and cross compatible with the genus Citrus. There are some tropical species (pomelo). All Citrus combined are the most important fruit crop next to grape. 1 Tropical Horticulture: Lecture 32 The common features are a superior ovary on a raised disc, transparent (pellucid) dots on leaves, and the presence of aromatic oils in leaves and fruits. Citrus has increased in importance in the United States with the development of frozen concentrate which is much superior to canned citrus juice. Per-capita consumption in the US is extremely high. Citrus mitis (calamondin), a miniature orange, is widely grown as an ornamental house pot plant. History Citrus is first mentioned in Chinese literature in 2200 BCE. First citrus in Europe seems to have been the citron, a fruit which has religious significance in Jewish festivals. Mentioned in 310 BCE by Theophrastus. Lemons and limes and sour orange may have been mutations of the citron. The Romans grew sour orange and lemons in 50–100 CE; the first mention of sweet orange in Europe was made in 1400. Columbus brought citrus on his second voyage in 1493 and the first plantation started in Haiti. In 1565 the first citrus was brought to the US in Saint Augustine. 2 Tropical Horticulture: Lecture 32 Taxonomy Citrus classification based on morphology of mature fruit (e.g.
    [Show full text]
  • Classification and Cultivars
    1 Classification and Cultivars 2 Two Tribes • Clauseneae • Citreae has 3 Subtribes –Triphasiinae –Balsamocitrineae –Citrinae 3 Fortunella • Four species - Small trees and shrubs. • Flowers later than Citrus. • Freeze - hardy • Small fruit –‘Meiwa’ and ‘Marumi’ - round –‘Nagami’ ovate 4 Poncirus • Two trifoliate spp. –trifoliata ‘Flying Dragon’ –poyandra • Deciduous • Thorny, Cold hardy, long thorns • Makes great hedges , rootstocks 5 Microcitrus • Northeastern rainforest Australia • Moderate-sized trees. • Leaves are unifoliate dimorphic • Microcitrus australasica –Resistant to burrowing nematode and phytophthora • Micro leaves, flowers, and fruit 6 Clymenia • Unifoliate acuminate leaves tapering into very short petiole. • Branches are thornless. • Style shorter than other true Citrus and stigma is larger and flattened • Fruit - ovoid, thin peeled, many oil glands, many small seeds. 7 Eremocitrus • Xerophytic native of Australia • Spreading long drooping branches • Leaves unifoliate, greyish green, thick, leatherly, and lanceolate. • Sunken stomata, freeze hardy • Ideal xeroscape plant. 8 Citrus - Subgenus Eucitrus • Vesicles - no acrid or bitter oil • C. medica (Citrons) –Uses - candied peel, • Jewish ceremony • Exocortis indicator 9 Citrus limon (Lemons) • Commerce –‘Lisbon’ and ‘Eureka’ • Dooryard –Meyer (Lemon hybrid) • Rough Lemon –Rootstock 10 Lemon Hybrids • Lemonage (lemon x sweet orange) • Lemonime (lemon x lime) • Lemandrin (lemon x mandarin) • Eremolemon (Eremocitrus x lemon) - Australian Desert Lemon 11 Citrus aurantifolia (Limes) • ‘Key’ or ‘Mexican’ limes • ‘Tahiti’ or ‘Persian’ limes some are triploids and seedless • C. macrophylla (lime-like fruit) –Rootstock in California • Lemonimes (lime x lemon) • Limequats (lime x kumquat) 12 • Not grown either in Tahiti or Persian (Iran) • Seedless and marketed when still dark green 13 C. aurantium - Sour Orange • ‘Seville’ in Southern Europe –Orange marmalade • ‘Bouquet’ & ‘Bergamot’ • - Italy –Essential oil • Many forms like ‘Bittersweet’ –Rootstock - High quality fruit.
    [Show full text]
  • Citrus Trifoliata (Rutaceae): Review of Biology and Distribution in the USA
    Nesom, G.L. 2014. Citrus trifoliata (Rutaceae): Review of biology and distribution in the USA. Phytoneuron 2014-46: 1–14. Published 1 May 2014. ISSN 2153 733X CITRUS TRIFOLIATA (RUTACEAE): REVIEW OF BIOLOGY AND DISTRIBUTION IN THE USA GUY L. NESOM 2925 Hartwood Drive Fort Worth, Texas 76109 www.guynesom.com ABSTRACT Citrus trifoliata (aka Poncirus trifoliata , trifoliate orange) has become an aggressive colonizer in the southeastern USA, spreading from plantings as a horticultural novelty and use as a hedge. Its currently known naturalized distribution apparently has resulted from many independent introductions from widely dispersed plantings. Seed set is primarily apomictic and the plants are successful in a variety of habitats, in ruderal habits and disturbed communities as well as in intact natural communities from closed canopy bottomlands to open, upland woods. Trifoliate orange is native to southeastern China and Korea. It was introduced into the USA in the early 1800's but apparently was not widely planted until the late 1800's and early 1900's and was not documented as naturalizing until about 1910. Citrus trifoliata L. (trifoliate orange, hardy orange, Chinese bitter orange, mock orange, winter hardy bitter lemon, Japanese bitter lemon) is a deciduous shrub or small tree relatively common in the southeastern USA. The species is native to eastern Asia and has become naturalized in the USA in many habitats, including ruderal sites as well as intact natural commmunities. It has often been grown as a dense hedge and as a horticultural curiosity because of its green stems and stout green thorns (stipular spines), large, white, fragrant flowers, and often prolific production of persistent, golf-ball sized orange fruits that mature in September and October.
    [Show full text]
  • 'Orlando' Tangelos on 10 Rootstocks
    Literature Cited Proc. Int. Soc. Citriculture. (In press) 3. Reece, P. C, and F. E. Gardner. 1959. Robinson, Osceola and Lee- 1. Hearn, C. J., P. C. Reece, and R. Fenton. 1968. Effects of pollen new early maturing tangerine hybrids. Proc. Fla. State Hort. Soc. source on fruit characteristics and set of four citrus hybrids. Proc. 72:48-51. Fla. State Hort. Soc. 81:94-98. 4. , , and C. J. Hearn. 1963. Page orange—a prom 2. Krezdorn, A. H. 1977. Influence of rootstock on mandarin cultivars. ising variety. Proc. Fla. State Hort. Soc. 76:53-54. Proc. Fla. State Hort. Soc. 90:47-49. 1977. THE PERFORMANCE OF 'NOVA' AND 'ORLANDO' TANGELOS ON 10 ROOTSTOCKS D. J. Hutchison and C. J. Hearn1 The rootstocks were Carrizo (CAR), Rusk (RSK), and Agricultural Research Service, Troyer (TROY) citranges (C. sinensis (L.) Osbeck X U.S. Department of Agriculture, Poncirus trifoliata (L.) Raf.); Estes rough lemon (RL) (C. Orlando, FL 32803 Union (L.) Burm. L); Milam (MIL) (rough lemon hybrid?); Seville sour orange (SO) (C. aurantium L.); Cleopatra mandarin (CLEO) (C. reticulata); Large Flower trifoliate Additional index words. Citrus. orange (LETO) (P. trifoliata); Orlando tangelo (ORL); and Sanguine Grosse Ronde sweet orange (SANG) (C. Abstract. 'Nova' and 'Orlando' tangelos were evaluated sinensis). on 10 rootstocks during 1968-1976. 'Nova' and 'Orlando' tangelos propagated on rough lemon rootstock produced the largest trees. The highest yields were 'Nova' on rough lemon Results and Discussion and 'Orlando' on Troyer rootstocks. The highest total soluble The time of bloom indicated by percentage petal drop solids were produced by 'Nova' on sour orange and 'Or in 1969 and 1971 is shown in Table 1.
    [Show full text]
  • Crop Profile for Citrus (Minor) Lime, Pummelo, and Kumquat in Florida
    Crop Profile for Citrus (Minor) Lime, Pummelo, and Kumquat in Florida Prepared: November, 2001 General Production Information ● Lime in this crop profile refers to the 'Tahiti' lime (Citrus latifolia). Pest management practices of other members of the Rutaceae such as Key lime (Citrus aurantifolia), pummelo (Citrus grandis), and kumquat (Fortunella sp.) may also be described, since survey questionnaires grouped these four tropical fruits together. All of these species of citrus are grown for the fresh market. ● The 1997-1998 average yield of limes in Florida was 14,344 pounds per acre. At a price of $5.02 per box, the Florida crop (440,000 boxes) was worth approximately $2.21 million (1). ● In 2000-2001, 1,171 acres in Florida produced 22 million pounds of 'Tahiti' lime. This is a 58 percent decrease from the previous year, when 53 million pounds were recorded (2,3). ● As of the end of 2000, there has been a 63 percent reduction in lime acreage since 1996 (bearing acreage of 3,168 acres). Except for 20 acres, all of the lime production is located in Miami-Dade County. Consequently, ninety-eight percent of 'Tahiti' lime production occurs in this county (3). ● Florida was ranked first in the United States in lime production. No other states were listed as leading lime-producers (1). ● Reductions in lime acreage have occurred due to Hurricane Andrew and citrus canker. Bearing acreage before Andrew was approximately 6,000 acres, which dropped drastically to 1,668 acres after this event (4). An estimated 290,000 lime trees (2,800 acres) have been lost to citrus canker in the 2000-2001 period (2).
    [Show full text]
  • Citrus Aurantium Hybrid. Ponciros Trifoliata (Tri22 [1431 Australian Strain), Cirros Sinensis and (Cirrus Sinensis X P
    Citrus aurantium hybrid. Ponciros trifoliata (Tri22 [1431 Australian strain), Cirros sinensis and (Cirrus sinensis x P. Recent Advances in Aurantioideae Taxonomy tri/oUata) were used as Australian standard rootstocks for KruegerRR comparisoD purposes. The trial was established in October USDA-ARS National Clonai Gennplasm Repository for 1999 to evaluate the horticultural perfonnance of new Citrus & Dates, 1060 Martin Luther King Blvd, Riverside, rootstocks grafted from single-node cuttings to Navelina Califomia 92501 USA. [email protected] oranges. Five years of data (2002-2007) were collected on More than 60 years have passed since Swingle (1943) tree growth, fruit yie1d and quality to identify superior reviewed Aurantioideae taxonomy and more than 40 sinee rootstocks for the next phase of semi commercial plantings. the minor revision of Swingle and Reece (1967). In this Chinese Poncirus tri/olita types, Donghai and Houpi time period, various genera within the Aurantioideae have produced higher yield efficiencies of 2.8 and 2.9 kg.cm2 been revised or new species publisbed. Revised genera respectively at this site and both rootstocks had smaller include Clymenia, Poncirus, Luvugna, Wenzelia, truck circumference of 20 and 22 cm respectively. While Monanthocitrus, Oxanthera, Clausena, and Murraya. ln one of the erythrosa types, Anjiang HODgju also showed sorne cases, it has been proposed to split genera and.in promise in terms of yield, quality and fruit size. Data on others to consolidate genera. New species have been tree growth, fruit quality and fruit size distribution are described and published within specific genera. This paper presented for ail the otber rootstocks.
    [Show full text]