Annual Report for Inshore Coral Reef Monitoring

Total Page:16

File Type:pdf, Size:1020Kb

Annual Report for Inshore Coral Reef Monitoring MARINE MONITORING PROGRAM Annual Report for inshore coral reef monitoring 2015 - 2016 Authors - Angus Thompson, Paul Costello, Johnston Davidson, Murray Logan, Greg Coleman, Kevin Gunn, Britta Schaffelke Marine Monitoring Program Annual Report for Inshore Coral Reef Monitoring 2015 - 2016 Angus Thompson, Paul Costello, Johnston Davidson, Murray Logan, Greg Coleman, Kevin Gunn, Britta Schaffelke MMP Annual Report for inshore coral reef monitoring 2016 © Commonwealth of Australia (Australian Institute of Marine Science), 2017 Published by the Great Barrier Reef Marine Park Authority ISBN: 2208-4118 Marine Monitoring Program: Annual report for inshore coral monitoring 2015-2016 is licensed for use under a Creative Commons By Attribution 4.0 International licence with the exception of the Coat of Arms of the Commonwealth of Australia, the logos of the Great Barrier Reef Marine Park Authority and Australian Institute of Marine Science any other material protected by a trademark, content supplied by third parties and any photographs. For licence conditions see: http://creativecommons.org/licences/by/4.0 This publication should be cited as: Thompson, A., Costello, P., Davidson, J., Logan, M., Coleman, G., Gunn, K., Schaffelke, B., 2017, Marine Monitoring Program. Annual Report for inshore coral reef monitoring: 2015 to 2016. Report for the Great Barrier Reef Marine Park Authority, Great Barrier Reef Marine Park Authority, Townsville.133 pp. A catalogue record for this publication is available from the National Library of Australia Front cover image: The reef-flat coral community at Double Cone Island, Central Great Barrier Reef. Photographer Johnston Davidson © AIMS 2014. DISCLAIMER While reasonable efforts have been made to ensure that the contents of this document are factually correct, AIMS do not make any representation or give any warranty regarding the accuracy, completeness, currency or suitability for any particular purpose of the information or statements contained in this document. To the extent permitted by law AIMS shall not be liable for any loss, damage, cost or expense that may be occasioned directly or indirectly through the use of or reliance on the contents of this document. Comments and questions regarding this document are welcome and should be addressed to: Australian Institute of Marine Science PMB No 3 Townsville MC, Qld 4810 This project is supported by the Great Barrier Reef Marine Park Authority through funding from the Australian Government Reef Program, the Reef 2050 Integrated Monitoring, and Reporting Program and AIMS. MMP Annual Report for inshore coral reef monitoring 2016 Contents 1 Executive Summary ........................................................................................................ 1 2 Preface ........................................................................................................................... 5 3 Introduction ..................................................................................................................... 6 4 Methods .......................................................................................................................... 9 4.1 Sampling design ........................................................................................................... 9 4.1.1 Site Selection .................................................................................................... 9 4.1.2 Depth Selection ............................................................................................... 11 4.1.3 Site marking .................................................................................................... 11 4.1.4 Sampling timing and frequency ........................................................................ 11 4.3 Environmental pressures ............................................................................................ 13 4.3.1 Water quality ................................................................................................. 13 4.3.2 Sea temperature .............................................................................................. 13 4.3.3 River discharge, DIN and TSS loads ............................................................... 14 4.3.4 Sediment sampling .......................................................................................... 14 4.3.5 SCUBA search transects ................................................................................. 14 4.4 Pressure presentation................................................................................................. 17 4.5 Coral community sampling ......................................................................................... 18 4.5.1 Photo point intercept transects ........................................................................ 18 4.5.2 Juvenile coral surveys ..................................................................................... 18 4.6 Coral reef data analysis and presentation ................................................................... 19 4.6.1 Variation in index and metric scores among Regions and depths .................... 19 4.6.2 Variation in index and metric scores to gradients in water quality .................... 20 4.6.3 Relationship between index and metric scores and regional discharge ........... 20 4.6.4 Temporal trends in coral index, indicators and measured water quality. .......... 20 4.6.5 Analysis of change in index and metric scores ................................................ 21 4.7 The Coral Index .......................................................................................................... 21 4.7.1 Coral Cover metric ........................................................................................... 21 4.7.2 Macroalgae metric ........................................................................................... 22 4.7.3 Density of juvenile hard corals metric .............................................................. 23 4.7.4 Cover Change metric ....................................................................................... 24 4.7.5 Community Composition metric ....................................................................... 26 4.7.6 Aggregating indicator scores to regional scale assessments ........................... 27 5 Results ......................................................................................................................... 29 5.1 Variation of coral index and indicator scores observed in 2016 ................................... 29 5.1.1 Regional differences ........................................................................................ 29 5.1.2 Effect of depth ................................................................................................. 30 5.1.3 Response to environmental gradients .............................................................. 31 5.1.4 Influence of discharge and catchment loads .................................................... 33 5.2 Regional condition of coral communities ..................................................................... 35 5.2.1 Wet Tropics Region: Barron Daintree sub-region ............................................. 35 5.2.2 Wet Tropics Region: Johnstone Russell-Mulgrave sub-region ......................... 39 5.2.3 Wet Tropics Region: Herbert Tully sub-region ................................................. 43 5.2.4 Burdekin Region .............................................................................................. 46 5.2.5 Mackay Whitsunday Region ............................................................................ 50 5.2.6 Fitzroy Region ................................................................................................. 54 i MMP Annual Report for inshore coral reef monitoring 2016 6 Discussion .................................................................................................................... 58 6.1 Pressures ................................................................................................................... 58 Acute disturbances ................................................................................................... 58 Chronic conditions - water quality ............................................................................. 59 6.2 Ecosystem State ......................................................................................................... 59 Coral index ............................................................................................................... 59 Coral cover ............................................................................................................... 61 Rate of change in coral cover ................................................................................... 61 Composition ............................................................................................................. 62 Macroalgae .............................................................................................................. 62 Juvenile density ........................................................................................................ 63 6.3 Regional summaries ................................................................................................... 63 Wet Tropics .............................................................................................................. 63 Burdekin ..................................................................................................................
Recommended publications
  • Tropical Cyclones in the Great Barrier Reef Region
    Tropical cyclones and climate change in the Great Barrier Reef region Tropical cyclones can devastate coastal and marine ecosystems in the Great Barrier Reef region. Reef image: Matt Curnock > The annual number of Tropical cyclones have the potential to generate extreme winds, tropical cyclones in the heavy rainfall and large waves that can devastate agriculture Great Barrier Reef region and marine infrastructure and ecosystems in the Great Barrier shows large year-to-year Reef (GBR) region. Powerful wind gusts, storm surges and variability, primarily due coastal flooding resulting from tropical cyclones can damage to the El Niño-Southern tourism infrastructure, such as damage to Hamilton Island Oscillation phenomenon. from cyclone Debbie in 2017, and the combination of wind, flooding and wave action can uproot mangroves. > There is no clear trend Wave action and flood plumes from Global temperatures continue in the annual number river runoff can devastate seagrass to increase in response to rising (e.g. central GBR, cyclone Yasi, concentrations of greenhouse gases of observed tropical 2011) and coral reef communities in the atmosphere. In response, the cyclones impacting (e.g. southern GBR, cyclone impacts associated with extreme the Great Barrier Reef Hamish, 2009 and northern GBR, weather hazards and disasters, since 1980. However, cyclone Nathan, 2015). Waves in including those caused by tropical particular can damage corals even cyclones in the GBR region, are during this time impacts when cyclones are several hundred likely to change. Understanding how from other stressors kilometers away from the reef. these changes to extreme weather hazards will manifest in the GBR have increased in Recovery of ecosystems from this region in the future is critical for damage can take years to decades, frequency and severity.
    [Show full text]
  • Known Impacts of Tropical Cyclones, East Coast, 1858 – 2008 by Mr Jeff Callaghan Retired Senior Severe Weather Forecaster, Bureau of Meteorology, Brisbane
    ARCHIVE: Known Impacts of Tropical Cyclones, East Coast, 1858 – 2008 By Mr Jeff Callaghan Retired Senior Severe Weather Forecaster, Bureau of Meteorology, Brisbane The date of the cyclone refers to the day of landfall or the day of the major impact if it is not a cyclone making landfall from the Coral Sea. The first number after the date is the Southern Oscillation Index (SOI) for that month followed by the three month running mean of the SOI centred on that month. This is followed by information on the equatorial eastern Pacific sea surface temperatures where: W means a warm episode i.e. sea surface temperature (SST) was above normal; C means a cool episode and Av means average SST Date Impact January 1858 From the Sydney Morning Herald 26/2/1866: an article featuring a cruise inside the Barrier Reef describes an expedition’s stay at Green Island near Cairns. “The wind throughout our stay was principally from the south-east, but in January we had two or three hard blows from the N to NW with rain; one gale uprooted some of the trees and wrung the heads off others. The sea also rose one night very high, nearly covering the island, leaving but a small spot of about twenty feet square free of water.” Middle to late Feb A tropical cyclone (TC) brought damaging winds and seas to region between Rockhampton and 1863 Hervey Bay. Houses unroofed in several centres with many trees blown down. Ketch driven onto rocks near Rockhampton. Severe erosion along shores of Hervey Bay with 10 metres lost to sea along a 32 km stretch of the coast.
    [Show full text]
  • Cyclone Factsheet UPDATE
    TROPICAL CYCLONES AND CLIMATE CHANGE: FACTSHEET CLIMATECOUNCIL.ORG.AU TROPICAL CYCLONES AND CLIMATE CHANGE: FACT SHEET KEY POINTS • Climate change is increasing the destructive power of tropical cyclones. o All weather events today, including tropical cyclones, are occurring in an atmosphere that is warmer, wetter, and more energetic than in the past. o It is likely that maximum windspeeds and the amount of rainfall associated with tropical cyclones is increasing. o Climate change may also be affecting many other aspects of tropical cyclone formation and behaviour, including the speed at which they intensify, the speed at which a system moves (known as translation speed), and how much strength is retained after reaching land – all factors that can render them more dangerous. o In addition, rising sea levels mean that the storm surges that accompany tropical cyclones are even more damaging. • While climate change may mean fewer tropical cyclones overall, those that do form can become more intense and costly. In other words, we are likely to see more of the really strong and destructive tropical cyclones. • A La Niña event brings an elevated tropical cyclone risk for Australia, as there are typically more tropical cyclones in the Australian region than during El Niño years. BACKGROUND Tropical cyclones, known as hurricanes in the North Atlantic and Northeast Pacific, typhoons in the Northwest Pacific, and simply as tropical cyclones in the South Pacific and Indian Oceans, are among the most destructive of extreme weather events. Many Pacific Island Countries, including Fiji, Vanuatu, Solomon Islands and Tonga, lie within the South Pacific cyclone basin.
    [Show full text]
  • 1 World Health Organization Department of Communications Evidence Syntheses to Support the Guideline on Emergency Risk Communic
    World Health Organization Department of Communications Evidence Syntheses to Support the Guideline on Emergency Risk Communication Q10: What are the best social media channels and practices to promote health protection measures and dispel rumours and misinformation during events and emergencies with public health implications? Final Report Submitted by Wayne State University, 42 W. Warren Ave., Detroit, Michigan 48202 United States of America Contact Persons: Pradeep Sopory, Associate Professor, Department of Communication (Email: [email protected]; Ph.: 313.577.3543) Lillian (Lee) Wilkins, Professor, Department of Communication (Email: [email protected]; 313.577.2959) Date: December 21, 2016 1 TABLE OF CONTENTS Table of Contents . 2 Project Team, Acknowledgments, Authors . 3 1.0 Introduction . 4 2.0 Existing Reviews . 7 3.0 Method . 12 4.0 Results . 23 5.0 Discussion . 48 6.0 Funding . 52 7.0 References . 53 8.0 Appendixes . 62 2 PROJECT TEAM, ACKNOWLEDGMENTS, AUTHORS Wayne State University The project team was Pradeep Sopory, Lillian (Lee) Wilkins, Ashleigh Day, Stine Eckert, Donyale Padgett, and Julie Novak. Research assistance provided by (in alphabetical order) Fatima Barakji, Kimberly Daniels, Beth Fowler, Javier Guzman Barcenas. Juan Liu, Anna Nagayko, and Jacob Nickell. Library assistance provided by Damecia Donahue. We acknowledge the assistance of staff (in alphabetical order) Mary Alleyne, Robin Collins, Victoria Dallas, Janine Dunlop, Andrea Hill, Charylce Jackson, and Angela Windfield. World Health Organization Methodology assistance provided by consultant Jane Noyes, library assistance provided by Tomas Allen, and general research assistance provided by Nyka Alexander. We acknowledge the assistance of staff Oliver Stucke. Project initiated and conceptualized by Gaya Gamhewage and Marsha Vanderford.
    [Show full text]
  • The Bathurst Bay Hurricane: Media, Memory and Disaster
    The Bathurst Bay Hurricane: Media, Memory and Disaster Ian Bruce Townsend Bachelor of Arts (Communications) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2019 School of Historical and Philosophical Inquiry Abstract In 1899, one of the most powerful cyclones recorded struck the eastern coast of Cape York, Queensland, resulting in 298 known deaths, most of whom were foreign workers of the Thursday Island pearling fleets. Today, Australia’s deadliest cyclone is barely remembered nationally, although there is increasing interest internationally in the cyclone’s world record storm surge by scientists studying past cyclones to assess the risks of future disasters, particularly from a changing climate. The 1899 pearling fleet disaster, attributed by Queensland Government meteorologist Clement Wragge to a cyclone he named Mahina, has not until now been the subject of scholarly historical inquiry. This thesis examines the evidence, as well as the factors that influenced how the cyclone and its disaster have been remembered, reported, and studied. Personal and public archives were searched for references to, and evidence for, the event. A methodology was developed to test the credibility of documents and the evidence they contained, including the data of interest to science. Theories of narrative and memory were applied to those documents to show how and why evidence changed over time. Finally, the best evidence was used to reconstruct aspects of the event, including the fate of several communities, the cyclone’s track, and the elements that contributed to the internationally significant storm tide. The thesis concludes that powerful cultural narratives were responsible for the nation forgetting a disaster in which 96 percent of the victims were considered not to be citizens of the anticipated White Australia.
    [Show full text]
  • Tropical Cyclone Justin 6 - 24 March 1997
    Severe Tropical Cyclone Justin 6 - 24 March 1997 Queensland Tropical Cyclone Warning Centre Bureau of Meteorology A. Summary Severe Tropical Cyclone Justin was a large, long-lived Coral Sea cyclone that crossed the Queensland coast as a category two cyclone northwest of Cairns on 22 March. Two lows that merged in a very active monsoon trough in the Coral Sea developed into Tropical Cyclone Justin on 7 March, reaching maximum intensity on 9 March as a very large system. Justin remained almost stationary and due to cooling SST’s it was downgraded to a tropical low on 13 March. Justin then drifted north over warmer SST’s and re-intensified to tropical cyclone strength on 14 March, reaching a peak intensity on 17 March before weakening and crossing the coast northwest of Cairns on 22 March. The combined effects of heavy rain, large seas and gale to storm force winds caused widespread damage in the region between Cairns and Townsville and the loss of two lives. Earlier in Justin’s lifecycle 30 people were killed in Papua New Guinea and five people died when their yacht was destroyed. Justin was reportedly responsible for an estimated loss of $150 million to the agricultural industry alone. B. Meteorological Description Intensity Analysis The monsoon trough was characterised at 2300 UTC 3 March by a series of MSL low pressure centres below 1000 hPa extending from northeast Australia across the Coral Sea and by 2300 UTC 5 March one centre had developed in the Coral Sea. This low intensified and was named Justin at 1900 UTC 6 March.
    [Show full text]
  • Local Disaster Management Plan (LDMP) Has Been Prepared to Ensure There Is a Consistant Approach to Diaster Management in the Livingstone Shire
    F Document Set ID: 8554803 Version: 1, Version Date: 17/09/2020 FOREWORD Foreword by the Chair, Andrew Ireland of the Livingstone Shire Local Disaster Management Group. The Livingstone Shire Local Disaster Management Plan (LDMP) has been prepared to ensure there is a consistant approach to Diaster Management in the Livingstone Shire. This plan is an important tool for managing potential disasters and is a demonstrated commitment towards enhancing the safety of the Livingstone Shire community. The plan identifies potential hazards and risks in the area, identifies steps to mitigate these risks and includes strategies to enact should a hazard impact and cause a disaster. This plan has been developed to be consistant with the Disaster Management Standards and Guidelines and importantly to intergrate into the Queensland Disaster Management Arrangements (QDMA). The primary focus is to help reduce the potential adverse effect of an event by conducting activities before, during or after to help reduce loss of human life, illness or injury to humans, property loss or damage, or damage to the environment. I am confident the LDMP provides a comprehensive framework for our community, and all residents and vistors to our region can feel secure that all agenices involved in the Livingstone Shire LDMP are dedicated and capable with a shared responsibility in disaster management. On behalf of the Livingstone Shire Local Disaster Management Group, I would like to thank you for taking the time to read this important plan. Livingstone Shire Council Mayor Andrew Ireland Chair, Local Disaster Management Group Dated: 26 August 2020 Page 2 of 175 ECM # xxxxxx Version 6 Document Set ID: 8554803 Version: 1, Version Date: 17/09/2020 ENDORSEMENT This Local Disaster Management Plan (LDMP) has been prepared by the Livingstone Shire Local Disaster Management Group for the Livingstone Shire Council as required under section 57 of the Disaster Management Act 2003 (the Act).
    [Show full text]
  • Download Field Report
    Recovery of the Great Barrier Reef Dr David Bourne, James Cook University Hillary Smith, James Cook University May-September, 2018 PAGE 1 LETTER TO VOLUNTEERS Dear Earthwatch volunteers, Our team at James Cook University and Earthwatch Australia wish to thank you for the continued field support during our 12th and 13th field trip expeditions. Again with great weather conditions, this season has been especially successful in fulfilling our missions in the field. In February 2011, a severe tropical cyclone (Yasi) struck the coast of North Queensland and caused catastrophic damage to reefs in the study area around Orpheus Island located in the central sector of the Great Barrier Reef. In 2016 and 2017 the Great Barrier Reef was also hit by the largest bleaching events on recorded resulting in unprecedented coral mortality in some areas of the reef. Finally coral populations at the study sites have previously suffered from outbreaks of a coral disease, black- band disease (BBD). Our goals of the field work were; 1) monitor the recovery of coral populations extensively damaged following cyclone Yasi; 2) Assess the impacts of the bleaching events in 2017 and 2017 on these recovering populations; 3) study how coral disease outbreaks influence this reef recovery processes; 4) elucidate the microbial mechanisms of BBD; and 5) conduct pilot surveys of benthic cover for future algal removal research. We are grateful for the hard work of the Earthwatch volunteers during the field trips in 2018 and appreciated the fantastic sunny days that volunteers brought with them. Favourable conditions allowed us to efficiently collect coral data from all the study sites that we have been monitoring.
    [Show full text]
  • Severe Tropical Cyclone Marcia: an Examination of Information and Warnings Broadcasted to Inform Mitigation and Community Preparedness
    Severe Tropical Cyclone Marcia: an examination of information and warnings broadcasted to inform mitigation and community preparedness Kevin Ronan CQ University, Bushfire and Naturual Hazards CRC Bruce Gunn Bureau of Meteorology Deanne Bird Risk Frontiers, University of Iceland AFAC16 CONFERENCE PAPER Severe Tropical Cyclone Marcia: An examination of information and warnings broadcasted to inform mitigation and community preparedness Deanne Bird1, 2, Shannon Panchuk3, Kevin Ronan4, Linda Anderson-Berry3, Christine Hanley5, Shelby Canterford6, Ian Mannix7, Bruce Gunn3 1 Risk Frontiers, Macquarie University, Melbourne 2 Institute of Life and Environmental Sciences, University of Iceland, Reykjavik 3 Hazards Warnings and Forecasts Division, Bureau of Meteorology 4 Clinical Psychology, School of Human, Health and Social Sciences, Central Queensland University, Rockhampton 5 Population Research Lab, School of Human, Health and Social Sciences, Central Queensland University, Rockhampton 6 Community Safety Branch, Community Safety and Earth Monitoring Division, Geoscience Australia 7 ABC Radio Emergency Broadcasting Abstract The event of severe Tropical Cyclone Marcia is particularly interesting for two reasons. Firstly, it is the most intense cyclone to make landfall so far south on the east coast of Australia during the satellite era. Secondly, it rapidly intensified from a Category 2 to a Category 5 system in 36 hours. While coastal residents of the region, including Yeppoon and Byfield are accustomed to receiving cyclone forecasts and warnings, many were taken by surprise by the intensity of Marcia and the fact that it wasn’t another ‘near miss’. Being situated further inland, the residents of Rockhampton were even more surprised. Given the rapid escalation in intensity of this event, the effective transmission of warnings and how these were used to inform mitigation and community preparedness was particularly important.
    [Show full text]
  • Natural Hazard Resilient Communities and Land Use Planning: the Limitations of Planning Governance in Tropical Australia
    Harwood et al., J Geogr Nat Disast 2014, 4:2 Geography & Natural Disasters http://dx.doi.org/10.4172/2167-0587.1000130 ResearchResearch Article Article OpenOpen Access Access Natural Hazard Resilient Communities and Land Use Planning: The Limitations of Planning Governance in Tropical Australia Sharon Harwood1*, Dean Carson2, Ed Wensing3 and Luke Jackson4 1School of Earth and Environmental Sciences, James Cook University, PO Box 6811, Cairns QLD 4870, Australia 2Professor of Rural and Remote Research, Flinders University Rural Clinical School , PO Box 889, Nuriootpa SA 5355, Australia 3National Centre for Indigenous Studies, The Australian National University, Canberra ACT 0200 4School of Earth and Environmental Sciences, James Cook University, PO Box 6811, Cairns QLD, 4870, Australia Abstract This paper examines how two Australian land use planning systems address the creation of hazard resilient communities in tropical areas. The application of substantive hazard knowledge and how this influences the associated procedures within the planning system is examined. The case studies of Darwin the capital of the Northern Territory, and the beachside suburb of Machans Beach within the Cairns Regional Council in far north Queensland are investigated. Both case study locations have experienced tropical cyclones since settlement and despite their hazard prone locations, both have intensified over their 120 year existence. Moreover, it is predicted that cyclones in tropical Australia will decrease in number, but increase in intensity. It would be rational to assume that industry, community and government would actively pursue planning strategies to negate the risks of natural hazards and the corresponding level of vulnerability to a hazard event. However, neither communities nor planning are driven by rational technical decision making processes.
    [Show full text]
  • Tropical Cyclone Risk and Impact Assessment Plan Final Feb2014.Pdf
    © Commonwealth of Australia 2013 Published by the Great Barrier Reef Marine Park Authority Tropical Cyclone Risk and Impact Assessment Plan Second Edition ISSN 2200-2049 ISBN 978-1-922126-34-4 Second Edition (pdf) This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without the prior written permission of the Great Barrier Reef Marine Park Authority. Requests and enquiries concerning reproduction and rights should be addressed to: Director, Communications and Parliamentary 2-68 Flinders Street PO Box 1379 TOWNSVILLE QLD 4810 Australia Phone: (07) 4750 0700 Fax: (07) 4772 6093 [email protected] Comments and enquiries on this document are welcome and should be addressed to: Director, Ecosystem Conservation and Resilience [email protected] www.gbrmpa.gov.au ii Tropical Cyclone Risk and Impact Assessment Plan — GBRMPA Executive summary Waves generated by tropical cyclones can cause major physical damage to coral reef ecosystems. Tropical cyclones (cyclones) are natural meteorological events which cannot be prevented. However, the combination of their impacts and those of other stressors — such as poor water quality, crown-of-thorns starfish predation and warm ocean temperatures — can permanently damage reefs if recovery time is insufficient. In the short term, management response to a particular tropical cyclone may be warranted to promote recovery if critical resources are affected. Over the long term, using modelling and field surveys to assess the impacts of individual tropical cyclones as they occur will ensure that management of the Great Barrier Reef represents world best practice. This Tropical Cyclone Risk and Impact Assessment Plan was first developed by the Great Barrier Reef Marine Park Authority (GBRMPA) in April 2011 after tropical cyclone Yasi (one of the largest category 5 cyclones in Australia’s recorded history) crossed the Great Barrier Reef near Mission Beach in North Queensland.
    [Show full text]
  • Issue No. 36 AUTUMN 2015 CONTENTS
    Issue No. 36 AUTUMN 2015 CONTENTS Print Post Approved: 100004991 Published by Countrywide Austral Pty Ltd (ABN 83 146 901 797) Level 2, 310 King Street, Melbourne 3000 GPO Box 2466, Melbourne 3001 Issue No. 36 AUTUMN 2015 Ph: (03) 9937 0200 Fax: (03) 9937 0201 Email: [email protected] Front Cover: All Advertising Enquiries: Australian Customs Countrywide Austral Pty Ltd and Border Protection The Journal for Women and Policing is Service’s Kim Eaton published for the Australasian Council of joins two of the 10 Women and Policing Inc. Pakistan Customs officials who were ACWAP Membership is available from $50 sponsored to attend per year. For more information please contact the International the Editorial Committee, www.acwap.com.au, Gender Responsive PO Box 1485, Woden, ACT 2606, email Policing Conference [email protected] or phone 0418 362 031. in Pakistan. Photos: All photos supplied by ACWAP Inc. (unless otherwise credited). Advertising: Advertisements in this 2 President’s Report journal are solicited from organisations and Carlene York businesses on the understanding that no 3 Note from the Editor special considerations, other than those normally accepted in respect of commercial Philip Green dealings, will be given to any advertiser. 5 The 9th Annual ACWAP Conference Editorial Note: The views expressed, except where expressly stated otherwise, 6 Notice of Annual General Meeting do not necessarily reflect the views of the 8 Women in profile Management Committee of ACWAP Inc. Articles are accepted for publication on Deputy Commissioner Leanne Close APM the basis that they are accurate and do not 10 Police Force celebrate 100 years of women in policing defame any person.
    [Show full text]