bioRxiv preprint doi: https://doi.org/10.1101/2020.12.01.406413; this version posted December 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Cumulative impacts across Australia’s Great Barrier Reef: 2 A mechanistic evaluation 3 4 Yves-Marie Bozec1, Karlo Hock1, Robert A. B. Mason1, Mark E. Baird2, Carolina Castro- 5 Sanguino1, Scott A. Condie2, Marji Puotinen3, Angus Thompson4, Peter J. Mumby1 6 1 Marine Spatial Ecology Lab, School of Biological Sciences & ARC Centre of Excellence for 7 Coral Reef Studies, University of Queensland, St Lucia, Qld 4072, Australia. 8 2 CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia 9 3 Australian Institute of Marine Science & Indian Ocean Marine Research Centre, Crawley, WA 10 6009, Australia. 11 4 Australian Institute of Marine Science, Townsville, QLD 4810, Australia. 12 13 Corresponding author: Dr Yves-Marie Bozec 14 Marine Spatial Ecology Lab, Goddard Building, School of Biological Sciences 15 The University of Queensland, St Lucia, Qld 4072, Australia 16 E-mail:
[email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.01.406413; this version posted December 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 17 ABSTRACT 18 Cumulative impacts assessments on marine ecosystems have been hindered by the difficulty of 19 collecting environmental data and identifying drivers of community dynamics beyond local scales. On 20 coral reefs, an additional challenge is to disentangle the relative influence of multiple drivers that operate 21 at different stages of coral ontogeny.