(12) United States Patent (10) Patent No.: US 9,381,189 B2 Green Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 9,381,189 B2 Green Et Al US009381189B2 (12) United States Patent (10) Patent No.: US 9,381,189 B2 Green et al. (45) Date of Patent: Jul. 5, 2016 (54) INGREDIENTS FOR INHALATION AND (56) References Cited METHODS FOR MAKING THE SAME U.S. PATENT DOCUMENTS (75) Inventors: Matthew Michael James Green, 4,582,265 A * 4/1986 Petronelli ....................... 241.95 Wiltshire (GB); Richard Michael Poole, 6,257,233 B1 7/2001 Burr et al. 2004/01 18007 A1* 6/2004 Chickering et al. ............ 34/360 Wiltshire (GB) 2006, O257491 A1* 11, 2006 Morton et al. ... 424/489 (73) Assignee: VECTURA LIMITED, Wiltshire (GB) 2008/0063719 A1 3/2008 Morton et al. ................ 424/489 (*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 EP O709086 A2 5, 1996 U.S.C. 154(b) by 641 days. EP 14981 16 A1 1, 2005 GB 2387781 A 10, 2003 JP 2005298.347 10/2005 (21) Appl. No.: 13/514,672 JP 200954.1393 11, 2009 JP 2012,542618 6, 2012 (22) PCT Fled: Dec. 8, 2010 WO 96.23485 A1 8, 1996 WO 9703649 A1 2, 1997 (86) PCT NO.: PCT/GB2O10/052053 WO O2OO197 A1 1, 2002 WO O243701 A2 6, 2002 S371 (c)(1), WO 2005105043 A2 11/2005 Aug. 20, 2012 WO 2007053904 A1 5/2007 (2), (4) Date: WO 2008.000482 1, 2008 (87) PCT Pub. No.: WO2O11AO70361 WO 2009095684 A1 8, 2009 OTHER PUBLICATIONS PCT Pub. Date: Jun. 16, 2011 Brunauer et al. "Adsorption of Gases in Multimolecular Layers'. J. (65) Prior Publication Data Am. Chem. Soc., vol. 60, (Feb. 1938) pp. 309-319. Nagai, et al. “Improvement in Dissolution Property of Poorly Water US 2012/0309809 A1 Dec. 6, 2012 Soluble Drugs by Using Mechanofusion System.” J. Soc. Powder Technol. Japan, 43, 640-647 (2006). (30) Foreign Application Priority Data Japanese Pharmaceutical Additives Directory 2007, p. 138. Dec. 8, 2009 (GB) ................................... O921481.8 * cited by examiner (51) Int. C. Primary Examiner — Bethany Barham A6 IK 9/14 (2006.01) Assistant Examiner — Melissa Javier A6 IK3I/404 (2006.01) (74) Attorney, Agent, or Firm — Matthew S. Gibson; Reed B2C 23/00 (2006.01) Smith LLP CO7D 209/6 (2006.01) A6 IK3I/4045 (2006.01) (57) ABSTRACT A61 K9/00 (2006.01) A method of processing an active ingredient, the method (52) U.S. C. comprising Submitting a pharmaceutically active ingredient CPC ............. A6 IK3I/4045 (2013.01); A61 K9/141 in the absence of excipients and/or additives to compression (2013.01); A61 K9/0073 (2013.01) and shearing forces. The invention also relates to composi (58) Field of Classification Search tions comprising an active prepared by the method. None See application file for complete search history. 16 Claims, 5 Drawing Sheets U.S. Patent Jul. 5, 2016 Sheet 1 of 5 US 9,381,189 B2 Fig 1 Circularity of sumatriptan succinate blends over time at 25/60 storage conditions ---.S.--Sysa-as --Jetmilled --&-sto MCB or Hum MCB Time (months) Fig 2 Circularity of sumatriptan succinate blends over time at 40/75 storage conditions 1.00 ys fS-0-Jetmilled rostd MCB so Hum MCB Time (months) U.S. Patent Jul. 5, 2016 Sheet 2 of 5 US 9,381,189 B2 Fig 3 Convexity of sumatriptan succinate blends over time at 25/60 storage conditions s |-0- Jetmilled ic-sc std MCB 3 as Hum MCB Time (months) Fig. 4 Convexity of Sumatriptan succinate blends over time at 40/75 storage conditions i --Jetmilled --S-a Std MCB 3 as Hum MCB Time (months) U.S. Patent Jul. 5, 2016 Sheet 3 of 5 US 9,381,189 B2 Fig 5 CE d(50) of Sumatriptan succinate blends over time at 25/60 storage conditions 3.50 as 3.00 s Š E 2.50 aga Jetmilled \SYYYYYY stic micb c 2.OO Hum M CB O 150 1.OO O 2 4 6 Time (months) Fig 6 CE d(50) of Sumatriptan succinate blends over time at 40/75 storage conditions 3.50 s 3.00 Es 2.50 -- Jetmilled Š \Six stc. mCb O 2.OO r Hum MCB O 150 1.OO s O 2 4. 6 Time (months) U.S. Patent Jul. 5, 2016 Sheet 4 of 5 US 9,381,189 B2 Fig 7 Amorphous content of processed sumatriptan blends Over time S. O.O2OO --Jet milled 25/60 Š 0.0150 esse Jet milled 40/75 S ...S. Std MCB 25/60 & ... 3: ... Std MCB 40/75 5 0.01.00 – -8- Hum MCB 25/60 -- Hum MCB 40/75 0.0050 - OOOOO - O 2 4 6 Timepoint (months) U.S. Patent Jul. 5, 2016 Sheet 5 of 5 US 9,381,189 B2 Fig 8 Stabiliy of Sumatriptan Succinate blends. (25/60 storage, F1, 12.29mg dose) 10.0 9. O & cere -' -8-DD Jetmilled 8.0 a s ...s--- DD MCB 5 7.0 a? Sas re-DD Hum MCB --- "--, -o-FPD Jetmilled 5. 6.O ...X.... FPDMCB 5. O --&- FPD Hum MCB E D O 3 5 6 Time (months) Fig 9 Stability of sumatriptan succinate blends. (40775 storage, F1, 12.29mg dose) 10.0 -- DD Jetmilled G ...&... DD MCB 5 ~&- DD Hum MCB s -----. FPD Jetmilled S. ...&... FPD MCB as a FPD Hum MCB S C Of O 1 2 3 4 5 6 Time (months) US 9,381,189 B2 1. 2 INGREDIENTS FOR INHALATION AND The reduced tendency of the particles to bond strongly, METHODS FOR MAKING THE SAME either to each other or to the device itself, not only reduces powder cohesion and adhesion, but can also promote better RELATED APPLICATIONS flow characteristics. These effects lead to improvements in the dose reproducibility because it reduces the variation in the This application is the United States National Stage Appli amount of powder metered out for each dose and improves the cation of International Application No. PCT/GB2010/ release of the powder from the device. It also increases the 052053, filed Dec. 8, 2010, which was published as Interna likelihood that the active material which does leave the device tional Publication No, WO 2011/070361 A1, and which will reach the lower lung of the patient. claims benefit of Great Britain Patent Application No. 10 The use of additive materials in this manner is disclosed in O921481.8 filed Dec. 8, 2009. Both applications are incorpo WO 96/23485 and WO 97/03649. It is also known that intensive co-milling of micronised rated by reference in their entirety herewith. drug particles with additive material may be carried out in The present invention relates to active ingredients for inha order to produce composite active particles. This co-microni lation and methods for making Such active ingredients. 15 sation can improve dispersibility, as disclosed in WO Inhalation represents a very attractive, rapid and patient 02/43701. In addition, WO 02/00197 discloses the intensive friendly route for the delivery of systemically acting drugs, as co-milling offine particles of excipient material with additive well as for drugs that are designed to act locally on the lungs material, to create composite excipient particles to which fine themselves. It is particularly desirable and advantageous to active particles and, optionally, coarse carrier particles may develop technologies for delivering drugs to the lungs in a be added. This co-micronisation of fine excipient particles predictable and reproducible manner. and additive material has also been shown to improve dispers The key features which make inhalation a useful drug ibility. delivery route are: rapid speed of onset; improved patient There is still a need for improved dry powderformulations. acceptance and compliance for a non-invasive systemic route; In one aspect the invention relates to a method of process reduction of side effects; product life cycle extension; 25 ing an active ingredient, the method comprising Submitting a improved consistency of delivery; access to new forms of pharmaceutically active ingredient or ingredients in the therapy, including higher doses, greater efficiency and accu absence of excipients (e.g. carrier particles) and/or additives racy of targeting; and direct targeting of the site of action for to compression and shearing forces. locally administered drugs, such as those used to treat lung In one aspect the invention relates to a method of process diseases. 30 ing an active ingredient, the method comprising Submitting a However, the powder technology behind successful dry pharmaceutically active ingredient or ingredients alone to powders and dry powder inhaler (DPI) or pressured metered compression and shearing forces. dose inhalers (pMDI) products remains a significant technical In one aspect the active is a micronised active. hurdle to those wishing to succeed with this route of admin The invention further relates to an active ingredient obtain istration and to exploit the significant product opportunities. 35 able or obtained using the above method. Any formulation suitably has properties that allow for the The invention further relates to an inhaler device compris manufacture and metering of the powders, provide reliable ing an active ingredient obtainable or obtained by the method and predictable resuspension and fluidisation, and avoid of the invention, or an active ingredient which has been fur excessive retention of the powder within the dispensing ther processed where necessary into a suitable pharmaceuti device. 40 cally acceptable form. A major problem experienced by formulators is the vari The invention further relates to a receptacle. Such as a ability in Surface properties of drug particles. Each active blister or capsule, comprising a dose of a active ingredient, agent powder has its own unique inherent Stickiness or Sur obtainable or obtained by the method of the invention, or an face energy, which can range tremendously from compound active ingredient which has been further processed where to compound.
Recommended publications
  • Centre for Reviews and Dissemination
    Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta- analysis Leucht S, Corves C, D Arbter, Engel R R, Li C, Davis J M CRD summary The authors concluded that amisulpride, clozapine, olanzapine and risperidone can be effective in treating schizophrenia patients. Second-generation antipsychotic drugs can also result in fewer extrapyramidal side effects, but can induce weight gain. The authors' conclusions reflected the evidence presented, but some potential methodological flaws in the review process meant that the extent to which those conclusions were reliable was unclear. Authors' objectives To compare the effects of first and second-generation antipsychotic drugs in schizophrenia patients. Searching The search for eligible studies was started in 2005, including MEDLINE to October 2006, Cochrane Schizophrenia Group's Specialised Register and the US Food and Drugs Administration website. Search terms were reported and there were no language restrictions. Previous reviews were searched for additional relevant studies. Study selection Randomised controlled trials (RCTs) of oral second-generation antipsychotic drugs (amisulpride, aripiprazole, clozapine, olanzapine, quetiapine, risperidone, sertindole, ziprasidone and zotepine) compared with first-generation drugs in patients with schizophrenia or related disorders (schizoaffective, schizophreniform or delusional disorders) irrespective of diagnostic criteria were eligible for inclusion in the review. The optimum doses of second-generation drugs were selected
    [Show full text]
  • Enantioselective Synthesis Of
    ENANTIOSELECTIVE SYNTHESIS OF PHORACANTHOLIDE I, MEXILETINE, ENCIPRAZINE, ESMOLOL, ATENOLOL, XIBENOLOL VIA α- AMINOXYLATION OF ALDEHYDE AND APPLICATION OF RECYCLABLE CATALYSIS IN ORGANIC TRANSFORMATION A THESIS SUBMITTED TO THE UNIVERSITY OF PUNE FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CHEMISTRY BY MOHSINKHAN YASEENKHAN PATHAN DR. SHAFEEK A. R. MULLA (RESEARCH GUIDE) CHEMICAL ENGINEERING AND PROCESS DEVELOPMENT DIVISION, NATIONAL CHEMICAL LABORATORY, PUNE- 411008, INDIA APRIL 2014 Mr. Yaseenkhan Sajjankhan Pathan Mrs. Farjana Yaseenkhan Pathan NATIONAL CHEMICAL LABORATORY DR. SHAFEEK A. R. MULLA Senior Scientist Ph.D. FMASc. AvH Fellow (Germany), JSPS Fellow (Japan) Chemical Engineering & Process Development Division Dr. Homi Bhabha Road, Pune – 411 008, India Tel.:+91-20-25902316, Fax:+91-20-25902676 E-mail : [email protected]/[email protected] CERTIFICATE Certified that the work incorporated in the thesis entitled “Enantioselective Synthesis of Phoracantholide I, Mexiletine, Enciprazine, Esmolol, Atenolol, Xibenolol via α- Aminoxylation of Aldehyde and Application of Recyclable Catalysis in Organic Transformation” was carried out by the candidate under my supervision. Such material as had been obtained from other sources has been duly acknowledged in the thesis. April 2014 (Dr. Shafeek. A. R. Mulla) Pune Research Guide NATIONAL CHEMICAL LABORATORY DECLARATION I here by declare that the thesis entitled “Enantioselective Synthesis of Phoracantholide I, Mexiletine, Enciprazine, Esmolol, Atenolol, Xibenolol via α-Aminoxylation of Aldehyde and Application of Recyclable Catalysis in Organic Transformation” submitted for the degree of Doctor of Philosophy in Chemistry to the University of Pune, has not been submitted by me to any other university or institution. This work was carried out at the National Chemical Laboratory, Pune, India.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • The Effects of Antipsychotic Treatment on Metabolic Function: a Systematic Review and Network Meta-Analysis
    The effects of antipsychotic treatment on metabolic function: a systematic review and network meta-analysis Toby Pillinger, Robert McCutcheon, Luke Vano, Katherine Beck, Guy Hindley, Atheeshaan Arumuham, Yuya Mizuno, Sridhar Natesan, Orestis Efthimiou, Andrea Cipriani, Oliver Howes ****PROTOCOL**** Review questions 1. What is the magnitude of metabolic dysregulation (defined as alterations in fasting glucose, total cholesterol, low density lipoprotein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol, and triglyceride levels) and alterations in body weight and body mass index associated with short-term (‘acute’) antipsychotic treatment in individuals with schizophrenia? 2. Does baseline physiology (e.g. body weight) and demographics (e.g. age) of patients predict magnitude of antipsychotic-associated metabolic dysregulation? 3. Are alterations in metabolic parameters over time associated with alterations in degree of psychopathology? 1 Searches We plan to search EMBASE, PsycINFO, and MEDLINE from inception using the following terms: 1 (Acepromazine or Acetophenazine or Amisulpride or Aripiprazole or Asenapine or Benperidol or Blonanserin or Bromperidol or Butaperazine or Carpipramine or Chlorproethazine or Chlorpromazine or Chlorprothixene or Clocapramine or Clopenthixol or Clopentixol or Clothiapine or Clotiapine or Clozapine or Cyamemazine or Cyamepromazine or Dixyrazine or Droperidol or Fluanisone or Flupehenazine or Flupenthixol or Flupentixol or Fluphenazine or Fluspirilen or Fluspirilene or Haloperidol or Iloperidone
    [Show full text]
  • Revision of Precautions Asenapine Maleate, Aripiprazole, Olanzapine
    Published by Translated by Ministry of Health, Labour and Welfare Pharmaceuticals and Medical Devices Agency This English version is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail. Revision of Precautions Asenapine maleate, aripiprazole, olanzapine, quetiapine fumarate, clocapramine hydrochloride hydrate, chlorpromazine hydrochloride, chlorpromazine hydrochloride/promethazine hydrochloride/phenobarbital, chlorpromazine phenolphthalinate, spiperone, zotepine, timiperone, haloperidol, paliperidone, pipamperone hydrochloride, fluphenazine decanoate, fluphenazine maleate, brexpiprazole, prochlorperazine maleate, prochlorperazine mesilate, Pharmaceuticals and Medical Devices Agency Office of Safety I 3-3-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-0013 Japan E-mail: [email protected] Published by Translated by Ministry of Health, Labour and Welfare Pharmaceuticals and Medical Devices Agency This English version is intended to be a reference material to provide convenience for users. In the event of inconsistency between the Japanese original and this English translation, the former shall prevail. propericiazine, bromperidol, perphenazine, perphenazine hydrochloride, perphenazine fendizoate, perphenazine maleate, perospirone hydrochloride hydrate, mosapramine hydrochloride, risperidone (oral drug), levomepromazine hydrochloride, levomepromazine maleate March 27, 2018 Non-proprietary name Asenapine maleate,
    [Show full text]
  • Nomination Background: Ketamine Hydrochloride (CASRN: 1867-66-9)
    KETAMINE Nomination TABLE OF CONTENTS Page 1.0 BASIS OF NOMINATION 1 2.0 BACKGROUND INFORMATION 1 3.0 CHEMICAL PROPERTIES 2 3.1 Chemical Identification 2 3.2 Physico-Chemical Properties 3 3.3 Purity and Commercial Availability 4 4.0 PRODUCTION PROCESSES AND ANALYSIS 6 5.0 PRODUCTION AND IMPORT VOLUMES 7 6.0 USES 7 7.0 ENVIRONMENTAL OCCURRENCE 7 8.0 HUMAN EXPOSURE 7 9.0 REGULATORY STATUS 7 10.0 CLINICAL PHARMACOLOGY 7 11.0 TOXICOLOGICAL DATA 13 11.1 General Toxicology 13 11.2 Neurotoxicology 14 12.0 CONCLUSIONS 15 APPENDIX A 17 APPENDIX B 23 APPENDIX C 27 1 KETAMINE 1.0 BASIS OF NOMINATION Ketamine, a noncompetitive NMDA receptor blocker, has been used extensively off - label as a pediatric anesthetic for surgical procedures in infants and toddlers. Recently, Olney and coworkers have demonstrated severe widespread apoptotic degeneration throughout the rapidly developing brain of the 7-day-old rat after ketamine administration. Recent research at FDA has confirmed and extended Olney’s observations. These findings are cause for concern with respect to ketamine use in children. The issue of whether the neurotoxicity found in this animal model (rat) has scientific and regulatory relevance for the pediatric use of ketamine relies heavily upon confirmation of these findings that may be obtained from the conduct of an appropriate study in non-human primates. 2.0 BACKGROUND INFORMATION The issue of potential ketamine neurotoxicity in children surfaced as a result of FDA’s reluctance to approve an NIH pediatric clinical trial using this compound because of its documented neurotoxic effects in young rats (published in several papers over the last ten years by Olney and co-workers).
    [Show full text]
  • The Effects of Ketamine on Dopaminergic Function
    THE EFFECTS OF KETAMINE ON DOPAMINERGIC FUNCTION Michelle Kokkinou Psychiatric Imaging Group London Institute of Medical Sciences (LMS), Medical Research Council (MRC) Faculty of Medicine, Imperial College London Thesis submitted for the degree of Doctor of Philosophy 1 Declaration of originality The experiments described and data analysis were part of my own work, unless otherwise stated. The work was conducted at the London Institute of Medical Sciences (LMS) in collaboration with Imanova Ltd. Specialist pre-clinical imaging analysis was conducted in collaboration with Mattia Veronese (King’s College London). Specialist meta-analysis was conducted in collaboration with Abhishekh Ashok. Peer-reviewed accepted paper Michelle Kokkinou, Abhishekh H Ashok, Oliver D Howes. The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders. Molecular Psychiatry. Oct 3. doi: 10.1038/mp.2017.190. Published conference abstracts arising from this thesis Chapters 3&4: Howes OD., Kokkinou M. The Effects of Repeated NMDA Blockade with Ketamine on Dopamine and Glutamate Function. Biological Psychiatry. 72nd Annual Scientific Convention and Meeting. https://doi.org/10.1016/j.biopsych.2017.02.091 Chapters 4&5: Kokkinou M, Irvine EE, Bonsall DR Ungless MA, Withers DJ, Howes OD. Modulation of sub-chronic ketamine-induced locomotor sensitisation by midbrain dopamine neuron firing. European Neuropsychopharmacology (ENP) Chapters 3 & 4 are in preparation for publication. Presentation regarding the experiments in this thesis British Association for Psychopharmacology Meeting July 2017. Midbrain dopamine neuron firing mediates the effects of ketamine treatment on locomotor activity: A DREADD experiment 2 Copyright Declaration The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives Licence.
    [Show full text]
  • General Agreement on Tariffs Andtrade
    RESTRICTED GENERAL AGREEMENT TAR/W/87/Rev.1 16 June 1994 ON TARIFFS AND TRADE Limited Distribution (94-1266) Committee on Tariff Concessions HARMONIZED COMMODITY DESCRIPTION AND CODING SYSTEM (Harmonized System) Classification of INN Substances Revision The following communication has been received from the Nomenclature and Classification Directorate of the Customs Co-operation Council in Brussels. On 25 May 1993, we sent you a list of the INN substances whose classification had been discussed and decided by the Harmonized System Committee. At the time, we informed you that the classification of two substances, clobenoside and meclofenoxate, would be decided later. Furthermore, for some of the chemicals given in that list, one of the contracting parties had entered a reservation and the Harmonized System Committee therefore reconsidered its earlier decision in those cases. I am therefore sending you herewith a revised complete list of the classification decisions of the INN substances. In this revised list, two substances have been added and the classifications of two have been revised as explained below: (a) Addition Classification of clobenoside, (subheading 2940.00) and meclofenoxate (subheading 2922.19). (b) Amendment Etafedrine and moxidentin have now been reclassified in subheadings 2939.40 and 2932.29 respectively. The list of INN substances reproduced hereafter is available only in English. TAR/W/87/Rev. 1 Page 2 Classification of INN Substances Agreed by the Harmonized System Committee in April 1993 Revision Description HS Code
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Driver Impairment, Accident Risk and Tolerance
    IMMORTAL D-R4.4 21/10/04 Deliverable D-R4.4 EXPERIMENTAL STUDIES ON THE EFFECTS OF LICIT AND ILLICIT DRUGS ON DRIVING PERFORMANCE, PSYCHOMOTOR SKILLS AND COGNITIVE FUNCTION Public IMMORTAL CONTRACT NO GMAI-2000-27043 SI2.319837 Project Co-ordinator: Prof. Bob Hockey, University of Leeds Workpackage Leader: Inger Marie Bernhoft, Danish Transport Research Institute Authors: JG Ramaekers, KPC Kuypers, Brain & Behavior Institute, Faculty of Psychology, Maastricht University CM Wood, GRJ Hockey, S Jamson, H Jamson, E Birch, School of Psychology, University of Leeds Date: 28.09.2004 Project Funded by the European Commission under the Transport RTD Programme of the 5th Framework Programme i IMMORTAL D-R4.4 21/10/04 School of Psychology, UNIV LEEDS DOCUMENT CONTROL INFORMATION Title Experimental studies on the effects of licit and illicit drugs on driving performance, psychomotor skills and cognition Author(s) JG Ramaekers, KPC Kuypers, CM Wood, GRJ Hockey, S Jamson, H Jamson, E Birch Editor(s) Date 28/09/2004 Report Number Reference and version Version 1 number Distribution Project Consortium Availability Public File QA check Nic Ward Authorised by Bob Hockey Signature ii IMMORTAL D-R4.4 21/10/04 Table of Contents 1. INTRODUCTION.............................................................................................................10 1.1 GENERAL BACKGROUND....................................................................................10 1.2 TASK DESCRIPTION.............................................................................................11
    [Show full text]
  • Drug and Medication Classification Schedule
    KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine
    [Show full text]
  • Marrakesh Agreement Establishing the World Trade Organization
    No. 31874 Multilateral Marrakesh Agreement establishing the World Trade Organ ization (with final act, annexes and protocol). Concluded at Marrakesh on 15 April 1994 Authentic texts: English, French and Spanish. Registered by the Director-General of the World Trade Organization, acting on behalf of the Parties, on 1 June 1995. Multilat ral Accord de Marrakech instituant l©Organisation mondiale du commerce (avec acte final, annexes et protocole). Conclu Marrakech le 15 avril 1994 Textes authentiques : anglais, français et espagnol. Enregistré par le Directeur général de l'Organisation mondiale du com merce, agissant au nom des Parties, le 1er juin 1995. Vol. 1867, 1-31874 4_________United Nations — Treaty Series • Nations Unies — Recueil des Traités 1995 Table of contents Table des matières Indice [Volume 1867] FINAL ACT EMBODYING THE RESULTS OF THE URUGUAY ROUND OF MULTILATERAL TRADE NEGOTIATIONS ACTE FINAL REPRENANT LES RESULTATS DES NEGOCIATIONS COMMERCIALES MULTILATERALES DU CYCLE D©URUGUAY ACTA FINAL EN QUE SE INCORPOR N LOS RESULTADOS DE LA RONDA URUGUAY DE NEGOCIACIONES COMERCIALES MULTILATERALES SIGNATURES - SIGNATURES - FIRMAS MINISTERIAL DECISIONS, DECLARATIONS AND UNDERSTANDING DECISIONS, DECLARATIONS ET MEMORANDUM D©ACCORD MINISTERIELS DECISIONES, DECLARACIONES Y ENTEND MIENTO MINISTERIALES MARRAKESH AGREEMENT ESTABLISHING THE WORLD TRADE ORGANIZATION ACCORD DE MARRAKECH INSTITUANT L©ORGANISATION MONDIALE DU COMMERCE ACUERDO DE MARRAKECH POR EL QUE SE ESTABLECE LA ORGANIZACI N MUND1AL DEL COMERCIO ANNEX 1 ANNEXE 1 ANEXO 1 ANNEX
    [Show full text]