The Microprocessor and the Personal Computer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
IBM のパソコン事業参入に関するケース・スタディ (1) パソコン市場への参入に遅れた IBM が 1980 年代初頭にパソコン開発に関して下した技術的決断に関 わる組織外的要因と組織内的要因 A
技術戦略論 2011 講義メモ> CASE STUDY>IBM の PC 市場参入 IBM のパソコン事業参入に関するケース・スタディ (1) パソコン市場への参入に遅れた IBM が 1980 年代初頭にパソコン開発に関して下した技術的決断に関 わる組織外的要因と組織内的要因 a. 組織外的要因 --- 1970 年代後半期におけるパソコン市場 メインフレームやミニ・コンピュータといった製品から構成されていたコンピュータ産業に、1970 年代中 頃にパーソナル・コンピュータという製品が付け加わることになった。メインフレーム、ミニ・コンピュータ、 パーソナル・コンピュータではそれぞれターゲットとする顧客層が異なった。 産業構造 メインフレーム、ミニ・コンピュータの製造に関わるほとんどの企業は、垂直統合型構造を志向したが、 パーソナル・コンピュータに関わったほとんどの企業は、応用ソフト、OS、CPU、記憶装置など主要構成 要素に関して分業型構造を志向した。 組 織 PC 市場は 1975 年頃から急激な成長を開始し、1981 年の米国パソコン市場は推定出荷台数 70 万 市場 外 台、推定売上 10 億ドルという規模にまでなっていた。 的 要 競合企業 Apple 社、Commodore 社、Tandy=RadioShack 社 因 先行製品 AppleII(1977.4)、PET 2001(1977.4)、TRS-80(1977.8)などの 8 ビットパソコン 先行製品の 8080 系マイクロプロセッサー(インテルの 8080 と互換性を持つマイクロプロセッサー)>シェア大 採用CPU 6800 系マイクロプロセッサー(モトローラの 6800 と互換性を持つマイクロプロセッサー)>シェア小 ユーザー 主要なユーザー層が、イノベーター(Innovators)からアーリー・アダプター(Early Adopters)へと移行中 b. 組織外的要因 --- 1970 年代後半期におけるパソコン市場 製品の差別化を可能とする要素技術の自社保有の有無およびそうした技 術を開発する能力 自社の 「技術開発」力 パソコンでいえば、CPU の開発力、OS の開発力、アプリケーション・ソフトの開発 力、プログラミング言語の開発力などがこうした「技術開発」力になる 様々な要素技術や部品・ソフトウェアを組み合わせて「魅力」的な製品を 企画・開発・設計する能力 パソコンでいえば、「どのような CPU を採用するのか?」、「プレ・インストール用 製品に関わる OS としてどんな OS を採用するのか?」、「どのようなアプリケーション・ソフトをプ 技術力 レ・インストールしておくのか?」、「周辺機器接続のための拡張カードを利用する (Product Innovation ために、どのような拡張バス(ISA バスなのか、PCI バスなのか、AGP バスなのか、 組 に関わる技術力) 自社の PCI-EXPRESS バスなのか)を採用するのか、あるいは、拡張バスをどれだけの数 織 「製品開発」力 内 だけ設けるのか(あるいは拡張バスを設けないのか)?」、「外部周辺機器を簡単 的 「製品デザイン」 に接続してすぐに使うためにどのような接続ポート(ex.RS232C 接続ポート、ジョイ 要 力 スティック接続ポート、USB 接続ポート、IEEE1394 接続ポート、外部ディスプレイ 因 接続ポート)を採用するのか?」「どのようなマザーボードを採用するのか?」などと いった異なる複数の技術的方式の選択に関わる技術的判断を必要とする事柄に 関する能力 ----なお、 「どのような容量の HDD を採用するのか?」「FDD -
Steve Wozniak Was Born in 1950 Steve Jobs in 1955, Both Attended Homestead High School, Los Altos, California
Steve Wozniak was born in 1950 Steve Jobs in 1955, both attended Homestead High School, Los Altos, California, Wozniak dropped out of Berkeley, took a job at Hewlett-Packard as an engineer. They met at HP in 1971. Jobs was 16 and Wozniak 21. 1975 Wozniak and Jobs in their garage working on early computer technologies Together, they built and sold a device called a “blue box.” It could hack AT&T’s long-distance network so that phone calls could be made for free. Jobs went to Oregon’s Reed College in 1972, quit in 1974, and took a job at Atari designing video games. 1974 Wozniak invited Jobs to join the ‘Homebrew Computer Club’ in Palo Alto, a group of electronics-enthusiasts who met at Stanford 1974 they began work on what would become the Apple I, essentially a circuit board, in Jobs’ bedroom. 1976 chiefly by Wozniak’s hand, they had a small, easy-to-use computer – smaller than a portable typewriter. In technical terms, this was the first single-board, microprocessor-based microcomputer (CPU, RAM, and basic textual-video chips) shown at the Homebrew Computer Club. An Apple I computer with a custom-built wood housing with keyboard. They took their new computer to the companies they were familiar with, Hewlett-Packard and Atari, but neither saw much demand for a “personal” computer. Jobs proposed that he and Wozniak start their own company to sell the devices. They agreed to go for it and set up shop in the Jobs’ family garage. Apple I A main circuit board with a tape-interface sold separately, could use a TV as the display system, text only. -
8000 Plus Magazine Issue 17
THE BEST SELLIINIG IVI A<3 AZI INI E EOF=t THE AMSTRAD PCW Ten copies ofMin^g/jf^^ Office Professional to be ISSUE 17 • FEBRUARY 1988* £1.50 Could AMS's new desktop publishing package be the best yet? f PLUS: Complete buyer's guide to word processing, accounts, utilities and DTP software jgl- ) MASTERFILE 8000 FOR ALL AMSTRAD PCW COMPUTERS MASTERFILE 8000, the subject of so many Any file can make RELATIONAL references to up enquiries, is now available. to EIGHT read-only keyed files, the linkage being effected purely by the use of matching file and MASTERFILE 8000 is a totally new database data names. product. While drawing on the best features of the CPC versions, it has been designed specifically for You can import/merge ASCII files (e.g. from the PCW range. The resulting combination of MASTERFILE III), or export any data (e.g. to a control and power is a delight to use. word-processor), and merge files. For keyed files this is a true merge, not just an append operation. Other products offer a choice between fast but By virtue of export and re-import you can make a limited-capacity RAM files, and large-capacity but copy of a file in another key sequence. New data cumbersome fixed-length, direct-access disc files. fields can be added at any time. MASTERFILE 8000 and the PCW RAM disc combine to offer high capacity with fast access to File searches combine flexibility with speed. variable-length data. File capacity is limited only (MASTERFILE 8000 usually waits for you, not by the size of your RAM disc. -
Basic Electronics.COM -- Internet Guide to Electronics
BASIC ELECTRONICS.CD INFO Best Viewed at 800X600 Last Updated: January 10, 2003 Previously Internet Guide to Electronics Site. Welcome! This website allows you to NEW & NEWS: browse the subject of ELECTRONICS. If you are just starting the learning journey, I hope Your Projects you'll make use of the simple nature and graphical content of this site. Feel free to look Basic Electronics around. Don't worry -- there are no tests at the FAQ end of the day. If you would like to contact me regarding this site, email me at [email protected] John Adams - Author ( Place mouse over symbol to see selection in LCD screen then view explanation in the Email Me browser's status window. Non-Javascript browsers, scroll down for link explanations.) THEORY|APPLY IT!|COMPONENTS|MESSAGE BOARD|REF/DATA/TOOLS BOOKS/MAGs|LECTRIC LINKS|BASIC ELECTRONICS.CD INFO ABOUT|EMAIL|WHATS NEW! THEORY Gain the basic understanding of electronic principles that you will be making use of later. This includes Ohm's Law, Circuit Theory, etc. APPLY IT! Putting the theory to work. This includes sections on how to solder, multimeters, and of course, PROJECTS! COMPONENTS Learn about various electronics components. MESSAGE BOARD Post your basic electronics related questions here for others to answer and read. REFERENCE, DATA AND COOL TOOLS! Resistor color code info, plenty of calculators, chart, electronics data and other cool tools! VERY POPULAR PAGE BOOKS/MAGs A list of books and magazines relating to the subject of electronics. Includes direct links to amazon.com for ordering online. LECTRIC LINKS A list of top-rated Electronics-related sites on the Web. -
Personal Computing
Recent History of Computers: Machines for Mass Communication Waseda University, SILS, Science, Technology and Society (LE202) The communication revolution ‚ In the first period of the history of computers, we see that almost all development is driven by the needs and the financial backing of large organizations: government, military, space R&D, large corporations. ‚ In the second period, we will notice that the focus is now shifting to small companies, individual programers, hobbyists and mass consumers. ‚ The focus in the first period was on computation and control. In the second period, it is on usability and communication. ‚ A mass market for computers was created, through the development of a user-friendly personal computer. Four generations of computers 1st 2nd 3rd 4th 5th Period 1940s–1955 1956–1963 1964–1967 1971–present ? Tech- vacuum transistors integrated micro- ? nology tubes circuits processors Size full room large desk sized desk-top, ? (huge) machine hand-held Software machine assembly operating GUI ? language language systems interface The microprocessor ‚ In 1968, the “traitorous seven” left Fairchild Semiconductor to found Intel. ‚ In 1969, Busicom, a Japanese firm, commissioned Intel to make a microprocessor for a handheld calculator. ‚ This lead to the Intel 4004. Intel bought the rights to sell the chip to other companies. ‚ Intel immediately began the process of designing more and more powerful microchips. Schematic: The Intel 4004 ‚ This has lead to computers small enough to fit in our hands. Consumer electronics ‚ The microprocessor made it possible to create more affordable consumer electronics. ‚ The Walkman came out in 1979. Through the 1980s video players, recorders and stereos were marketed. -
Meeting Microcomputers and Bibliographic Information Systems in Latin America: Problems, Experiences and Projections
CEPAL MEETING MICROCOMPUTERS AND BIBLIOGRAPHIC INFORMATION SYSTEMS IN LATIN AMERICA: PROBLEMS, EXPERIENCES AND PROJECTIONS Santiago, Chile 24 to 27 April 1984 eee usti CANADA Economic Commission for Latin America and the Caribbean International Development Research Centre United Nations Educational, Scientific and Cultural Organization MEETING MICROCOMPUTERS 6ND BIBLIOGRAPHIC INFORMATION SYSTEMS IN LATIN AMERICAS PROBLEMS,EXPERIENCES AND PROJECTIONS Santiago,Chile 24 to 27 April 1984 Santiago de Chile LC/L.306 CL/L.20 August 1984 CONTENTS I. Introduction «.....„...t............................ II. Objectives and conclusions of the meeting ......... III. Recommendations ................................... Appendices 1. List of participants .............................. 2. List of acronyms of institutions, information networks and software packages .................... 3 o AÇ Blld El ea««ooeao«»«aas»0O««aooo*o«O0oeo0OA«D»e«e«o« 4. Abstracts of presentations ........................ 5. Features of software packages examined ............ 6. Documentation distributed ......................... 1 I. INTRODUCTION The use of microcomputer technology is rapidly expanding in developing regions. In areas such as Latin America and the Caribbean many computerized information and documentation networks are in place and many institutions are setting up their own data bases relying upon the new microcomputer equipment for their implementation. It is to be expected that this trend will have both positive and negative implications. On the positive side, -
Hardware and Software Companies During the Microcomputer Revolution
Technology Companies Hardware and software houses of the microcomputer age James Tam Recall: Computers Before The Microprocessor James Tam Image: “A History of Computing Technology” (Williams) CPSC 409: The Microcomputer era The Microprocessor1, 2 • Intel was commissioned to design a special purpose system for a client. – Busicom (client): A Japanese hand-held calculator manufacturer – Prior to this the core money making business of Intel was manufacturing computer memory. • “Intel designed a set of four chips known as the MCS-4.”1 – The CPU for the chip was the 4004 (1971) – Also it came with ROM, RAM and a chip for I/O – It was found that by designing a general purpose computer and customizing it through software that this system could meet the client’s needs but reach a larger market. – Clock: 108 kHz3 1 http://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html 2 https://spectrum.ieee.org/tech-history/silicon-revolution/chip-hall-of-fame-intel-4004-microprocessor James Tam 3 http://www.intel.com/pressroom/kits/quickreffam.htm The Microprocessor1,2 (2) • Intel negotiated an arrangement with Busicom so it could freely sell these chips to others. – Busicom eventually went bankrupt! – Intel purchased the rights to the chip and marketed it on their own. James Tam CPSC 409: The Microcomputer era The Microprocessor (3) • 8080 processor: second 8 bit (data) microprocessor (first was 8008). – Clock speed: 2 MHz – Used to power the Altair computer – Many, many other processors came after this: • 80286, 80386, 80486, Pentium Series I – IV, Celeron, Core • The microprocessors development revolutionized computers by allowing computers to be more widely used. -
Introduction Mainframes
LL I I I I Introduction . 11.. V ZI i ..O. There is little question that the current enthusiasm in personal computing was catalyzed by the introduction of the MITS Altair computer kit in January 1975. This computer kit demonstrated by its cost (originally less than $400) that individuals could now afford a computer. And by its design the Altair established a standard bus structure for the personal computing industry. Less than six months after MITS announced the Altair computer, other manufacturers were announcing com- patible memory boards, interface boards, and peripherals. Within the year bus-compatible mainframes were also introduced. Today over 50 manufacturers support what is known as the Standard 100 or S-100 bus derived from the 100-wire bus used in the original Altair computer. Over 20,000 mainframes using the S-100 bus are now in the field. One key reason for the rapid growth of the personal computer industry can be found in the widespread adoption of a standard microcomputer bus. A second key reason can be found in the design innovations in mainframes, memories, and I/O interfaces designed for the S-100 bus. Figure 1. The basic personal computer can accept a number of standard 5" x 10" cards designed for the industry standard S-100 microcomputer bus. A large selection of CPU, memory, and interface cards offers a great deal of flexibility in system Mainframes design. The basic personal computer mainframe consists of a CPU, computer bus, and power supply. Most mainframes are sold in kit form (Figure 1). Without exception in the personal computing industry of manufacturer support for the S-100 bus, no fewer than a microprocessor serves as the CPU. -
Classification of Computers
Chapter-2 Classification of Computers Computers can be classified many different ways -- by size, by function, or by processing capacity. Functionality wise 4 types a) Micro computer b) Mini Computer c) Mainframe Computer d) Super Computer Microcomputers Microcomputers are connected to networks of other computers. The price of a microcomputer varies from each other depending on the capacity and features of the computer. Microcomputers make up the vast majority of computers. Single user can interact with this computer at a time. It is a small and general purpose computer. Mini Computer Mini Computer is a small and general purpose computer. It is more expensive than a micro computer. It has more storage capacity and speed. It designed to simultaneously handle the needs of multiple users. Mainframe Computer Large computers are called Mainframes. Mainframe computers process data at very high rates of speed, measured in the millions of instructions per second. They are very expensive than micro computer and mini computer. Mainframes are designed for multiple users and process vast amounts of data quickly. Examples: - Banks, insurance companies, manufacturers, mail-order companies, and airlines are typical users. Super Computers The largest computers are Super Computers. They are the most powerful, the most expensive, and the fastest. They are capable of processing trillions of instructions per second. It uses governmental agencies, such as:- Chemical analysis in laboratory Space exploration National Defense Agency National Weather Service Bio-Medical research Design of many other machines Limitations of Computer Computer cannot take over all activities simply because they are less flexible than humans. It does not hold intelligence of its own. -
1977: the Year of the Appliance Computer
1977: The year of the appliance computer Vintage Computer Festival East Sunday, April 2, 2017 Bill Degnan The MITS Mobile Computer Carivan traveled across the USA to demonstrate and teach customers about the MITS Altair, and to help customers with their kit project work. There has to be an easier way! Cover, Byte December 1977 Computer Lib / Dream Machines by Theodor Nelson 1977 a Nexus? • Customer demand for user-friendly computers. • Larger Manufacturers with finished systems entering the market • Mass production • Finished Systems well below $2000 • Multiple PC magazines • Special Interest Groups/Clubs/Conventions Enter The “Appliance Computer” • Phrase coined by Carl Helmers, Byte editor in January 1977 • Finished product desktop general-purpose computer complete with software (BASIC) • Reasonably Priced, purchased at a retail store or computer shop • Turnkey Computer – Works right out of the box • User does not need to know electronics or techniques of tuning of hardware • User does not need to build custom bootstrap program to initiate system • User manual uses pictures and examples to teach use, designed for simplicity. • The point of ownership is not to build the computer and maintain it Appliance computers for small business? You Bet! • A single computer is used in a very small business to take the place of several people either by saving the cost of salaries and benefits or freeing people for other tasks. • Eliminates manual processing of clerical work – inventory, book keeping, spreadsheets, production control, automated process monitoring and measuring, elimination of other paper shuffling. • New capabilities like presentations, mailing lists and other customer sorting, telephone files, library catalogs other databases. -
Learning to Code
PART ILEARNING TO CODE How Important is Programming? “To understand computers is to know about programming. The world is divided… into people who have written a program and people who have not.” Ted Nelson, Computer Lib/Dream Machines (1974) How important is it for you to learn to program a computer? Since the introduction of the first digital electronic computers in the 1940s, people have answered this question in surprisingly different ways. During the first wave of commercial computing—in the 1950s and 1960s, when 1large and expensive mainframe computers filled entire rooms—the standard advice was that only a limited number of specialists would be needed to program com- puters using simple input devices like switches, punched cards, and paper tape. Even during the so-called “golden age” of corporate computing in America—the mid- to late 1960s—it was still unclear how many programming technicians would be needed to support the rapid computerization of the nation’s business, military, and commercial operations. For a while, some experts thought that well-designed computer systems might eventually program themselves, requiring only a handful of attentive managers to keep an eye on the machines. By the late 1970s and early 1980s, however, the rapid emergence of personal computers (PCs), and continuing shortages of computer professionals, shifted popular thinking on the issue. When consumers began to adopt low-priced PCs like the Apple II (1977), the IBM PC (1981), and the Commodore 64 (1982) by the millions, it seemed obvious that ground-breaking changes were afoot. The “PC Revolution” opened up new frontiers, employed tens of thousands of people, and (according to some enthusiasts) demanded new approaches to computer literacy. -
Inside the Computer Microcomputer Minicomputer Mainframe
Inside the computer Microcomputer Classification of Systems: • Personal Computer / Workstation. – Microcomputer • Desktop machine, including portables. – Minicomputer • Used for small, individual tasks - such as – Mainframe simple desktop publishing, small business – Supercomputer accounting, etc.... • Typical cost : £500 to £5000. • Chapters 1-5 in Capron • Example : The PCs in the labs are microcomputers. Minicomputer Mainframe • Medium sized server • Large server / Large Business applications • Desk to fridge sized machine. • Large machines in purpose built rooms. • Used for distributed data processing and • Used as large servers and for intensive multi-user server support. business applications. • Typical cost : £5,000 to £500,000. • Typical cost : £500,000 to £10,000,000. • Example : Scarlet is a minicomputer. • Example : IBM ES/9000, IBM 370, IBM 390. Supercomputer • Scientific applications • Large machines. • Typically employ parallel architecture (multiple processors running together). • Used for VERY numerically intensive jobs. • Typical cost : £5,000,000 to £25,000,000. • Example : Cray supercomputer 1 What's in a Computer System? Software • The Onion Model - layers. • Divided into two main areas • Hardware • Operating system • BIOS • Used to control the hardware and to provide an interface between the user and the hardware. • Software • Manages resources in the machine, like • Where does the operating system come in? • Memory • Disk drives • Applications • includes games, word-processors, databases, etc.... Interfaces Hardware • The chunky stuff! •CUI • If you can touch it... it's probably hardware! • Command Line Interface • The mother board. •GUI • If we have motherboards... surely there must be • Graphical User Interface fatherboards? right? •WIMP • What about sonboards, or daughterboards?! • Windows, Icons, Mouse, Pulldown menus • Hard disk drives • Monitors • Keyboards BIOS Basics • Basic Input Output System • Directly controls hardware devices like UARTS (Universal Asynchronous Receiver-Transmitter) - Used in COM ports.