Development of Various Semiconductor Quantum Devices

Total Page:16

File Type:pdf, Size:1020Kb

Development of Various Semiconductor Quantum Devices SPECIAL Development of Various Semiconductor Quantum Devices Tsukuru KaTsuyama Semiconductor quantum devices, composed of semiconductor quantum wells and superlattices, are widely used in our daily lives as key devices for opto-electronic equipment. The quantum well structure consists of alternating ultra-thin semiconductor films in which electrons and holes are confined. This structure gives rise to discrete energy levels and minibands in their potential wells, and thus induces new properties that cannot be obtained in a bulk material. These properties have enabled opto-electronics devices to have various new functions and high performance. This paper describes various semiconductor quantum photonic devices developed in Sumitomo Electric for applications in a wide spectrum range of 1 to 10 µm. These devices include a semiconductor quantum well laser and modulator for high speed optical communication, quantum cascade laser for environmental gas analysis, and near- infrared imaging sensor for life science applications. Keywords: quantum well, superlattice, semiconductor laser, quantum cascade laser, infrared sensor 1. Introduction 2. Quantum Well Structures and Materials Semiconductor quantum well structure, including su- First, the origin of unique physical properties induced perlattice structure, is one of the greatest inventions in the in quantum well structure is explained. Figure 1 describes field of compound semiconductor. The quantum well the energy state of quantum well structure. In the structure structure consists of alternating ultra-thin semiconductor where two compound semiconductors with different band films, in which electrons and holes are confined. There- gaps pile up alternatively, electrons and holes are confined fore, electrons and holes show two-dimensional behavior in the lower band gap layers. The thickness of the lower which induces new properties of material. This structure band gap layer approaches to the electron mean free path was proposed by Esaki and Tsu in 1969 (1) and has become (several tens of nanometers), energy levels of the electron the basis of innovative technologies to produce high per- in the conduction band and the hole in the valence band formance semiconductor devices. are quantized. In the valence band, each hole energy level In the early stage of development of quantum well is split into two energy levels (heavy hole and light hole). technologies, the research of carrier transport in the quasi- This phenomenon is called quantum size effect. Then, the two dimensional system had been performed and various density of states in the conduction and valence band be- devices were invented such as a high electron mobility tran- comes a staircase which is very different from parabolic in sistor (HEMT)(3) by applying modulation doping technol- bulk crystal as shown in Fig. 1. Therefore, the density of ogy (2) and a resonant tunneling transistor (4) using wave states near the minimum energy gap increases significantly. function engineering. Meanwhile, the research in optical Reflecting this, the optical gain spectrum width becomes properties of quantum well structure led to the invention narrower and optical gain dramatically improves. Perform- of various optical devices such as a quantum well laser (5), a quantum dot laser (6) an electro-absorption modulator, and a quantum cascade laser (7). We expect that this profound technology will continue to provide high performance and new functional semicon- ductor devices. Quantum well structure Sumitomo Electric Industries, Ltd. started the research Energy and development of compound semiconductor materials in the 1960s and semiconductor devices in the middle of Conduction band Electron the 1980s in order to establish optical communication busi- Bulk Semiconductor E2 ness integrating technology from materials, devices to quantum well systems. We have developed various kinds of high perform- E1 ance semiconductor devices by applying quantum well (8),(9) technology . Ehh Heavy hole This paper describes how this technology has been ap- Elh plied to various optical devices used in the field of infor- Light hole mation communication, life science, and environmental Valence band Density of state protection. Fig. 1. Energy state of quantum well structure 24 · Development of Various Semiconductor Quantum Devices ance improvement by introducing quantum well structure be decreased to about 3 µm. Since electrons and holes are to semiconductor lasers is attributed to this phenomenon. spatially separated in type II structure, optical transition ef- In addition to the quantum size effect, several unique ef- ficiency is lower than that of type I structure. fects which cannot be obtained in the bulk material, such In the wavelength region longer than 3 µm, intersub- as electro-absorption effect and tunneling effect, have also band transition using large conduction band offset of been applied to develop high performance and new func- AlInAs/InGaAs material systems can be applied. tional devices. Molecular Beam Epitaxy (MBE) and Organometallic Table 1 summarizes the application areas of the de- Vapor Phase Epitaxy (OMVPE) have been used for the vice, the type of the device, the type of quantum well struc- growth of these quantum well structures. MBE is a crystal ture, and material combinations from a view point of growth method that is performed using physical adsorp- wavelength that can be covered. Although application tion by irradiating the molecular beam in an ultrahigh vac- areas listed for each wavelength region are not limited to uum chamber. Since MBE is a high vacuum process, the this wavelength region, the application fields of informa- crystal quality and growth process can be characterized and tion and communications, life sciences, and environmental controlled by real time monitoring and can form very protection and security correspond to the wavelength re- abrupt hetero-interface. On the other hand, OMVPE is the gion of low loss optical fiber, the absorption region of bio- method of depositing semiconductor film by thermal de- logical components, and the fundamental vibration of the composition of organometallic sources and suitable for the molecule and the black body radiation at near room tem- growth of phosphorus compounds and mass production. perature, respectively. OMVPE is also suitable for selective area growth which is The wavelength that can be covered by quantum well essential for realizing high performance devices and mono- structure is determined by the combination, composition lithic integration of different types of devices. and thickness of material that form the quantum well struc- We established OMVPE crystal growth techniques as a ture. By controlling these parameters, the effective band core technology for the fabrication of semiconductor de- gap or optical transition energy can be designed. vices in the late 1980s. We designed the reactor and the gas In this paper, we describe quantum well structures supply system of OMVPE for realizing ultrafine structure based on the material system that can be formed on InP with good uniformity. Excellent uniformity over a 2-inch substrate. wafer with monolayer hetero-interface abruptness was ob- In the wavelength region used for optical fiber com- tained (10),(11). munication (1.2-1.7 µm), GaInAsP and AlGaInAs material systems are used to form type I quantum well structure in which smaller band gap material is sandwitched by larger band gap materials as shown in Tabel 1. In the type I struc- 3. Device Application ture, since electrons and holes are confined in the smaller band gap material, optical transition takes place between 3-1 Semiconductor lasers for communication the quantized energy level formed in conduction and va- The performance of semiconductor lasers has been lence band with a high efficiency. tremendously improved by applying quantum well struc- In the wavelength region from 1.7 µm to 3 µm, there ture. Without this technology, a full-fledged commercial- is no material system that can form type I structure on the ization of semiconductor lasers would not be possible. The InP substrate. Therefore, the quantum well structure called first operation of a quantum well laser was reported by Van type II using interband transition between the adjacent ma- der Ziel et al. (5) in 1975. We applied quantum well struc- terials has been devised to form a smaller band gap. The ture to semiconductor lasers used for optical communica- effective band gap of InGaAs/GaAsSb material systems can tion from the late 1980s, and introduced full OMVPE process for mass production. Then high performance lasers, including 1.3 µm Fabry-Perot lasers, 1.48 µm fiber amplifier pumping lasers, and uncooled DFB lasers, have Table 1. Summary of application areas of the device and quantum well (9) structure been commercialized . Recent explosive increase of traffic in transmission net- Wavelength 1 1.5 2 2.5 35810 (µm) work requires the expansion of transmission capacity of the NIR (Near Infrared) MIR (Mid-infrared) network. Much effort has been made to increase the capac- Appli- Information Life sciences Environment/Security cation communications Hyperspectrum Gas sensing, ity of the network by introducing wavelength division mul- Field Fiber communication imaging Remote sensing Thermography tiplexing (WDM) and multi level modulation. With the development of these multiplexing and modulation tech- Device Laser, modulator Image sensor Quantum cascade laser nologies, intensive study for increasing modulation speed
Recommended publications
  • Chapter 5 Semiconductor Laser
    Chapter 5 Semiconductor Laser _____________________________________________ 5.0 Introduction Laser is an acronym for light amplification by stimulated emission of radiation. Albert Einstein in 1917 showed that the process of stimulated emission must exist but it was not until 1960 that TH Maiman first achieved laser at optical frequency in solid state ruby. Semiconductor laser is similar to the solid state laser like the ruby laser and helium-neon gas laser. The emitted radiation is highly monochromatic and produces a highly directional beam of light. However, the semiconductor laser differs from other lasers because it is small in 0.1mm long and easily modulated at high frequency simply by modulating the biasing current. Because of its uniqueness, semiconductor laser is one of the most important light sources for optical-fiber communication. It can be used in many other applications like scientific research, communication, holography, medicine, military, optical video recording, optical reading, high speed laser printing etc. The analysis of physics of laser is quite difficult and we summarize with the simplified version here. The application of laser although with a slow start in the 1960s but now very often new applications are found such as those mentioned earlier in the text. 5.1 Emission and Absorption of Radiation As mentioned in earlier Chapter, when an electron in an atom undergoes transition between two energy states or levels, it either absorbs or emits photon. When the electron transits from lower energy level to higher energy level, it absorbs photon. When an electron transits from higher energy level to lower energy level, it releases photon.
    [Show full text]
  • Quantum Well Devices: Applications of the PIAB
    Quantum Well Devices: Applications of the PIAB. H2A Real World Friday What is a semiconductor? no e- Conduction Band Empty e levels a few e- Empty e levels lots of e- Empty e levels Filled e levels Filled e levels Filled e levels Insulator Semiconductor Metal Electrons in the conduction band of semiconductors like Si or GaAs can move about freely. Conduction band a few e- Eg = hν Energy Bandgap in Valence band Filled e levels Semiconductors We can get electrons into the conduction band by either thermal excitation or light excitation (photons). Solar cells use semiconductors to convert photons to electrons. A "quantum well" structure made from AlGaAs-GaAs-AlGaAs creates a potential well for conduction electrons. 10-20 nm! A conduction electron that get trapped in a quantum well acts like a PIAB. A conduction electron that get trapped in a quantum well acts like a PIAB. Quantum Wells are used to make Laser Diodes Quantum Well Laser Diodes Quantum Wells are used to make Laser Diodes Quantum Well Laser Diodes Multiple Quantum Wells work even better. Multiple Quantum Well Laser Diodes Multiple Quantum Wells work even better. Multiple Quantum Well LEDs Multiple Quantum Wells work even better. Multiple Quantum Well Laser Diodes Multiple Quantum Wells also are used to make high efficiency Solar Cells. Quantum Well Solar Cells Multiple Quantum Wells also are used to make high efficiency Solar Cells. The most common approach to high efficiency photovoltaic power conversion is to partition the solar spectrum into separate bands and each absorbed by a cell specially tailored for that spectral band.
    [Show full text]
  • Dephasing in an Electronic Mach-Zehnder Interferometer,” Phys
    Dephasing and Quantum Noise in an electronic Mach-Zehnder Interferometer Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Physik der Universität Regensburg vorgelegt von Andreas Helzel aus Kelheim Dezember 2012 ii Promotionsgesuch eingereicht am: 22.11.2012 Die Arbeit wurde angeleitet von: Prof. Dr. Christoph Strunk Prüfungsausschuss: Prof. Dr. G. Bali (Vorsitzender) Prof. Dr. Ch. Strunk (1. Gutachter) Dr. F. Pierre (2. Gutachter) Prof. Dr. F. Gießibl (weiterer Prüfer) iii In Gedenken an Maria Höpfl. Sie war die erste Taxifahrerin von Kelheim und wurde 100 Jahre alt. Contents 1. Introduction1 2. Basics 5 2.1. The two dimensional electron gas....................5 2.2. The quantum Hall effect - Quantized Landau levels...........8 2.3. Transport in the quantum Hall regime.................. 10 2.3.1. Quantum Hall edge states and Landauer-Büttiker formalism.. 10 2.3.2. Compressible and incompressible strips............. 14 2.3.3. Luttinger liquid in the QH regime at filling factor 2....... 16 2.4. Non-equilibrium fluctuations of a QPC.................. 24 2.5. Aharonov-Bohm Interferometry..................... 28 2.6. The electronic Mach-Zehnder interferometer............... 30 3. Measurement techniques 37 3.1. Cryostat and devices........................... 37 3.2. Measurement approach.......................... 39 4. Sample fabrication and characterization 43 4.1. Fabrication................................ 43 4.1.1. Material.............................. 43 4.1.2. Lithography............................ 44 4.1.3. Gold air bridges.......................... 45 4.1.4. Sample Design.......................... 46 4.2. Characterization.............................. 47 4.2.1. Filling factor........................... 47 4.2.2. Quantum point contacts..................... 49 4.2.3. Gate setting............................ 50 5. Characteristics of a MZI 51 5.1.
    [Show full text]
  • Auger Recombination in Quantum Well Laser with Participation of Electrons in Waveguide Region
    ARuegv.e Ar drev.c Momatbeinr.a Sticoi.n 5 in7 q(2u0a1n8tu) m19 w3-e1ll9 la8ser with participation of electrons in waveguide region 193 AUGER RECOMBINATION IN QUANTUM WELL LASER WITH PARTICIPATION OF ELECTRONS IN WAVEGUIDE REGION A.A. Karpova1,2, D.M. Samosvat2, A.G. Zegrya2, G.G. Zegrya1,2 and V.E. Bugrov1 1Saint Petersburg National Research University of Information Technologies, Mechanics and Optics, Kronverksky Pr. 49, St. Petersburg, 197101 Russia 2Ioffe Institute, Politekhnicheskaya 26, St. Petersburg, 194021 Russia Received: May 07, 2018 Abstract. A new mechanism of nonradiative recombination of nonequilibrium carriers in semiconductor quantum wells is suggested and discussed. For a studied Auger recombination process the energy of localized electron-hole pair is transferred to barrier carriers due to Coulomb interaction. The analysis of the rate and the coefficient of this process is carried out. It is shown, that there exists two processes of thresholdless and quasithreshold types, and thresholdless one is dominant. The coefficient of studied process is a non-monotonous function of quantum well width having maximum in region of narrow quantum wells. Comparison of this process with CHCC process shows that these two processes of nonradiative recombination are competing in narrow quantum wells, but prevail at different quantum well widths. 1. INTRODUCTION nonequilibrium carriers is still located in the waveguide region. Nowadays an actual research field of semiconduc- In present work a new loss channel in InGaAsP/ tor optoelectronics is InGaAsP/InP multiple quan- InP MQW lasers is under consideration. It affects tum well (MQW) lasers, because their lasing wave- significantly the threshold characteristics of laser length is 1.3 – 1.55 micrometers and coincides with and leads to generation failure at high excitation transparency windows of optical fiber [1-5].
    [Show full text]
  • Quantum Cascade Laser-Based Substance Detection: Approaching the Quantum Noise Limit
    Quantum cascade laser-based substance detection: approaching the quantum noise limit Peter C. Kuffnera, Kathryn J. Conroya, Toby K. Boysona, Greg Milford,a Mohamed A. Mabrok,a Abhijit G. Kallapura, Ian R. Petersena, Maria E. Calzadab, Thomas G. Spence,c Kennith P. Kirkbrided and Charles C. Harb a a School of Engineering and Information Technology, University College, The University of New South Wales, Canberra, ACT, 2600, Australia. b Department of Mathematical Sciences, Loyola University New Orleans, New Orleans, LA, 70118, USA. c Department of Chemistry, Loyola University New Orleans, New Orleans, LA, 70118, USA. d Forensic and Data Centres, Australian Federal Police, Weston, ACT, 2611, Australia. ABSTRACT A consortium of researchers at University of New South Wales (UNSW@ADFA), and Loyola University New Orleans (LU NO), together with Australian government security agencies (e.g., Australian Federal Police), are working to develop highly sensitive laser-based forensic sensing strategies applicable to characteristic substances that pose chemical, biological and explosives (CBE) threats. We aim to optimise the potential of these strategies as high-throughput screening tools to detect prohibited and potentially hazardous substances such as those associated with explosives, narcotics and bio-agents. Keywords: Quantum Cascade laser, Trace gas detection, Cavity Ringdown Spectroscopy, IR detection, Foren- sics 1. INTRODUCTION Analysis of bulk organic explosives is a straightforward task for well-equipped forensic laboratories, but it is more difficult to analyse trace amounts of organic explosive residues (particularly in highly-contaminated post- blast samples); this usually requires an elaborate sequence of solvent extraction from swabs and some form of chromatographic or electrophoretic separation.
    [Show full text]
  • Electronic and Photonic Quantum Devices
    Electronic and Photonic Quantum Devices Erik Forsberg Stockholm 2003 Doctoral Dissertation Royal Institute of Technology Department of Microelectronics and Information Technology Akademisk avhandling som med tillstºandav Kungl Tekniska HÄogskolan framlÄag- ges till offentlig granskning fÄoravlÄaggandeav teknisk doktorsexamen tisdagen den 4 mars 2003 kl 10.00 i sal C2, Electrum Kungl Tekniska HÄogskolan, IsafjordsvÄagen 22, Kista. ISBN 91-7283-446-3 TRITA-MVT Report 2003:1 ISSN 0348-4467 ISRN KTH/MVT/FR{03/1{SE °c Erik Forsberg, March 2003 Printed by Universitetsservice AB, Stockholm 2003 Abstract In this thesis various subjects at the crossroads of quantum mechanics and device physics are treated, spanning from a fundamental study on quantum measurements to fabrication techniques of controlling gates for nanoelectronic components. Electron waveguide components, i.e. electronic components with a size such that the wave nature of the electron dominates the device characteristics, are treated both experimentally and theoretically. On the experimental side, evidence of par- tial ballistic transport at room-temperature has been found and devices controlled by in-plane Pt/GaAs gates have been fabricated exhibiting an order of magnitude improved gate-e±ciency as compared to an earlier gate-technology. On the the- oretical side, a novel numerical method for self-consistent simulations of electron waveguide devices has been developed. The method is unique as it incorporates an energy resolved charge density calculation allowing for e.g. calculations of electron waveguide devices to which a ¯nite bias is applied. The method has then been used in discussions on the influence of space-charge on gate-control of electron waveguide Y-branch switches.
    [Show full text]
  • An Introduction to Quantum Field Theory Free Download
    AN INTRODUCTION TO QUANTUM FIELD THEORY FREE DOWNLOAD Michael E. Peskin,Daniel V. Schroeder | 864 pages | 01 Oct 1995 | The Perseus Books Group | 9780201503975 | English | Boulder, CO, United States An Introduction to Quantum Field Theory Totem Books. Perhaps they are produced by the excitation of a crystal that characteristically absorbs a photon of a certain frequency and emits two photons of half the original frequency. The other orbitals have more complicated shapes see atomic orbitaland are denoted by the letters dfgetc. In QED, its full description makes essential use of short lived virtual particles. Nobel Foundation. Problems 5. For a better shopping experience, please upgrade now. Planck's law explains why: increasing the temperature of a body allows it to emit more energy overall, An Introduction to Quantum Field Theory means that a larger proportion of the energy is towards the violet end of the spectrum. Main article: Double- slit experiment. We need to add that in the Lagrangian. This was one of the best courses I have ever taken: Professor Larsen did an excellent job both lecturing and coming up with interesting problems to work on. Something that is quantizedlike the energy of Planck's harmonic oscillators, can only take specific values. The quantum state of the An Introduction to Quantum Field Theory is described An Introduction to Quantum Field Theory its wave function. Quantum technology links Matrix isolation Phase qubit Quantum dot cellular automaton display laser single-photon source solar cell Quantum well laser. Conversely, an electron that absorbs a photon gains energy, hence it jumps to an orbit that is farther from the nucleus.
    [Show full text]
  • Modeling Multiple Quantum Well and Superlattice Solar Cells
    Natural Resources, 2013, 4, 235-245 235 http://dx.doi.org/10.4236/nr.2013.43030 Published Online July 2013 (http://www.scirp.org/journal/nr) Modeling Multiple Quantum Well and Superlattice Solar Cells Carlos I. Cabrera1, Julio C. Rimada2, Maykel Courel2,3, Luis Hernandez4,5, James P. Connolly6, Agustín Enciso4, David A. Contreras-Solorio4 1Department of Physics, University of Pinar del Río, Pinar del Río, Cuba; 2Solar Cell Laboratory, Institute of Materials Science and Technology (IMRE), University of Havana, Havana, Cuba; 3Higher School in Physics and Mathematics, National Polytechnic Insti- tute, Mexico City, Mexico; 4Academic Unit of Physics, Autonomous University of Zacatecas, Zacatecas, México; 5Faculty of Phys- ics, University of Havana, La Habana, Cuba; 6Nanophotonics Technology Center, Universidad Politécnica de Valencia, Valencia, Spain. Email: [email protected] Received January 23rd, 2013; revised May 14th, 2013; accepted May 27th, 2013 Copyright © 2013 Carlos I. Cabrera et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT The inability of a single-gap solar cell to absorb energies less than the band-gap energy is one of the intrinsic loss mechanisms which limit the conversion efficiency in photovoltaic devices. New approaches to “ultra-high” efficiency solar cells include devices such as multiple quantum wells (QW) and superlattices (SL) systems in the intrinsic region of a p-i-n cell of wider band-gap energy (barrier or host) semiconductor. These configurations are intended to extend the absorption band beyond the single gap host cell semiconductor.
    [Show full text]
  • From Quantum State Generation to Quantum Communications Claire Autebert
    AlGaAs photonic devices: from quantum state generation to quantum communications Claire Autebert To cite this version: Claire Autebert. AlGaAs photonic devices: from quantum state generation to quantum communica- tions. Quantum Physics [quant-ph]. Université Paris 7 - Denis Diderot, 2016. English. tel-01676987 HAL Id: tel-01676987 https://tel.archives-ouvertes.fr/tel-01676987 Submitted on 7 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Paris Diderot - Paris 7 Laboratoire Matériaux et Phénomènes Quantiques École Doctorale 564 : Physique en Île-de-France UFR de Physique THÈSE présentée par Claire AUTEBERT pour obtenir le grade de Docteur ès Sciences de l’Université Paris Diderot AlGaAs photonic devices: from quantum state generation to quantum communications Soutenue publiquement le 14 novembre 2016, devant la commission d’examen composée de : M. Philippe Adam, Invité M. Philippe Delaye, Rapporteur Mme Sara Ducci, Directrice de thèse M. Riad Haidar, Président M. Steve Kolthammer, Examinateur M. Aristide Lemaître, Invité M. Anthony Martin, Invité M. Fabio Sciarrino, Rapporteur M. Carlo Sirtori, Invité Acknowledgment En premier lieu, je tiens à remercier Sara Ducci qui a été pour moi une excellente directrice de thèse, tant du point de vue scientifique que du point de vue humain.
    [Show full text]
  • Chapter 2 Quantum Theory
    Chapter 2 - Quantum Theory At the end of this chapter – the class will: Have basic concepts of quantum physical phenomena and a rudimentary working knowledge of quantum physics Have some familiarity with quantum mechanics and its application to atomic theory Quantization of energy; energy levels Quantum states, quantum number Implication on band theory Chapter 2 Outline Basic concept of quantization Origin of quantum theory and key quantum phenomena Quantum mechanics Example and application to atomic theory Concept introduction The quantum car Imagine you drive a car. You turn on engine and it immediately moves at 10 m/hr. You step on the gas pedal and it does nothing. You step on it harder and suddenly, the car moves at 40 m/hr. You step on the brake. It does nothing until you flatten the brake with all your might, and it suddenly drops back to 10 m/hr. What’s going on? Continuous vs. Quantization Consider a billiard ball. It requires accuracy and precision. You have a cue stick. Assume for simplicity that there is no friction loss. How fast can you make the ball move using the cue stick? How much kinetic energy can you give to the ball? The Newtonian mechanics answer is: • any value, as much as energy as you can deliver. The ball can be made moving with 1.000 joule, or 3.1415926535 or 0.551 … joule. Supposed it is moving with 1-joule energy, you can give it an extra 0.24563166 joule by hitting it with the cue stick by that amount of energy.
    [Show full text]
  • Chapter 2 Semiconductor Heterostructures
    Semiconductor Optoelectronics (Farhan Rana, Cornell University) Chapter 2 Semiconductor Heterostructures 2.1 Introduction Most interesting semiconductor devices usually have two or more different kinds of semiconductors. In this handout we will consider four different kinds of commonly encountered heterostructures: a) pn heterojunction diode b) nn heterojunctions c) pp heterojunctions d) Quantum wells, quantum wires, and quantum dots 2.2 A pn Heterojunction Diode Consider a junction of a p-doped semiconductor (semiconductor 1) with an n-doped semiconductor (semiconductor 2). The two semiconductors are not necessarily the same, e.g. 1 could be AlGaAs and 2 could be GaAs. We assume that 1 has a wider band gap than 2. The band diagrams of 1 and 2 by themselves are shown below. Vacuum level q1 Ec1 q2 Ec2 Ef2 Eg1 Eg2 Ef1 Ev2 Ev1 2.2.1 Electron Affinity Rule and Band Alignment: How does one figure out the relative alignment of the bands at the junction of two different semiconductors? For example, in the Figure above how do we know whether the conduction band edge of semiconductor 2 should be above or below the conduction band edge of semiconductor 1? The answer can be obtained if one measures all band energies with respect to one value. This value is provided by the vacuum level (shown by the dashed line in the Figure above). The vacuum level is the energy of a free electron (an electron outside the semiconductor) which is at rest with respect to the semiconductor. The electron affinity, denoted by (units: eV), of a semiconductor is the energy required to move an electron from the conduction band bottom to the vacuum level and is a material constant.
    [Show full text]
  • New Frontiers in Quantum Cascade Lasers
    Physica Scripta INVITED COMMENT Related content - External cavity terahertz quantum cascade New frontiers in quantum cascade lasers: high laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range performance room temperature terahertz sources Yifan Jiang, Karun Vijayraghavan, Seungyong Jung et al. To cite this article: Mikhail A Belkin and Federico Capasso 2015 Phys. Scr. 90 118002 - Novel InP- and GaSb-based light sources for the near to far infrared Sprengel Stephan, Demmerle Frederic and Amann Markus-Christian - Recent progress in quantum cascade View the article online for updates and enhancements. lasers andapplications Claire Gmachl, Federico Capasso, Deborah L Sivco et al. Recent citations - Optical external efficiency of terahertz quantum cascade laser based on erenkov difference frequency generation A. Hamadou et al - Distributed feedback 2.5-terahertz quantum cascade laser with high-power and single-mode emission Jiawen Luo et al - H. L. Hartnagel and V. P. Sirkeli This content was downloaded from IP address 128.103.224.178 on 26/05/2020 at 19:55 | Royal Swedish Academy of Sciences Physica Scripta Phys. Scr. 90 (2015) 118002 (13pp) doi:10.1088/0031-8949/90/11/118002 Invited Comment New frontiers in quantum cascade lasers: high performance room temperature terahertz sources Mikhail A Belkin1 and Federico Capasso2 1 Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA 2 Harvard University, School of Engineering and Applied Sciences, 29 Oxford St., Cambridge, MA 02138, USA E-mail: [email protected] and [email protected] Received 19 June 2015, revised 25 August 2015 Accepted for publication 11 September 2015 Published 2 October 2015 Abstract In the last decade quantum cascade lasers (QCLs) have become the most widely used source of mid-infrared radiation, finding large scale applications because of their wide tunability and overall high performance.
    [Show full text]