Huntington's Disease: Progress and Potential in the Field

Total Page:16

File Type:pdf, Size:1020Kb

Huntington's Disease: Progress and Potential in the Field Review 1 Central & Peripheral Nervous Systems Huntington’s disease: progress 5 and potential in the fi eld † Edward C Stack & Robert J Ferrante 1. Background † Boston University School of Medicine , Departments of Neurology , Pathology, and Psychiatry, 2. Existing clinical Edith Nourse Rogers Veterans Administration Medical Center , Experimental Neuropathology Unit 10 management and need and Translational Therapeutics Laboratory , GRECC Unit, Building 18 , 3. Mechanisms of cell death and Bedford, MA 01730 , USA potential therapeutic targets in Huntington’s disease While the first description of Huntington’s disease was reported over a century ago, no therapy exists that can halt or ameliorate the inexorable 4. Therapeutic candidates 15 disease progression. Tremendous progress, however, has been made in 5. Conclusion significantly broadening the understanding of pathogenic mechanisms in 6. Expert opinion this neurological disorder that may eventually lead to successful treatment strategies. Huntington’s disease is caused by the expansion of a CAG repeat in the huntingtin gene, which results in the expression of a mutant form 20 of the protein that is toxic to neurons. Several mechanisms have been iden- tified in mediating this toxicity, such as protein aggregation, mitochondrial dysfunction, oxidative stress, transcriptional dysregulation, aberrant apop- tosis, altered proteosomal function and excitotoxicity. With increasing understanding of each of these pathogenic mechanisms, therapeutic 25 strategies have attempted to target specific aspects of each. There have been many encouraging reports of preclinical efficacy in transgenic Huntington’s disease mice, from which a number have been extended to human clinical trials with some success. This review focuses on these studies and the compounds that hold promise for treating human 30 Huntington’s disease. Keywords: apoptosis , excitotoxicity , mitochondria , oxidative stress , transcription , ubiquitin-proteosome system 35 Expert Opin. Investig. Drugs (2007) 16(12):1-21 1. Background Huntington’s disease (HD) is an inherited autosomal dominant disorder of 40 the CNS. Roughly 250,000 Americans are affected by or are at risk of inheriting this fatal disease. Clinically, HD is characterized by cognitive and memory impairments, heightened irritability, depression, weight loss and choreic motor abnormalities [1] . Interestingly, subtle behavioral alterations occur prior to clinical diagnosis [2,3] , consistent with evidence of altered neuropathology before manifest 45 disease [4] . Once manifest disease occurs, however, the duration of HD is ∼ 15 – 20 years, with clinical symptoms becoming increasingly disabling prior to death [1] . Despite great progress, a direct causative pathway from the HD gene mutation to neuronal death has not yet been established. As there is no proven therapy to delay or slow the progression of HD, there is a growing demand on 50 improved clinical management for affected individuals and their families. While other brain regions are altered in HD, the most prominent neuro- pathological feature is marked gross atrophy of the neostriatum with concomitant neuronal degeneration within the caudate and putamen. There is a topographic progression of neuronal loss and astrogliosis first observed in the dorso-medial 55 aspect of the striatum and progressing ventro-laterally, with relative sparing of the 10.1517/13543784.16.12.1 © 2007 Informa UK Ltd ISSN 1354-3784 1 Huntington’s disease: progress and potential in the fi eld 1 ventral striatum [5] . Not all neurons are affected equally inhibitors sertraline and fluoxetine and/or benzodiazepines, within the neostriatum [6] . While large cholinergic neurons such as clonazepam, diazepam, risperidone or sulpiride [26] . and medium-sized NADPH-diaphorase aspiny neurons There is no significant evidence that any given antipsychotic remain relatively spared in HD, medium-sized spiny drug is better than another in the treatment of symptoms. 5 GABAergic projection neurons of the striatum, which make up ∼ 95% of striatal neuron content, are disproportionately 3. Mechanisms of cell death and potential affected early and most severely [6-9] . There is also a reduc- therapeutic targets in Huntington’s disease tion in striatal neurochemicals that parallels striatal neuro- degeneration in HD [10,11] , with substance P-expressing striatal 3.1 Mutant Huntingtin aggregation (mHtt) 10 projection neurons appearing more vulnerable [12] . In While the gene responsible for HD was discovered almost addition, striatal medium spiny neurons show both 15 years ago [15] , the relationship between mHtt and the proliferative and degenerative changes leading to neuronal multiple molecular pathways that appear to mediate neuronal dysfunction and cell death [13,14] . death in HD is still not well understood. Transglutaminase HD is caused by an expanded trinucleotide CAG repeat activity has been proposed to mediate mHtt aggregation [27] . 15 in the gene coding for the protein, huntingtin (Htt) [15] . There is ample evidence regarding transglutaminase In HD patients, the CAG repeat is expanded beyond expression in HD [28-30] and a role for transglutaminase the normal repeat range, > 38 repeats, with an inverse in HD pathogenesis is now well accepted. relationship between the CAG repeat number and the age of Interestingly, proteins containing polyglutamine expansions, onset, with higher repeats associated with younger age [16] . such as mHtt, are degraded in a limited context by the 20 Expression of Htt is observed throughout the brain within the ubiquitin–proteosome system (UPS) [31] . However, recent nucleus, cytoplasm, axons and dendrites of neurons [17-19] . data suggests that the proteosome may not cleave polygluta- While the function of normal Htt is not known, it is mine sequences within the mutant protein [31] . Ongoing thought to play a role in cellular transport mechanisms [17,20] . debate continues, as with other neurodegenerative disorders Cleaved during proteolysis, mutant Htt (mHtt) releases a in which protein aggregates are a hallmark of disease, 25 persistent N-terminal fragment that contains the expanded questioning whether inclusions formed by the aggregated polyglutamine amino acid sequence. This fragment, which is N-terminal truncation of mHtt cause neuronal death believed to confer toxicity, forms aggregates with itself and through alterations of nuclear transport or DNA arrange- other proteins seen in both the cytoplasm and nucleus [18] . ments affecting transcription. Recent studies have suggested The aberrant protein interactions of mHtt and formation a protective role for aggregation [19,32,33] . Through the use of 30 of mHtt aggregates may lead to neuronal toxicity through an automated microscopy technique to assess the time frame a toxic gain of function mechanism. Observations where in which neurons expressing mHtt expire, improved survival nuclear aggregates have been seen in interneuron of neurons that contained mHtt aggregates has been populations known to be resistant to HD-induced shown [32] . Whether the formation of mHtt aggregates is neurodegeneration [19] , suggest that soluble mHtt is the protective or toxic, it is clear that coincident with mHtt 35 harbinger of neurodegeneration. In contrast, additional aggregation, there are additional pathogenic cascades at evidence suggests that the aggregated form of mHtt is toxic work in HD. and can induce neurodegeneration [21] . 3.2 Oxidative stress and mitochondrial dysfunction 2. Existing clinical management and need Several lines of evidence lend support for mitochondrial 40 dysfunction and increased oxidative stress in HD [34] . There Existing care in HD is focused primarily on symptom is a general reduction in striatal glucose utilization in both management. As such, a number of drug agents have been human and transgenic mouse HD brain that precedes tissue used to treat the motor and behavioral changes found in loss [35,36] , as well as a reduction in the activity of several HD. Both amantadine [22] and memantine [23] , glutamatergic mitochondrial complexes [37,38] . Lactate levels are elevated in 45 N -methyl-D-aspartate (NMDA) antagonists, have been used the striatum and cortex, with the increase correlated with to treat chorea. While haloperidol has also been used in the the CAG repeat size [39] . Biomarkers of oxidative stress are management of dystonia and psychosis in HD, treatment is also elevated in human and transgenic mouse HD brain and complicated by extrapyramidal side effects [24] . More recent serum, such as DNA oxidative modifications and strand data regarding the type 2 vesicular monoamine transporter breaks [40-42] and deletions in mitochondrial DNA [43] . 50 inhibitor, tetrabenezine, which selectively blocks dopamine Recent evidence suggests that mHtt interacts directly release, demonstrates significant improvement in chorea with mitochondria in HD [44] . This interaction causes an in ambulatory HD patients [25] . Clinical practice in HD alteration in mitochondrial calcium buffering, leading to also employs a number of antipsychotic agents for the mitochondrial dysfunction. In addition, it has been reported management of depression, anxiety and other psychiatric that mHtt represses peroxisome proliferator-activated 55 disturbances. These include the selective serotonin uptake receptor-γ co-activator 1α (PGC-1α ) [45] . PGC-1α is a 2 Expert Opin. Investig. Drugs (2007) 16(12) Stack & Ferrante 1 transcriptional co-activator regulating a number of genes
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9,381,189 B2 Green Et Al
    US009381189B2 (12) United States Patent (10) Patent No.: US 9,381,189 B2 Green et al. (45) Date of Patent: Jul. 5, 2016 (54) INGREDIENTS FOR INHALATION AND (56) References Cited METHODS FOR MAKING THE SAME U.S. PATENT DOCUMENTS (75) Inventors: Matthew Michael James Green, 4,582,265 A * 4/1986 Petronelli ....................... 241.95 Wiltshire (GB); Richard Michael Poole, 6,257,233 B1 7/2001 Burr et al. 2004/01 18007 A1* 6/2004 Chickering et al. ............ 34/360 Wiltshire (GB) 2006, O257491 A1* 11, 2006 Morton et al. ... 424/489 (73) Assignee: VECTURA LIMITED, Wiltshire (GB) 2008/0063719 A1 3/2008 Morton et al. ................ 424/489 (*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS patent is extended or adjusted under 35 EP O709086 A2 5, 1996 U.S.C. 154(b) by 641 days. EP 14981 16 A1 1, 2005 GB 2387781 A 10, 2003 JP 2005298.347 10/2005 (21) Appl. No.: 13/514,672 JP 200954.1393 11, 2009 JP 2012,542618 6, 2012 (22) PCT Fled: Dec. 8, 2010 WO 96.23485 A1 8, 1996 WO 9703649 A1 2, 1997 (86) PCT NO.: PCT/GB2O10/052053 WO O2OO197 A1 1, 2002 WO O243701 A2 6, 2002 S371 (c)(1), WO 2005105043 A2 11/2005 Aug. 20, 2012 WO 2007053904 A1 5/2007 (2), (4) Date: WO 2008.000482 1, 2008 (87) PCT Pub. No.: WO2O11AO70361 WO 2009095684 A1 8, 2009 OTHER PUBLICATIONS PCT Pub. Date: Jun. 16, 2011 Brunauer et al. "Adsorption of Gases in Multimolecular Layers'. J. (65) Prior Publication Data Am.
    [Show full text]
  • New York Chapter American College of Physicians Annual
    New York Chapter American College of Physicians Annual Scientific Meeting Poster Presentations Saturday, October 12, 2019 Westchester Hilton Hotel 699 Westchester Avenue Rye Brook, NY New York Chapter American College of Physicians Annual Scientific Meeting Medical Student Clinical Vignette 1 Medical Student Clinical Vignette Adina Amin Medical Student Jessy Epstein, Miguel Lacayo, Emmanuel Morakinyo Touro College of Osteopathic Medicine A Series of Unfortunate Events - A Rare Presentation of Thoracic Outlet Syndrome Venous thoracic outlet syndrome, formerly known as Paget-Schroetter Syndrome, is a condition characterized by spontaneous deep vein thrombosis of the upper extremity. It is a very rare syndrome resulting from anatomical abnormalities of the thoracic outlet, causing thrombosis of the deep veins draining the upper extremity. This disease is also called “effort thrombosis― because of increased association with vigorous and repetitive upper extremity activities. Symptoms include severe upper extremity pain and swelling after strenuous activity. A 31-year-old female with a history of vascular thoracic outlet syndrome, two prior thrombectomies, and right first rib resection presented with symptoms of loss of blood sensation, dull pain in the area, and sharp pain when coughing/sneezing. When the patient had her first blood clot, physical exam was notable for swelling, venous distension, and skin discoloration. The patient had her first thrombectomy in her right upper extremity a couple weeks after the first clot was discovered. Thrombolysis with TPA was initiated, and percutaneous mechanical thrombectomy with angioplasty of the axillary and subclavian veins was performed. Almost immediately after the thrombectomy, the patient had a rethrombosis which was confirmed by ultrasound.
    [Show full text]
  • Role of Cornification and Triglyceride Synthesis Genes
    Gillespie et al. BMC Genomics 2013, 14:169 http://www.biomedcentral.com/1471-2164/14/169 RESEARCH ARTICLE Open Access Transcriptome analysis of pigeon milk production – role of cornification and triglyceride synthesis genes Meagan J Gillespie1,2*, Tamsyn M Crowley1,3, Volker R Haring1, Susanne L Wilson1, Jennifer A Harper1, Jean S Payne1, Diane Green1, Paul Monaghan1, John A Donald2, Kevin R Nicholas3 and Robert J Moore1 Abstract Background: The pigeon crop is specially adapted to produce milk that is fed to newly hatched young. The process of pigeon milk production begins when the germinal cell layer of the crop rapidly proliferates in response to prolactin, which results in a mass of epithelial cells that are sloughed from the crop and regurgitated to the young. We proposed that the evolution of pigeon milk built upon the ability of avian keratinocytes to accumulate intracellular neutral lipids during the cornification of the epidermis. However, this cornification process in the pigeon crop has not been characterised. Results: We identified the epidermal differentiation complex in the draft pigeon genome scaffold and found that, like the chicken, it contained beta-keratin genes. These beta-keratin genes can be classified, based on sequence similarity, into several clusters including feather, scale and claw keratins. The cornified cells of the pigeon crop express several cornification-associated genes including cornulin, S100-A9 and A16-like, transglutaminase 6-like and the pigeon ‘lactating’ crop-specific annexin cp35. Beta-keratins play an important role in ‘lactating’ crop, with several claw and scale keratins up-regulated. Additionally, transglutaminase 5 and differential splice variants of transglutaminase 4 are up-regulated along with S100-A10.
    [Show full text]
  • Anti-Inflammatory Role of Curcumin in LPS Treated A549 Cells at Global Proteome Level and on Mycobacterial Infection
    Anti-inflammatory Role of Curcumin in LPS Treated A549 cells at Global Proteome level and on Mycobacterial infection. Suchita Singh1,+, Rakesh Arya2,3,+, Rhishikesh R Bargaje1, Mrinal Kumar Das2,4, Subia Akram2, Hossain Md. Faruquee2,5, Rajendra Kumar Behera3, Ranjan Kumar Nanda2,*, Anurag Agrawal1 1Center of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, New Delhi, 110025, India. 2Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India. 3School of Life Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, Orissa, 768019, India. 4Department of Respiratory Sciences, #211, Maurice Shock Building, University of Leicester, LE1 9HN 5Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia- 7003, Bangladesh. +Contributed equally for this work. S-1 70 G1 S 60 G2/M 50 40 30 % of cells 20 10 0 CURI LPSI LPSCUR Figure S1: Effect of curcumin and/or LPS treatment on A549 cell viability A549 cells were treated with curcumin (10 µM) and/or LPS or 1 µg/ml for the indicated times and after fixation were stained with propidium iodide and Annexin V-FITC. The DNA contents were determined by flow cytometry to calculate percentage of cells present in each phase of the cell cycle (G1, S and G2/M) using Flowing analysis software. S-2 Figure S2: Total proteins identified in all the three experiments and their distribution betwee curcumin and/or LPS treated conditions. The proteins showing differential expressions (log2 fold change≥2) in these experiments were presented in the venn diagram and certain number of proteins are common in all three experiments.
    [Show full text]
  • Nomination Background: Ketamine Hydrochloride (CASRN: 1867-66-9)
    KETAMINE Nomination TABLE OF CONTENTS Page 1.0 BASIS OF NOMINATION 1 2.0 BACKGROUND INFORMATION 1 3.0 CHEMICAL PROPERTIES 2 3.1 Chemical Identification 2 3.2 Physico-Chemical Properties 3 3.3 Purity and Commercial Availability 4 4.0 PRODUCTION PROCESSES AND ANALYSIS 6 5.0 PRODUCTION AND IMPORT VOLUMES 7 6.0 USES 7 7.0 ENVIRONMENTAL OCCURRENCE 7 8.0 HUMAN EXPOSURE 7 9.0 REGULATORY STATUS 7 10.0 CLINICAL PHARMACOLOGY 7 11.0 TOXICOLOGICAL DATA 13 11.1 General Toxicology 13 11.2 Neurotoxicology 14 12.0 CONCLUSIONS 15 APPENDIX A 17 APPENDIX B 23 APPENDIX C 27 1 KETAMINE 1.0 BASIS OF NOMINATION Ketamine, a noncompetitive NMDA receptor blocker, has been used extensively off - label as a pediatric anesthetic for surgical procedures in infants and toddlers. Recently, Olney and coworkers have demonstrated severe widespread apoptotic degeneration throughout the rapidly developing brain of the 7-day-old rat after ketamine administration. Recent research at FDA has confirmed and extended Olney’s observations. These findings are cause for concern with respect to ketamine use in children. The issue of whether the neurotoxicity found in this animal model (rat) has scientific and regulatory relevance for the pediatric use of ketamine relies heavily upon confirmation of these findings that may be obtained from the conduct of an appropriate study in non-human primates. 2.0 BACKGROUND INFORMATION The issue of potential ketamine neurotoxicity in children surfaced as a result of FDA’s reluctance to approve an NIH pediatric clinical trial using this compound because of its documented neurotoxic effects in young rats (published in several papers over the last ten years by Olney and co-workers).
    [Show full text]
  • Computational and Experimental Approaches for Evaluating the Genetic Basis of Mitochondrial Disorders
    Computational and Experimental Approaches For Evaluating the Genetic Basis of Mitochondrial Disorders The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lieber, Daniel Solomon. 2013. Computational and Experimental Approaches For Evaluating the Genetic Basis of Mitochondrial Disorders. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11158264 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Computational and Experimental Approaches For Evaluating the Genetic Basis of Mitochondrial Disorders A dissertation presented by Daniel Solomon Lieber to The Committee on Higher Degrees in Systems Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Systems Biology Harvard University Cambridge, Massachusetts April 2013 © 2013 - Daniel Solomon Lieber All rights reserved. Dissertation Adviser: Professor Vamsi K. Mootha Daniel Solomon Lieber Computational and Experimental Approaches For Evaluating the Genetic Basis of Mitochondrial Disorders Abstract Mitochondria are responsible for some of the cell’s most fundamental biological pathways and metabolic processes, including aerobic ATP production by the mitochondrial respiratory chain. In humans, mitochondrial dysfunction can lead to severe disorders of energy metabolism, which are collectively referred to as mitochondrial disorders and affect approximately 1:5,000 individuals. These disorders are clinically heterogeneous and can affect multiple organ systems, often within a single individual. Symptoms can include myopathy, exercise intolerance, hearing loss, blindness, stroke, seizures, diabetes, and GI dysmotility.
    [Show full text]
  • The Effects of Ketamine on Dopaminergic Function
    THE EFFECTS OF KETAMINE ON DOPAMINERGIC FUNCTION Michelle Kokkinou Psychiatric Imaging Group London Institute of Medical Sciences (LMS), Medical Research Council (MRC) Faculty of Medicine, Imperial College London Thesis submitted for the degree of Doctor of Philosophy 1 Declaration of originality The experiments described and data analysis were part of my own work, unless otherwise stated. The work was conducted at the London Institute of Medical Sciences (LMS) in collaboration with Imanova Ltd. Specialist pre-clinical imaging analysis was conducted in collaboration with Mattia Veronese (King’s College London). Specialist meta-analysis was conducted in collaboration with Abhishekh Ashok. Peer-reviewed accepted paper Michelle Kokkinou, Abhishekh H Ashok, Oliver D Howes. The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders. Molecular Psychiatry. Oct 3. doi: 10.1038/mp.2017.190. Published conference abstracts arising from this thesis Chapters 3&4: Howes OD., Kokkinou M. The Effects of Repeated NMDA Blockade with Ketamine on Dopamine and Glutamate Function. Biological Psychiatry. 72nd Annual Scientific Convention and Meeting. https://doi.org/10.1016/j.biopsych.2017.02.091 Chapters 4&5: Kokkinou M, Irvine EE, Bonsall DR Ungless MA, Withers DJ, Howes OD. Modulation of sub-chronic ketamine-induced locomotor sensitisation by midbrain dopamine neuron firing. European Neuropsychopharmacology (ENP) Chapters 3 & 4 are in preparation for publication. Presentation regarding the experiments in this thesis British Association for Psychopharmacology Meeting July 2017. Midbrain dopamine neuron firing mediates the effects of ketamine treatment on locomotor activity: A DREADD experiment 2 Copyright Declaration The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives Licence.
    [Show full text]
  • 1. Ceramide: the Center of Sphingolipid Biosynthesis
    Introduction 1. Ceramide: the center of sphingolipid biosynthesis 1.1. Introducing the sphingolipid family The cell membrane contains three main classes of lipids: glycerolipids, sphingolipids and sterols (Futerman and Hannun 2004; Gulbins and Li 2006; Grassme et al. 2007). First discovered by J.L. W. Thudichum in 1876, sphingolipids were considered to play primarily structural roles in membrane formation (Zheng et al. 2006; Bartke and Hannun 2009). However, by the end of the twentieth century, sphingolipids were described as effector molecules which are involved in the regulation of apoptosis, cell proliferation, cell migration, senescence, and inflammation (Hannun 1996; Perry and Hannun 1998; Hannun and Obeid 2002; Futerman and Hannun 2004; Ogretmen and Hannun 2004; Reynolds et al. 2004; Fox et al. 2006; Modrak et al. 2006; Saddoughi et al. 2008). Sphingolipid metabolism pathways have a unique metabolic entry point, serine palmitoyl transferase (SPT) which forms 3-ketosphinganine, the first sphingolipid in the de novo pathway and a unique exit point, sphingosine-1-phosphate (S1P) lyase, which breaks down S1P into non-sphingolipid molecules. In this network, ceramide can be considered to be a metabolic hub because it occupies a central position in sphingolipid biosynthesis and catabolism (Hannun and Obeid 2008) (Figure 1). 1.2. Ceramide structure and metabolism Ceramide (Cer) from mammalian membranes is composed of sphingosine, which is an amide linked to a fatty acyl chain, varying in length from 14 to 26 carbon atoms (Mimeault 2002; Pettus et al. 2002; Ogretmen and Hannun 2004; Zheng et al. 2006) (Figure 1). Ceramide constitutes the metabolic and structural precursor for complex sphingolipids, which are composed of hydrophilic head groups, such as sphingomyelin, ceramide 1-phosphate, and glucosylceramide (Saddoughi et al.
    [Show full text]
  • Recombinant Human Tissue Transglutaminase for Diagnosis and Follow-Up of Childhood Coeliac Disease
    0031-3998/02/5106-0700 PEDIATRIC RESEARCH Vol. 51, No. 6, 2002 Copyright © 2002 International Pediatric Research Foundation, Inc. Printed in U.S.A. Recombinant Human Tissue Transglutaminase for Diagnosis and Follow-Up of Childhood Coeliac Disease TONY HANSSON, INGRID DAHLBOM, SIV ROGBERG, ANDERS DANNÆUS, PETER HÖPFL, HEIDI GUT, WOLFGANG KRAAZ, AND LARS KLARESKOG Department of Rheumatology, Karolinska Hospital, Stockholm, Sweden [T.H., S.R., L.K.]; Pharmacia Diagnostics, Uppsala, Sweden [I.D.]; Department of Pediatrics [A.D.] and Pathology [W.K.], Uppsala University Hospital, Uppsala, Sweden; and Pharmacia Diagnostics, Freiburg, Germany [P.H., H.G.] ABSTRACT Highly discriminatory markers for celiac disease are needed IgA and IgG anti-tTG. There was already an increase in IgA to identify children with early mucosal lesions and for rapid anti-tTG antibodies after 2 wk of gluten challenge (p Ͻ 0.01). follow-up. The aim of this study was to evaluate the potential of Although the criteria-based diagnosis of childhood celiac disease circulating anti-tissue transglutaminase (tTG) IgA and IgG anti- still depends on histologic evaluation of intestinal biopsies, bodies in the diagnosis and follow-up of childhood celiac dis- detection of anti-tTG antibodies provides useful complementary ease. An ELISA using recombinant human tTG was used to diagnostic information. The human recombinant tTG-based measure the levels of IgA and IgG anti-tTG antibodies in 226 ELISA can be used as a sensitive and specific test to support the serum samples from 57 children with biopsy-verified celiac diagnosis and may also be used in the follow-up of treatment in disease, 29 disease control subjects, and 24 healthy control childhood celiac disease.
    [Show full text]
  • Guinea Pig Transglutaminase Immunolinked Assay Does Not Predict Coeliac Disease in Patients with Chronic Liver Disease
    506 Gut 2001;49:506–511 Guinea pig transglutaminase immunolinked assay does not predict coeliac disease in patients with Gut: first published as 10.1136/gut.49.4.506 on 1 October 2001. Downloaded from chronic liver disease A Carroccio, L Giannitrapani, M Soresi, T Not, G Iacono, C Di Rosa, E Panfili, A Notarbartolo, G Montalto Abstract patients with atrophy of the intestinal Background—It has been suggested that mucosa were positive for anti-tTG while serological screening for coeliac disease all others were negative, including those (CD) should be performed in patients false positive in the ELISA based on with chronic unexplained hypertransami- guinea pig tTG as the antigen. nasaemia. Conclusions—In patients with elevated Aims—To evaluate the specificity for CD transaminases and chronic liver disease diagnosis of serum IgA antitissue trans- there was a high frequency of false glutaminase (tTG) determination in con- positive anti-tTG results using the ELISA secutive patients with chronic based on tTG from guinea pig as the anti- hypertransaminasaemia using the most gen. Indeed, the presence of anti-tTG did widely utilised ELISA based on tTG from not correlate with the presence of EmA or guinea pig as the antigen. CD. These false positives depend on the Patients and methods—We studied 98 presence of hepatic proteins in the com- patients with chronic hypertransamina- mercial tTG obtained from guinea pig saemia, evaluated for the first time in a liver and disappear when human tTG is hepatology clinic. Serum anti-tTG and used as the antigen in the ELISA system. antiendomysial (EmA) assays were per- We suggest that the commonly used tTG formed.
    [Show full text]
  • Exome Sequencing in Gastrointestinal Food Allergies Induced by Multiple Food Proteins
    Exome Sequencing in Gastrointestinal Food Allergies Induced by Multiple Food Proteins Alba Sanchis Juan Department of Biotechnology Universitat Politècnica de València Supervisors: Dr. Javier Chaves Martínez Dr. Ana Bárbara García García Dr. Pablo Marín García This dissertation is submitted for the degree of Doctor of Philosophy September 2019 If you know you are on the right track, if you have this inner knowledge, then nobody can turn you off... no matter what they say. Barbara McClintock Declaration FELIPE JAVIER CHAVES MARTÍNEZ, PhD in Biological Sciences, ANA BÁRBARA GARCÍA GARCÍA, PhD in Pharmacy, and PABLO MARÍN GARCÍA, PhD in Biological Sciences, CERTIFY: That the work “Exome Sequencing in Gastrointestinal Food Allergies Induced by Multiple Food Proteins” has been developed by Alba Sanchis Juan under their supervision in the INCLIVA Biomedical Research Institute, as a Thesis Project in order to obtain the degree of PhD in Biotechnology at the Universitat Politècnica de València. Dr. F. Javier Chaves Martínez Dr. Ana Bárbara García García Dr. Pablo Marín García Acknowledgements Reaching the end of this journey, after so many ups and downs, I cannot but express my gratitude to all those who supported me and helped me through this challenging but rewarding experience. First and foremost, I would like to thank my supervisors, Dr. Javier Chaves Martinez, Dr. Ana Barbara García García and Dr. Pablo Marín García. They gave me the opportunity to work with them when I was still an undergraduate student, and provided me the opportunity to contribute to several exciting projects since then. They also encouraged me into the clinical genomics field and provided me guidance and advice throughout the last four years.
    [Show full text]
  • General Agreement on Tariffs Andtrade
    RESTRICTED GENERAL AGREEMENT TAR/W/87/Rev.1 16 June 1994 ON TARIFFS AND TRADE Limited Distribution (94-1266) Committee on Tariff Concessions HARMONIZED COMMODITY DESCRIPTION AND CODING SYSTEM (Harmonized System) Classification of INN Substances Revision The following communication has been received from the Nomenclature and Classification Directorate of the Customs Co-operation Council in Brussels. On 25 May 1993, we sent you a list of the INN substances whose classification had been discussed and decided by the Harmonized System Committee. At the time, we informed you that the classification of two substances, clobenoside and meclofenoxate, would be decided later. Furthermore, for some of the chemicals given in that list, one of the contracting parties had entered a reservation and the Harmonized System Committee therefore reconsidered its earlier decision in those cases. I am therefore sending you herewith a revised complete list of the classification decisions of the INN substances. In this revised list, two substances have been added and the classifications of two have been revised as explained below: (a) Addition Classification of clobenoside, (subheading 2940.00) and meclofenoxate (subheading 2922.19). (b) Amendment Etafedrine and moxidentin have now been reclassified in subheadings 2939.40 and 2932.29 respectively. The list of INN substances reproduced hereafter is available only in English. TAR/W/87/Rev. 1 Page 2 Classification of INN Substances Agreed by the Harmonized System Committee in April 1993 Revision Description HS Code
    [Show full text]