Somatic Hybrid Plantlets Regeneration Between Citrus and Its Wild Relative, Murraya Paniculata Via Protoplast Electrofusion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Citrus Trifoliata (Rutaceae): Review of Biology and Distribution in the USA
Nesom, G.L. 2014. Citrus trifoliata (Rutaceae): Review of biology and distribution in the USA. Phytoneuron 2014-46: 1–14. Published 1 May 2014. ISSN 2153 733X CITRUS TRIFOLIATA (RUTACEAE): REVIEW OF BIOLOGY AND DISTRIBUTION IN THE USA GUY L. NESOM 2925 Hartwood Drive Fort Worth, Texas 76109 www.guynesom.com ABSTRACT Citrus trifoliata (aka Poncirus trifoliata , trifoliate orange) has become an aggressive colonizer in the southeastern USA, spreading from plantings as a horticultural novelty and use as a hedge. Its currently known naturalized distribution apparently has resulted from many independent introductions from widely dispersed plantings. Seed set is primarily apomictic and the plants are successful in a variety of habitats, in ruderal habits and disturbed communities as well as in intact natural communities from closed canopy bottomlands to open, upland woods. Trifoliate orange is native to southeastern China and Korea. It was introduced into the USA in the early 1800's but apparently was not widely planted until the late 1800's and early 1900's and was not documented as naturalizing until about 1910. Citrus trifoliata L. (trifoliate orange, hardy orange, Chinese bitter orange, mock orange, winter hardy bitter lemon, Japanese bitter lemon) is a deciduous shrub or small tree relatively common in the southeastern USA. The species is native to eastern Asia and has become naturalized in the USA in many habitats, including ruderal sites as well as intact natural commmunities. It has often been grown as a dense hedge and as a horticultural curiosity because of its green stems and stout green thorns (stipular spines), large, white, fragrant flowers, and often prolific production of persistent, golf-ball sized orange fruits that mature in September and October. -
Citrus Aurantium Hybrid. Ponciros Trifoliata (Tri22 [1431 Australian Strain), Cirros Sinensis and (Cirrus Sinensis X P
Citrus aurantium hybrid. Ponciros trifoliata (Tri22 [1431 Australian strain), Cirros sinensis and (Cirrus sinensis x P. Recent Advances in Aurantioideae Taxonomy tri/oUata) were used as Australian standard rootstocks for KruegerRR comparisoD purposes. The trial was established in October USDA-ARS National Clonai Gennplasm Repository for 1999 to evaluate the horticultural perfonnance of new Citrus & Dates, 1060 Martin Luther King Blvd, Riverside, rootstocks grafted from single-node cuttings to Navelina Califomia 92501 USA. [email protected] oranges. Five years of data (2002-2007) were collected on More than 60 years have passed since Swingle (1943) tree growth, fruit yie1d and quality to identify superior reviewed Aurantioideae taxonomy and more than 40 sinee rootstocks for the next phase of semi commercial plantings. the minor revision of Swingle and Reece (1967). In this Chinese Poncirus tri/olita types, Donghai and Houpi time period, various genera within the Aurantioideae have produced higher yield efficiencies of 2.8 and 2.9 kg.cm2 been revised or new species publisbed. Revised genera respectively at this site and both rootstocks had smaller include Clymenia, Poncirus, Luvugna, Wenzelia, truck circumference of 20 and 22 cm respectively. While Monanthocitrus, Oxanthera, Clausena, and Murraya. ln one of the erythrosa types, Anjiang HODgju also showed sorne cases, it has been proposed to split genera and.in promise in terms of yield, quality and fruit size. Data on others to consolidate genera. New species have been tree growth, fruit quality and fruit size distribution are described and published within specific genera. This paper presented for ail the otber rootstocks. -
101R to Release Genetically Engineered Citrus Tristeza Virus
Southern Gardens Citrus Nursery, LLC Permit 17-044- 101r to Release Genetically Engineered Citrus tristeza virus Preliminary Pest Risk Assessment May 2018 Agency Contact Cindy Eck Biotechnology Regulatory Services 4700 River Road USDA, APHIS Riverdale, MD 20737 Fax: (301) 851-3892 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’S TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326–W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250–9410 or call (202) 720–5964 (voice and TDD). USDA is an equal opportunity provider and employer. Mention of companies or commercial products in this report does not imply recommendation or endorsement by the U.S. Department of Agriculture over others not mentioned. USDA neither guarantees nor warrants the standard of any product mentioned. Product names are mentioned solely to report factually on available data and to provide specific information. This publication reports research involving pesticides. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they -
UC Riverside UC Riverside Electronic Theses and Dissertations
UC Riverside UC Riverside Electronic Theses and Dissertations Title Cross-Compatibility, Graft-Compatibility, and Phylogenetic Relationships in the Aurantioideae: New Data From the Balsamocitrinae Permalink https://escholarship.org/uc/item/1904r6x3 Author Siebert Wooldridge, Toni Jean Publication Date 2016 Supplemental Material https://escholarship.org/uc/item/1904r6x3#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Cross-Compatibility, Graft-Compatibility, and Phylogenetic Relationships in the Aurantioideae: New Data From the Balsamocitrinae A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Plant Biology by Toni J Siebert Wooldridge December 2016 Thesis committee: Dr. Norman C. Ellstrand, Chairperson Dr. Timothy J. Close Dr. Robert R. Krueger The Thesis of Toni J Siebert Wooldridge is approved: Committee Chairperson University of California, Riverside ACKNOWLEDGEMENTS I am indebted to many people who have been an integral part of my research and supportive throughout my graduate studies: A huge thank you to Dr. Norman Ellstrand as my major professor and graduate advisor, and to my supervisor, Dr. Tracy Kahn, who helped influence my decision to go back to graduate school while allowing me to continue my full-time employment with the UC Riverside Citrus Variety Collection. Norm and Tracy, my UCR parents, provided such amazing enthusiasm, guidance and friendship while I was working, going to school and caring for my growing family. Their support was critical and I could not have done this without them. My committee members, Dr. Timothy Close and Dr. Robert Krueger for their valuable advice, feedback and suggestions. -
Development of Ovule and Testa Rutaceae. III. Some Representatives
Acta Bot. Neerl. 27(5/6),December 1978, p. 341-354. Development of ovule and testa in Rutaceae. III. Some representatives of the Aurantioideae F.D. Boesewinkel Hugo de Vries-laboratorium,Universiteit van Amsterdam SUMMARY Poncirus Citrus The ovule primordia of and are trizonate and the outer integument is ofsubdermal origin. The seed-coats of Poncirus, Citrus, Fortunella, Citropsis and Murraya are very similar in in minor structure but differ points. The mechanical layer is aderivative ofthe outer epidermis ofthe outer integument. In the five taxa studied the seed coat is formed out of the outer integument and usually also contains remains ofthe inner integument and the nucellus. The innermost layers of the outer often contain A to integument crystals. thin layer of endosperm one a few cell layers thick is present. 1. INTRODUCTION The representatives oftheAurantioideaeare allevergreen trees or shrubs, with the exception of the three deciduous and monotypic genera Poncirus, Aegle and Feronia. The ovules of the Rutaceae are according to Netolitzky (1926) and Davis and (1966), see also Boesewinkel(1977), bitegmic, crassinucellate, anatropous. Only within the genus Glycosmis of the Aurantioideaedo unitegmy and pachy- The ovules and seeds of the chalazy occur (Boesewinkel & Bouman 1978). of the Aurantioideaehave been studiedtill following bitegmic representatives now; Citrus (Biermann 1897; Gallet 1913; Banerji 1954; Corner 1976), Murraya, Triphasia and AtalantiaGallet 1913:Corner 1976), Feronia = Limonia(Gallet 1913; Banerji & Pal 1958; Corner 1976), and Aegle Gallet 1913; Johri & Ahuja 1957). of oftheovule intheAurantioideaehad A detaileddescription the ontogeny not previously been given. According to Gallet (1913), the Aurantioideaeconstitute of which the show certain the only subfamily the Rutaceae in genera a uniformity in the structure of theirseed-coat. -
Phylogenetic Relationships of the Aurantioideae (Rutaceae)
ARTICLE IN PRESS Organisms, Diversity & Evolution 9 (2009) 52–68 www.elsevier.de/ode Phylogenetic relationships of the Aurantioideae (Rutaceae) based on the nuclear ribosomal DNA ITS region and three noncoding chloroplast DNA regions, atpB-rbcL spacer, rps16, and trnL-trnF Cynthia M. Morton Section of Botany, Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, PA 15213, USA Received 9 June 2008; accepted 6 November 2008 Abstract The tribes and subtribes of Aurantioideae, an economically important subfamily of the Rutaceae, have a controversial taxonomic history because a phylogenetic framework has been lacking. In order to construct an evolutionary history and evaluate the most recent classification system [Swingle and Reece 1967. The botany of Citrus and its wild relatives, in: The Citrus Industry, vol. 1, History, World Distribution, Botany, and Varieties. University of California, Berkeley, pp. 190–430], one nuclear and three noncoding chloroplast genes were sequenced and analyzed phylogenetically along with selected non-molecular characters. Taxa representing tribes Citreae and Clauseneae and their six subtribes were sampled. In all analyses Aurantioideae is monophyletic. The majority-rule consensus tree from the combined analysis indicates that the two tribes are not monophyletic. The combined topology is not congruent with the widely used classification of Aurantioideae by Swingle and Reece (1967). The tribes and subtribes are in need of revision. r 2008 Gesellschaft fu¨r Biologische Systematik. Published by Elsevier GmbH. All rights reserved. Keywords: Aurantioideae; Citreae; Clauseneae; Rutaceae; ITS; atpB-rbcL spacer Introduction containing pulp vesicles. The leaves and fruits have schizolysigenous oil glands that release an aroma when The Aurantioideae (this is the correct name for touched, and the flowers are typically white and ‘Citroideae’ or ‘Limonoideae’) are one of seven sub- fragrant. -
New Disease-Resistant Rootstocks Urgently Neededby Citrus Growers
FLORIDA STATE HORTICULTURAL SOCIETY 201 20 years of age before they bloomed in North recent plantings of this Rhodesian mahogany ern Rhodesia, Africa. in southern and south central parts of Florida The mother mahogany tree in Miami, which show that young seedlings of this species have is approximately 20 years old, probably came survived frosts, hurricanes, and dry weather from one of Dr. W. L. Thompson's numerous when planted in hammocks, but have not been introductions of Khaya nyasica seed from Mt. able to fare for themselves under exposed Silinda, Southern Rhodesia, the earliest intro conditions in the open. If these trees can sur duction being received in 1902 (1). This tree vive and reproduce themselves under South in the Miami City Cemetery most likely came Florida conditions, as at least one tree has from Plant Introduction No. 59293 of Dr. done to date, there may well be possibilities Thompson's which arrived in Washington, D. for this new tree crop in this hemisphere. C, April 19, 1924. 1. Lynch, S. J., and H. S. Wolfe. Khaya The Khaya nyasica plantings among Carib nyasica, a new mahogany for South Florida. bean pine at the Sub-Tropical Experiment Sta Proc. Florida State Hort. Soc. 55:113-116, 1942. tion (2) continue to show promise, as well as 2. Lynch, S. J., and H. S. Wolfe. Future plantings at the Dade County nursery on Red may see mahogany forests in Florida. Florida Road, Coconut Grove, Miami, Florida. More Grower, August, 1942. NEW DISEASE-RESISTANT ROOTSTOCKS URGENTLY NEEDED BY CITRUS GROWERS WALTER T. -
Circumscription of Murraya and Merrillia (Sapindales: Rutaceae: Aurantioideae) and Susceptibility of Species and Forms to Huanglongbing
CIRCUMSCRIPTION OF MURRAYA AND MERRILLIA (SAPINDALES: RUTACEAE: AURANTIOIDEAE) AND SUSCEPTIBILITY OF SPECIES AND FORMS TO HUANGLONGBING Student: Nguyen Huy Chung Principal Supervisor: Professor G Andrew C Beattie, University of Western Sydney Co-supervisors: Associate Professor Paul Holford, University of Western Sydney Dr Anthony M Haigh, University of Western Sydney Professor David J Mabberley, Royal Botanic Garden, Kew Dr Peter H Weston, National Herbarium of New South Wales Date of submission: 31 August 2011 Declaration The work reported in this thesis is the result of my own experiments and has not been submitted in any form for another degree or diploma at any university or institute of tertiary education. Nguyen Huy Chung 31 August 2011 i Acknowledgements I would first and foremost like to thank my supervisors, Professor Andrew Beattie, Associate Professor Paul Holford, Dr Tony Haigh, Professor David Mabberley and Dr Peter Weston for their generous guidance, academic and financial support. My research required collection of pressed specimens and DNA of Murraya from within Australia and overseas. I could not have done this without generous assistance from many people. I am thankful to Associate Professor Paul Holford and Ms Inggit Puji Astuti (Bogor Botanic Garden, Indonesia) who accompanied me during the collection of samples in Indonesia; to Mr Nguyen Huy Quang (Cuc Phuong National Park) and Mr Nguyen Thanh Binh (Southern Fruit Research Institute), who travelled with me during collecting trips in the southern Việt Nam and to Cuc Phuong National Park in northern Việt Nam; to Dr Paul Forster (Brisbane Botanic Garden) who accompanied me during the collection of samples in Brisbane; and to Mr Simon Goodwin who accompanied me during the collection samples in the Royal Botanic Garden, Sydney; to Dr Cen Yijing (South China Agricultural University) who travelled with Prof Beattie to collect specimens from Yingde, in Guangdong. -
Application of Cleaved Amplified Polymorphic Sequence Method for Analysis of Cytoplasmic Genome Among Aurantioideae Intergeneric Somatic Hybrids
J. AMER. SOC. HORT. SCI. 128(2):225–230. 2003. Application of Cleaved Amplified Polymorphic Sequence Method for Analysis of Cytoplasmic Genome among Aurantioideae Intergeneric Somatic Hybrids Samia Lotfy1 CIRAD-FLHOR, Neufchâteau, 97 130, Capesterre Belle-Eau, Guadeloupe, France Francois Luro INRA, SRA San Giuliano, 20230 San Nicolao, France Françoise Carreel, Yann Froelicher, Delphine Rist, and Patrick Ollitrault CIRAD-FLHOR, Neufchâteau, 97 130, Capesterre Belle-Eau, Guadeloupe, France ADDITIONAL INDEX WORDS. cpDNA, mtDNA, protoplast fusion, Citrus breeding ABSTRACT. Somatic hybridization allows the creation of new patterns of nuclear, mitochondrial and chloroplastic association. It is therefore necessary to master cytoplasmic molecular markers to determine the genetic origin of both organelles of plantlets obtained from protoplasts fusion. In the case of Citrus and related genera, only southern blot hybridization and restriction fragment-length polymorphism (RFLP) techniques were used for this task until now. Here, we describe the use in the Aurantioideae subfamily, of a simple and non labeling cleaved amplified polymorphic sequence (CAPS) technique, to determine the cytoplasmic genome origin of intergeneric somatic hybrids. Mitochondrial and chloroplastic universal primers previously selected for population genetic studies in Quercus by Demesure et al. (1995) are used with some modifications. The variability of cytoplasmic genome among somatic fusion partners is detected by coupling amplification and restriction reactions. Digested -
Seema Chauhan New M C (Cdr
T REPRO N DU LA C The International Journal of Plant Reproductive Biology 7(2) pp.128-134, 2015 P T I F V O E B Y T I O E I L O C G O S I S T E S H DOI 10.14787/ijprb.2015 7.2.128-134 T Reproductive biology of Feronia limonia (L.) Swingle syn. Limonia acidissima (Rutaceae) Seema Chauhan Academy of Life Sciences, 8/13 I Kaushalpur Bye Pass Road, Agra-282005, India *e-mail: [email protected] Received : 13.08.2013; Revised: 23.01.2015; Accepted & Published on line: 01.05.2015 ABSTRACT Feronia limonia (L.) Swingle syn. Limonia acidissima L. (Rutaceae) commonly known as wood-apple or elephant apple is a deciduous slow growing tree. Trees flower in April-June. The flowers arranged in terminal cymes bear yellow petals, 8-10 pink stamens with dark red anthers and pentacarpellary gynoecium. A nectariferous disk develops at the base of the ovary which is covered by large number of long tapering trichomes. Flowers are cross-pollinated in nature by honey bees (Apis cerana indica) showing facultative xenogamous breeding system. Fruits are berry, round, hard, woody; the rind is scurfy thick, with numerous small, white seeds. Seeds ripen in early October through March. Keywords: Elephant apple, breeding system, nectariferous disk INTRODUCTION family-Aurantioideae of the family Rutaceae. It is commonly known as kaith, kath or wood-apple or Studies on reproductive biology, an important elephant apple. The fruits are rich in vitamin C and used interdisciplinary area are essential for developing as a liver and cardiac tonic and when unripe, it is used as effective strategies for both in situ and ex situ an astringent means of halting diarrhoea and dysentery conservation of the species (Moza & Bhatnagar 2007). -
NAPPO DIAGNOSTIC PROTOCOLS DP 01 Citrus Tristeza Virus (CTV)
NAPPO DIAGNOSTIC PROTOCOLS DP 01 Citrus Tristeza Virus (CTV) The Secretariat of the North American Plant Protection Organization 1431 Merivale Road, 3rd Floor, Room 140 Ottawa, Ontario, Canada, K1A 0Y9 March 19, 2013 Contents Page Review.............................................................................................................................3 Approval ..........................................................................................................................3 Implementation ................................................................................................................3 Amendment Record.........................................................................................................3 Distribution.......................................................................................................................3 1. Pest information ....................................................................................................4 1.1 Transmission.........................................................................................................4 2. Taxonomic information..........................................................................................5 3. Detection and identification...................................................................................5 3.1 Host plants............................................................................................................5 3.2 Signs and symptoms.............................................................................................5 -
Great Stress Locules, and Primary Rutaceae-Aurantioideae, Impor
The taxonomy and nomenclature of Rutaceae-Aurantioideae by Tyôzaburô Tanaka (Taihoku Imperial University, Taihoku, Taiwan, Japan). Prom the of CORREA SERRA time DE (1805), MIRBEL. (1813), DE JUSSIEU (1815), ROEMER (1846), BAILLON (1855), and OLIVER (1861), is the number of a great stress laid upon stamens, locules, and ovules to the primary classification of the Rutaceae-Aurantioideae, but the impor- tance of the presence of an inflorescence and its reduction of the number of flowers, the pinnate leaf and its reduction of the number of leaflets, venation of the leaf, its conspicuousness and the construction, the origin and of the the rachis and the the number development wing upon petiole, and the nature of thorns upon the branches, the fundamental number of the floral organs and its increase or decrease, the formation of pulp vesicles, the hardening of the rind of fruits, and other points affecting the universal affinity of plants as a whole, have been quite neglected in the past, the consideration of which would have helped the orderly in- development of the taxonomy of the subfamily. It is clear that the creased number of the floral and the of the organs development pulp vesicles features of the sub- are undoubtedly very important systematic such those of characteristics which family, but are out many significant take in the classification of the whole A character like the part group. increase or decrease of the number of locules, for instance, can occur Citrus and even within one genus, as in the well-known case of Fortunella. The ovules may be single, or binary, either superposed or collateral, or otherwise numerous in uni-, or biseriate arrangement: the gradation of this character is also continuous, as in the case of Triphasia, Merope and Wenzelia, all having similar floral characteristics but the last only has biseriate ovules.