New Frontiers in Quantum Cascade Lasers

Total Page:16

File Type:pdf, Size:1020Kb

New Frontiers in Quantum Cascade Lasers Physica Scripta INVITED COMMENT Related content - External cavity terahertz quantum cascade New frontiers in quantum cascade lasers: high laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range performance room temperature terahertz sources Yifan Jiang, Karun Vijayraghavan, Seungyong Jung et al. To cite this article: Mikhail A Belkin and Federico Capasso 2015 Phys. Scr. 90 118002 - Novel InP- and GaSb-based light sources for the near to far infrared Sprengel Stephan, Demmerle Frederic and Amann Markus-Christian - Recent progress in quantum cascade View the article online for updates and enhancements. lasers andapplications Claire Gmachl, Federico Capasso, Deborah L Sivco et al. Recent citations - Optical external efficiency of terahertz quantum cascade laser based on erenkov difference frequency generation A. Hamadou et al - Distributed feedback 2.5-terahertz quantum cascade laser with high-power and single-mode emission Jiawen Luo et al - H. L. Hartnagel and V. P. Sirkeli This content was downloaded from IP address 128.103.224.178 on 26/05/2020 at 19:55 | Royal Swedish Academy of Sciences Physica Scripta Phys. Scr. 90 (2015) 118002 (13pp) doi:10.1088/0031-8949/90/11/118002 Invited Comment New frontiers in quantum cascade lasers: high performance room temperature terahertz sources Mikhail A Belkin1 and Federico Capasso2 1 Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA 2 Harvard University, School of Engineering and Applied Sciences, 29 Oxford St., Cambridge, MA 02138, USA E-mail: [email protected] and [email protected] Received 19 June 2015, revised 25 August 2015 Accepted for publication 11 September 2015 Published 2 October 2015 Abstract In the last decade quantum cascade lasers (QCLs) have become the most widely used source of mid-infrared radiation, finding large scale applications because of their wide tunability and overall high performance. However far-infrared (terahertz) QCLs have lagged behind in terms of performance and impact due to the inability so far of achieving room temperature operation. Here we review recent research that has led to a new class of QCL light sources that has overcome these limitations leading to room temperature operation in the terahertz spectral range, with nearly 2 mW of optical power and significant tunability, opening up also this region of the spectrum to a wide range of applications. Keywords: quantum cascade lasers, terahertz, difference frequency generation (Some figures may appear in colour only in the online journal) 1. Introduction growth platform for photonic devices at communication wavelengths. MOVPE and MBE are now central to the pro- Last year marked the 20th anniversary of the invention and duction of QCLs. demonstration of the quantum cascade laser (QCL) at Bell The QCL avoids the operating principle of conventional Laboratories [1]. This achievement was the culmination of semiconductor lasers by relying on a radically different pro- 20 years of research on bandstructure engineering of semi- cess for light emission, which is independent of the band gap. conductor heterostructures [2] and in particular nanostructures Instead of using opposite-charge carriers in semiconductors in which quantum effects such as size quantization and (electrons and holes) at the bottom of their respective con- resonant tunneling become important [3]. While the design of duction and valence bands, which recombine to produce light man-made electronic and optical properties is central to band- of frequency ν≈Eg/h, where Eg is the energy band gap and structure engineering, its practical implementation in novel h is Planck’s constant, QCLs use only one type of charge devices was made possible by the epitaxial growth technique carriers (electrons), which undergo quantum jumps between of molecular beam epitaxy (MBE) pioneered by Alfred Y energy levels En and En−1 to create a laser photon of fre- Cho. MBE first enabled the growth of ultrathin semiconductor quency (En −En−1)/h. These energy levels do not exist layers with atomic precision down to a few atomic layers as naturally in the constituent materials of the active region, but well as unprecedented control of the composition of the are artificially created by structuring the active region into material. Later metalorganic vapor phase epitaxy (MOVPE) quantum wells of nanometric thickness. The motion of elec- demonstrated similar capabilities and became the standard trons perpendicular to the layer interfaces is quantized and 0031-8949/15/118002+13$33.001 © 2015 The Royal Swedish Academy of Sciences Printed in the UK Phys. Scr. 90 (2015) 118002 Invited Comment characterized by energy levels whose difference is determined 2. Energy diagram and quantum design by the thickness of the wells and by the height of the energy barriers separating them. The implication of this new This section briefly reviews the design principles of a QCL. approach, based on decoupling light emission from the band The energy diagram of the device at zero bias looks overall gap by utilizing instead optical transitions between quantized like a saw-tooth due to the compositionally graded regions, electronic states in the same energy band (known as inter- which consist of a digitally graded alloy of alternating ultra- subband transitions), are many and far reaching, amounting to thin semiconductor layers. Under high enough bias such that a laser with entirely different operating characteristics from the applied electric field suppresses the saw-tooth energy laser diodes and far superior performance and functionality. barriers, the band diagram is transformed into an energy Initially greeted as a scientific curiosity, due to its com- staircase and electrons are injected efficiently into the excited plex structure and low-temperature operation, the QCL fast state of suitably designed quantum wells, emitting a laser established itself as the leading mid-infrared (mid-IR) source photon at each stage. The energy diagram of the QCL drew of coherent radiation due to the ability to tailor the emission inspiration from the design of the staircase avalanche photo- wavelength across the entire mid-IR spectrum, from 3 to diode (or solid state photomultiplier), which consists of [ ] beyond 20 μm, its unprecedented tunability and high perfor- multiple identical graded gap regions 11 . Under high mance operation at room temperature in the two atmospheric enough applied bias the sawtooth energy diagram turns into a windows with pulsed and continuous-wave (CW) powers up staircase and photogenerated electrons roll down, gaining – to 100 and 10 W respectively. One should recall that before enough energy at the steps to create an electron hole pair by the advent of QCLs the mid-IR spectrum had a very limited impact ionization at the potential step given by band dis- choice of light sources which explains why applications and continuity. The number of stages typically ranges from 20 to – μ commercial development in this sector was very limited. 35 for lasers designed to emit in the 4 8 m range, but Carbon dioxide lasers, while important tools for high power working lasers can have as few as one or as many as over 100 industrial applications such as cutting and welding, have very stages. This cascade effect is responsible for the very high power that QCLs can attain. In QCLs, unlike in a laser diode, limited wavelength range and tunability. Diode lasers in the an electron remains in the conduction band after emitting a mid-IR have had very limited impact due fundamental diffi- laser photon. The electron can therefore easily be recycled by culties in operating at room temperature, very small tunability being injected into an adjacent identical active region, where and lack of robustness in terms of fabrication and reliability it emits another photon, and so forth. on account of their small bandgap. The operating principle of a QCL can be understood from QCL based spectroscopy and its applications to chemical figure 1, which illustrates the band diagram of a QCL sensing, in all its implementations (atmospheric chemistry, designed to emit photons of wavelength λ=7.5 μm. The trace gas analysis for applications such as pollution mon- conduction band slope (units of energy over distance) divided itoring, industrial process control, combustion diagnostics, by the electronic charge is the applied electric field. Each health care (medical diagnostics such as breath analysis, ) fi QCL stage consists of an active region and of an electron surgery have seen an unprecedented growth scienti cally, injector. The former contains three energy levels; the laser technologically and commercially with about thirty compa- photon is emitted in the transition between states 3 and 2, [ ] nies active, large and small 4 . Another sector where QCLs which is controlled primarily by the two wider wells thick- ( – ) are having a major impact is high power 1 10 W CW ness. To achieve a large population inversion between states 3 applications in areas such as infrared countermeasures to and 2 the lifetime of level 3 is designed to be much longer protect aircraft from heat seeking missiles; new emerging than that of state 2. To this end state 1 is positioned applications are material processing for example for 3D approximately an optical phonon energy (∼34 meV in printing where one can use wavelength selective chemistry to InGaAs/AlInAs materials) below level 2, which guarantees mold materials. that electrons in this level resonantly scatter to energy level 1 Recent and earlier reviews of QCLs and their application by emitting an optical phonon, an extremely fast process can be found in [5–9]. characterized by a relaxation time of the order of 0.1–0.2 ps. In 2002 Alessandro Tredicucci and his team at the Uni- Electrons in state 3 relax much more slowly to level 2 owing versity of Pisa demonstrated the first QCL operating in the to the much larger energy difference, a non-resonant phonon far-IR also known as the THz spectral region [10].
Recommended publications
  • Quantum Cascade Laser-Based Substance Detection: Approaching the Quantum Noise Limit
    Quantum cascade laser-based substance detection: approaching the quantum noise limit Peter C. Kuffnera, Kathryn J. Conroya, Toby K. Boysona, Greg Milford,a Mohamed A. Mabrok,a Abhijit G. Kallapura, Ian R. Petersena, Maria E. Calzadab, Thomas G. Spence,c Kennith P. Kirkbrided and Charles C. Harb a a School of Engineering and Information Technology, University College, The University of New South Wales, Canberra, ACT, 2600, Australia. b Department of Mathematical Sciences, Loyola University New Orleans, New Orleans, LA, 70118, USA. c Department of Chemistry, Loyola University New Orleans, New Orleans, LA, 70118, USA. d Forensic and Data Centres, Australian Federal Police, Weston, ACT, 2611, Australia. ABSTRACT A consortium of researchers at University of New South Wales (UNSW@ADFA), and Loyola University New Orleans (LU NO), together with Australian government security agencies (e.g., Australian Federal Police), are working to develop highly sensitive laser-based forensic sensing strategies applicable to characteristic substances that pose chemical, biological and explosives (CBE) threats. We aim to optimise the potential of these strategies as high-throughput screening tools to detect prohibited and potentially hazardous substances such as those associated with explosives, narcotics and bio-agents. Keywords: Quantum Cascade laser, Trace gas detection, Cavity Ringdown Spectroscopy, IR detection, Foren- sics 1. INTRODUCTION Analysis of bulk organic explosives is a straightforward task for well-equipped forensic laboratories, but it is more difficult to analyse trace amounts of organic explosive residues (particularly in highly-contaminated post- blast samples); this usually requires an elaborate sequence of solvent extraction from swabs and some form of chromatographic or electrophoretic separation.
    [Show full text]
  • High Power Spatial Single-Mode Quantum Cascade Lasers at 8.9 Μm
    High power spatial single-mode quantum cascade lasers at 8.9 µm S.Forget, C.Faugeras, J-Y.Bengloan, M.Calligaro, O.Parillaud, M.Giovannini, J.Faist and C.Sirtori Abstract : High performance of InP-based quantum cascade lasers emitting at λ ≈ 9µm are reported. Thick electroplated gold layer was deposited on top of the laser to improve heat dissipation. With one facet high reflection coated, the devices produce a maximum output power of 175mW at 40% duty cycle at room temperature and continuous-wave operation up to 278K. Introduction : Since their first demonstration in 1994 [1], the quantum cascade laser [2] (QCL) is one of the most promising mid- and far-infrared wavelength coherent light source. Its performances in terms of power and operating temperature have been continuously improved and the range of available wavelengths extended. These unipolar lasers are able to cover the wavelength range from 3 to more than 100 µm, and more specifically operate efficiently in the two atmospheric windows (3-5 µm and 8-14µm). Those mid-IR lasers are needed for chemical sensing, free-space optical communications or spectroscopy [3, 4]. These applications require high power, room temperature continuous wave (CW) operation with a diffraction limited laser beam. We report on devices based on InP substrates with a GaInAs/AlInAs active region have proved to be the most efficient material system with regard to the emitted power and CW operation [5]. The main difficulty on the route to high power and CW operation at room temperature is the large amount of heat that must be dissipated in the device.
    [Show full text]
  • Continuous-Wave Room-Temperature Inas Quantum Cascade Laser
    86 Technology focus: Lasers Continuous-wave room-temperature InAs quantum cascade laser Doping profile used to red-shift optically pumped long-wavelength quantum well. niversity of Montpellier in France has claimed Uthe first continuous- wave (cw) operation at room temperature of a 15µm indium arsenide (InAs) quantum cascade laser (QCL) [Alexei N. Baranov et al, Optics Express, vol. 24, p18799, 2016]. “To our knowledge, the longest emission wavelength of RT cw operation for QCLs fabricated from other materials is 12.4µm,” the team reports. The thresholds are also claimed to be the lowest to-date for InAs QCLs. “One of the reasons of this progress can be attributed to the reduction of optical losses both in the waveguide itself and in the laser active region Figure 1. Threshold current density (circles) and initial slope of light-current due to the decreased doping curves (squares) in pulsed mode as a function of temperature for lasers and shorter operating wave- with different ridge width: full symbols, 16µm; open symbols 20µm. Inset: length and thus weaker free emission spectra of 16µm-wide laser at room temperature and at 400K. carrier absorption,” the team comments. perature. The pulsed threshold current density (Jth) The cascade consisted of 55 active stages with InAs varied between 1.22kA/cm2 for a QCL with a 8µm-wide wells and aluminium antimonide (AlSb) barriers. ridge and 0.73kA/cm2 for one with a 20µm ridge. The doping of the active region was reduced by 6x The researchers comment: “The higher Jth in narrow compared with a previous device reported by the devices is due to a larger overlap of the optical mode same researchers.
    [Show full text]
  • Mid-Infrared Gaas/Algaas Quantum Cascade Lasers Technology
    Vol. 116 (2009) ACTA PHYSICA POLONICA A Supp. Proceedings of the III National Conference on Nanotechnology NANO 2009 Mid-Infrared GaAs/AlGaAs Quantum Cascade Lasers Technology A. Szerling, P. Karbownik, K. Kosiel, J. Kubacka-Traczyk, E. Pruszyńska-Karbownik, M. Płuska and M. Bugajski Institute of Electron Technology, al. Lotników 32/46, 02-668, Warsaw, Poland The fabrication technology of AlGaAs/GaAs based quantum cascade lasers is reported. The devices operated in pulsed mode at up to 260 K. The peak powers recorded at 77 K were over 1 W for the GaAs/Al0:45Ga0:55As laser without anti-reflection/high-reflection coatings. PACS numbers: 42.55.Px, 85.60.–q, 85.35.Be, 72.80.Ey, 73.61.Ey, 78.66.Fd 1. Introduction for current injection was narrower than the ridge width, which minimizes absorption of generated radiation in di- The quantum cascade lasers (QCLs) are unipolar de- electric layers insulating mesa sidewalls [6, 15]. vices based on intersubband transitions and tunnelling As a rule the relatively high voltages as well as current transport [1, 2]. The GaAs-based QCLs have proved to densities are necessary to polarize QCLs. That indicates be an effective source of laser radiation in mid-infrared demand for low resistance ohmic contacts in order to re- (MIR) as well as far-infrared (FIR) regions. They find duce the device serial resistance. These contacts should application in the gas sensing systems (e.g., for detecting be characterized by thermal stability, low depth of metal CO , NO, CH ) [3], medical diagnostics [4] and environ- 2 4 diffusion into semiconductor layers and lateral uniformity ment monitoring [5].
    [Show full text]
  • Family Type and Incidence
    STRAINED INDIUM ARSENIDE/GALLIUM ARSENIDE LAYER FOR QUANTUM CASCADE LASER DESIGN USING GENETIC ALGORITHM David Mueller Dr. Gregory Triplett, Dissertation Supervisor ABSTRACT Achieving high power, continuous wave, room temperature operation of midinfrared (3-5 um) lasers is diffcult due to the effects of auger recombination in band-to-band designs. Intersubband laser designs such as quantum cascade lasers reduce the effects of recombination, increasing efficiency and have advantages in large tunability of wavelength ranges. Highly efficient quantum cascade laser designs are typically used in lasers designed for >5 um wavelength operation due to the small offset of conduction band energy in lattice matched materials. Some promising material systems have been used to achieve high-power output in the first atmospheric window (3-5 um) but still suffer from low efficiency. Larger ıconduction band offset is attainable through the use of strained materials. However, these material systems have limitations on the traditional (100) crystal orientation due to the large strain and low critical thickness. The necessity for controlled two-dimensional, optical quality layer growth limits the amount of strain incorporation due to defect formation in highly lattice mis-matched layers. The material systems used in this study are GaAs (100) and (111)B, AlGaAs, and (Ga)InAs. In the initial stage of research, I found that pseudomorphic growth of highly strained InAs layers on GaAs (111)B is possible. However, the growth window is very narrow and necessitates precise control over growth temperature and anion overpressure to achieve optical quality layers. As a result, a second stage of research explores the design space made available by this finding by using genetic algorithm based design and simulation of devices with a Schrodinger-Poisson solver.
    [Show full text]
  • Mid-Infrared Quantum Cascade Laser Operable in High Temperature (200°C)
    NEW AREAS Mid-infrared Quantum Cascade Laser Operable in High Temperature (200°C) Hiroyuki YOSHINAGA*, Takashi KATO, Yukihiro TSUJI, Hiroki MORI, Jun-ichi HASHIMOTO, and Yasuhiro IGUCHI ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- A quantum cascade laser (QCL) is the most promising semiconductor laser for trace gas sensing in the mid-infrared region due to its excellent features such as a small chip size, high speed modulation, and a narrow linewidth. In practical gas-sensing, QCLs are required to achieve single-mode operation and wide-wavelength tuning without mode-hopping for high-sensitive and multiple gas detection. To obtain the wide tuning range of QCLs, increasing the operation temperature is effective. Therefore, we have developed a distributed feedback (DFB)-QCL that can operate at high temperature by introducing our original strain-compensated core structure and buried-hetero waveguide structure. As a result, we have successfully achieved single-mode operation without mode-hopping between -40ºC and 200ºC under a pulse condition, leading to a wide tuning range of 123 nm with only a single- waveguide QCL. As a future challenge, we will develop a gas-sensing method using the above-mentioned DFB-QCLs as the light source. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
    [Show full text]
  • Light-Enhanced Incoherence of Electronic Transport in Quantum Cascade Lasers Andrzej Kolek
    www.nature.com/scientificreports OPEN Light-enhanced incoherence of electronic transport in quantum cascade lasers Andrzej Kolek Since their invention in the middle of the 1990s, quantum cascade lasers (QCLs) attract increasing theoretical interest stimulated by their widening applications. One of the key theoretical issues is the optimization of electronic transport which in most of these devices is governed by the injection barrier of QCL heterostructure. In the paper, the nonequilibrium Green’s function formalism is used to study electronic transition through the injection barrier as a function of laser feld in the cavity; for the increasing feld, a crossover is observed from the strong coupling regime, in which electronic transport through the barrier is coherent, to the weak coupling regime, in which electronic transport gets incoherent. This crossover is characterized by gain recovery time, τrec, which takes sub-picosecond values for mid-IR QCLs operating at room temperature. This time is also important for the performance of devices under steady-state conditions; the maximum output power is obtained when the fgure of merit, FOM = (g(0)/gth − 1)/gcτrec [g(0) is the linear response gain, gth is the threshold gain needed to compensate all losses, gc is the gain cross-section], reaches maximum. It is shown that the use of this optimization criterion can result in the structures essentially diferent from those which can be obtained when the optimized quantity is the linear response gain, g(0). Quantum cascade laser (QCL) is a semiconductor device used to emit the radiation in the mid-IR or THz fre- quency range.
    [Show full text]
  • New Developments in Gaas-Based Quantum Cascade Lasers
    New Developments in GaAs-based Quantum Cascade Lasers Chris Neil Atkins PhD Thesis October 2013 Department of Physics and Astronomy Abstract This thesis presents a study of the design and optimisation of gallium-arsenide-based quantum cascade lasers (QCLs). Traditionally, the optical and electrical performance of these devices has been inferior in comparison to QCLs that are based on the InP material system, due mainly to the limitations imposed on performance by the intrinsic material properties of GaAs. In an attempt to improve the performance of GaAs QCLs, indium-gallium-phosphide and indium-aluminium-phosphide have been used as the waveguide cladding layers in several new QCL designs. These two materials combine low waveguide losses with a high confinement of the laser optical mode, and are easily integrated into typical GaAs QCL structures. Devices containing a double-phonon relaxation active region design have been combined with an InAlP waveguide, with the result being that the lowest threshold currents yet observed for a GaAs-based QCL have been observed - 2.1kA/cm2 and 4.0kA/cm2 at 240K and 300K respectively. Accompanying these low threshold currents however, were large operating voltages approaching 30V at room-temperature and 60V at 80K. These voltages were responsible for a high rate of device failure due to overheating. In an attempt to address this situation, two transitional layer (TL) designs were applied at the QCL GaAs/InAlP interfaces in order to aid electron flow at these points. The addition of the TLs resulted in a lowering of operating voltage by ~12V and 30V at 300K and 240K respectively, however threshold current density increased to 5.1kA/cm2 and 2.7kA/cm2 at the same temperatures.
    [Show full text]
  • Terahertz Quantum Cascade Lasers, Electronics, and Real-Time Imaging
    Chapter 27. Terahertz Quantum Cascade, Electronics, and Real-time Imaging Terahertz Quantum Cascade Lasers, Electronics, and Real-time Imaging Academic and Research Staff Professor Qing Hu Postdoctoral Associates Benjamin S. Williams Graduate Students Hans Callebaut, Sushil Kumar, Alan Lee, Qi Qin Introduction THz frequencies (f = 0.3-10 THz) remain one of the most underdeveloped frequency ranges, even though the potential applications in remote sensing and imaging, spectroscopy, and communications are great. This is mainly due to lack of coherent sources with high output power levels. The difficulty to generate THz radiation is because of the so-called "THz gap" in conventional semiconductor devices, which falls between two other frequency ranges in which solid-state sources have been well developed. One is the microwave and millimeter-wave frequency range, and the other is the near-infrared and optical frequency range. Semiconductor electronic devices that utilize oscillating conduction current J (such as transistors, Gunn oscillators, Schottky-diode frequency multipliers, and photomixers) are limited by the transit time and parasitic RC time constants. Consequently, the power level of these electronic devices decreases rapidly as the frequency f increases above 1 THz. In contrast to the electronic devices, photonic or quantum electronic devices (such as laser diodes) generate radiation by ∂p oscillating bounded dipoles (which give rise to an oscillating displacement current ). As a result, they ∂ t are not limited by the transient time and/or the RC time constant. However, for conventional bi-polar laser diodes, they are limited to frequencies above that corresponds to the semiconductor energy gap, which is higher than 10 THz even for narrow-gap lead-salt materials.
    [Show full text]
  • Quantum Cascade Laser User's Manual
    QUANTUM CASCADE LASER USER’S MANUAL Version number 3.0 c 2012 ALPES LASERS SA This page intentionally left blank. COPYRIGHT INFORMATION This manual can be copied and distributed under the following conditions: the work must be attributed in the manner specified by the author or licensor, and cannot be altered or transformed. WARRANTY 1. The customer must control the incoming deliveries and inform ALPES LASERS about incomplete shipments or defective goods within 30 days after delivery. ALPES LASERS warrants that the products respect the performance set forth in the quotation, provided that the product is used according to ALPES LASERS recommendations described in the datasheet included in the shipment. 2. Defective products will be replaced during the 2 years following delivery. 3. All other claims such as purchase refund, product reconditioning or damage of any nature, be it direct, indirect or consequential, are expressly ousted. 4. The customer is aware of laser products being devices with a statistical rate of failure. Depending on the use made of this product, it is the customer’s respon- sibility to use caution, redundancy and appropriate technical measurement to ensure the final product’s proper operation. 5. In case of discrepancy between the manual and terms written in the order con- firmation, the order confirmation prevails. CONTACT INFORMATION Max-Meuron 1-3 C.P. 1766 CH-2001 Neuchâtel Switzerland Telephone: +41 32 729 9510 Fax: +41 32 721 3619 Email: [email protected] Web site: http://www.alpeslasers.ch c 2012 SA iii This page intentionally left blank. Preface This manual is a reference tool for personnel using ALPES LASERS QCLs and elec- tronic equipment.
    [Show full text]
  • Quantum Cascade Laser Code Prediction
    Quantum Cascade Laser Code Prediction Dr. Christopher Baird Submillimeter-Wave Technology Laboratory University of Massachusetts Lowell February, 2009 OUTLINE I. Current Work A. Introduction & Code Structure Overview B. Finding the Wave Functions C. Finding the Scattering Times D. Finding the Populations and Gain II. Future Work WHAT IS A QCL? A Quantum Cascade Laser (QCL) is a next-generation device that uses electron transitions between man-made quantum well levels, as opposed to traditional lasers that use transitions between atomic levels. WHAT IS A QCL? Quantum wells are built by stacking up alternating layers of semiconductors with thicknesses of only a few atoms. WHAT IS A QCL? Molecular Beam Epitaxy (MBE) system used at UMass to build QCL's layer by layer. HOW DOES A QCL WORK? E AlGaAs GaAs AlGaAs E (z) c Ψ (z) Conduction V(z) Φ(z) n Band E E (z) n F Φ(z) E (z) Φ(z) E (z) g v Valence Band -eΔΦ app z ΔΦ : Externally applied voltage drop E : Energies of possible quantum states applied n Φ(z): Built-in potential E (z) : Fermi energies F E (z) : Conduction band edge energy in bulk E (z) : Valence band edge energy in bulk c v V(z) : Effective conduction band edge energy E (z) : Band-gap energies in bulk g Ψ (z): Wave functions n HOW DOES A QCL WORK? By properly adjusting the layer thicknesses, the quantum states are fine-tuned until lasing occurs. The electrons cascade down through the quantum states like a waterfall, emitting laser radiation at each drop.
    [Show full text]
  • Arxiv:1912.03988V2 [Cond-Mat.Mes-Hall] 10 Feb 2021 [2, 13–15], Threshold Current Densities Found in Qcls Are [24–29]
    Terahertz Lasing at Roomtemperature: Numerical Study of a Vertical-Emitting Quantum Cascade Laser Based on a Quantum Dot Superlattice Alexander Mittelst¨adt,∗ Ludwig A. Th. Greif, Stefan T. Jagsch, and Andrei Schliwa Institut f¨urFestk¨orperphysik, Technische Universit¨atBerlin, Hardenbergstr. 36, 10623 Berlin, Germany (Dated: February 11, 2021) We investigate room temperature lasing of terahertz quantum cascade lasers using quantum dot chains as active material suitable for wireless communication and imaging technologies. Bandstruc- ture calculations for such extended systems of coupled quantum dots are made possible by a novel `linear combination of quantum dot orbitals'{method, based on single quantum dot wavefunctions. Our results demonstrate strong vertical-emission of coupled quantum dots, reduced phonon coupling and in-plane scattering, enabling room-temperature lasing with significantly reduced threshold cur- rent densities. In conventional quantum cascade lasers (QCLs), elec- x trons run down a staircase potential generated by a su- (a) (b) (c) perlattice of coupled quantum wells, where amplification y of radiation occurs via electronic intra-band transitions, a concept first proposed by Kazarinov and Suris in 1971 [1]. Population inversion between the sub-bands is achieved z by meticulous engineering of electron lifetimes and tran- sition probabilities by means of layer thicknesses and ex- b ternal bias, thus, tuning intra-band transitions with meV accuracy. Since the first realization of a QCL operating in the mid-infrared by Faist et al. in 1994 [2], constant Figure 1. Schematics of a QD-QCL. (a) Chains of electroni- development of device design and material growth paved cally coupled QDs form an array in the active region of the the way for the first QCL operating within the terahertz QCL.
    [Show full text]